

Sectioning with Single–View Structured Illumination

Charles A. DiMarzio ECE, MIE, BioE Northeastern University

April 2019

With Help From Zac Hoffman, Mahsa Azizi, Kivanc Kose This work was supported in part by the the National Science Foundation (award number CBET-1510281).

- Research Overview
- Modern Microscopy
- Structured Illumination (SIM)
- Random Patterns
- Sectioning with SIM
- SISIM: Single–Image SIM

Apr 2019

Our Current Research

- Multi-Modal Microscopy
- Light and Sound
- Structured Illumination
- Collagen Orientation
- Stepwise 3–PEF in Melanin
- Lidar

Multi–Modal

SIM

Melanin

Light and Sound

Collagen

Lidar

Chuck DiMarzio, Northeastern University

Early Microscopes

- Compound Microscope (Jansen, 1590)
- Simple Microscope (m=300) (Leeuwenhoek, early 1600s)
- Physiological Observation (Hooke 1665)
- Diffraction Theory (Abbe, 1860)
- Diffraction-Limited Imaging (Spencer, mid 1880s)

Apr 2019

Modern Microscopy

• What's so Modern?

Microscopy has been around since 1590...

- ... But a Lot Has Happened in the Last Few Decades
- Three Reasons why the Time is Right
 - Illumination Sources (From Tungsten to Lasers, LEDs)
 - Fast, Low-Cost Computers (and Cameras, etc.)
 - Chemistry (Molecular Tags)

Northeastern University
College of EngineeringWhat Is Sectioning?

Defocusing a camera makes an object blurry; Δz depends on Variation with x, \ldots but contrast is an issue.

In-Focus Image

Chuck DiMarzio, Northeastern University

What Is Sectioning?

Defocusing a confocal microscope makes an object disappear

Judy Newmark (Warner Group), Bill Warger

Apr 2019

Chuck DiMarzio, Northeastern University

Varying Spatial Frequencies

Chuck DiMarzio, Northeastern University

• SIM = Structured Illumination Microscopy

SIM

- Uses an Optical Fourier Transform
- Can Improve Resolution by 2X
- Can Also Provide Sectioning

Apr 2019

Chuck DiMarzio, Northeastern University

• Image as a Product in the Field (Spatial) Plane

Image = Illumination × Transmission

• Low Pass Filter

$$f_x < \frac{NA}{\lambda}$$

Image = (Illumination × Transmission) * Filter

Pupil (Spatial Frequency) Domain
IMAGE = (ILLUMINATION * TRANSMISSION) × FILTER

Offset Illumination: Multiply in the Image; Convolve in the Pupil Apr 2019 Chuck DiMarzio, Northeastern University 12345–10

SIM Sectioning Concept

- High frequency modulation pattern in focal plane
- Blurred pattern above and below
- Resolution dependent on frequency and NA

Fourier Domain

635nm, 18X, 0.4 NA

Apr 2019

Chuck DiMarzio, Northeastern University

Random Modulation

Hoffman and DiMarzio: Structured illumination microscopy using random intensity ...

Fig. 9 Wide-field in vivo image at the surface.

Fig. 11 Wide-field in vivo image at depth.

Fig. 10 CRII in vivo image showing the stratum corneum.

Fig. 12 CRII in vivo image showing the stratum granulosum.

Hoffman, *JBO*, 2012

Northeastern University College *of* Engineering

Apr 2019

Chuck DiMarzio, Northeastern University

SIM Sectioning Experiment

$$I_{AC} = I_1 e^{i0} + I_2 e^{i2\pi/3} + I_3 e^{i4\pi/3}$$

Layer 1: Ground Glass Layer 2: Gel $(n \approx 1.33)$ Layer 3: Resolution Chart

Neil, Optics Letters 1997

Apr 2019

Chuck DiMarzio, Northeastern University

Spiral Hilbert Transform

Nadeau, JBO 2014

Apr 2019

Chuck DiMarzio, Northeastern University

Processing

Chuck DiMarzio, Northeastern University

SISIM Phase 1 SISIM Phase 2 SISIM Phase 3

Widefield

SIM 3 Phase SISIM Sum

Apr 2019

Northeastern University College *of* Engineering

Chuck DiMarzio, Northeastern University

All Images 750 μm Square 0 to $25\mu m$ deep

25 to 50 μ m deep

50 to 75 μ m deep

75 to $100\mu m$ deep

Motion Artifacts

Human Skin at $\approx 50 \mu m$

(A) **(B)** (C)

SIM 3 Phase

SISIM Sum Registered

Scale Bar pprox 10 μ m

Widefield

SISIM

Chuck DiMarzio, Northeastern University

Registration Algorithm

- Removes modulation pattern first.
- Apply registration to just the specimen.
- Align all images before sectioning.
- Add three phases after they are aligned and sectioned
- images to produce high-quality sectioning.

Regstration Results

All Images $\approx 750 \mu m$ Square See Videos

SIM 3 Phase

- SIM Sectioning Artifacts Using 3 Phases
 - Refraction
 - Motion
- SISIM Uses a Single Image
- Adding Images Recovers SNR
- Registration on Image Allows Recovery of SNR

- Funding: NSF CBET-1510281
- Graduate Students
 - Dr. Zachary Hoffman, Ph.D. 2018
 - Ms. Mahsa Azizi, Ph.D. Student
- Collaborators
 - Dr. Kivanc Kose (MSKCC)
 - Dr. Milind Rajadhyaksha (MSKCC)