Northeastern University College *of* Engineering

Biomedical Imaging Magnetic Resonance Imaging

Charles A. DiMarzio & Eric Hall Thanks to Eric Kercher, Danton Zhao EECE–4649 Dialogues of Civilization Northeastern University Universidad de los Andes

May 2023

Background and History

- Measurement of Nuclear Spins
 - Widely used in physics/chemistry labs (Absorption)
 - First Medical applications in the 1980s (Wiggles)
 - Improvement over Decades with Computer Technology
- NMR = Nuclear Magnetic Resonance
 - But you can't say "Nuclear" to Patients!
 - Not about ionization
 - Not about bombs
- Marketable name: Magnetic Resonance Imaging

May 2023

Larmor Precession

• An object with magnetic moment μ is placed in an external magnetic field **B**. Torque τ is applied on the object:

$$\tau = \mu \times \mathbf{B} \tag{1}$$

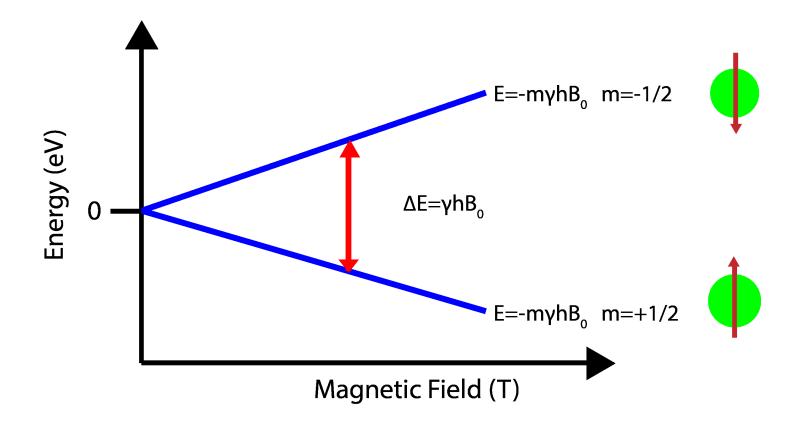
• Torque causes the object to rotate at a frequency proportional to the applied field, i.e., the Larmor frequency

$$\omega = \gamma B \tag{2}$$

• γ is the gyromagnetic ratio, which depends on the properties of the object

$$\gamma = \frac{|e|}{2m}g\tag{3}$$

May 2023


Chuck DiMarzio, Northeastern University

12349..slides3r1-2

Zeeman Effect

• Spin-state energy levels "split" under an applied magnetic field

Magnetization

- Convenient to talk about bulk material properties.
- Imagine a material with many objects "spinning" in random directions...
- Result of a external magnetic field is two-fold:
 - Torque causes precession at $\omega = \gamma B$ around the B field.
 - Two spin states "appear"; spin up (+1/2) and spin down (-1/2). These are also aligned with the B field.
- The material now has a net magnetization $\mathbf{M} = \sum_i m_i$.

May 2023

Population Difference

- Spin states populated in a Boltzmann distribution. Most spins will align with B field (low energy state), but some will be anti-aligned!
- Fields in a few Teslas, Larmor frequencies in Tens of MHz.
- Photon Energies $\approx 10^{-26}$ Joules (Below μEv)

$$N_{upper}/N_{lower} \approx e^{-hf/kT} = 1 - 10^{-5}$$

• but $N \approx N_A / \ {\rm cm^3}$

$$N_{lower} - N_{upper} \approx 10^{18} / \text{ cm}^3$$

May 2023

MRI Imaging

- "Excite" spins into the higher energy state.
 - Use RF pulses to "Flip" ${
 m M}$
 - If half the spins flip \rightarrow M rotates 90 degrees
 - If most of the spins flip \rightarrow M rotates 180 degrees
- Let spins relax back to equilibrium. $\mathbf{M}(\mathbf{x},\mathbf{y},\mathbf{z},t)$ is 4D!
 - M_z : Longitudinal relaxation
 - $-M_x, M_y$: Transverse relaxation
- Reconstruct image from collected signals.

May 2023

Bloch Equations

$$\frac{dM_{x'}}{dt} = (\omega_0 - \omega) M_{y'} - \frac{M_{x'}}{T_2}$$

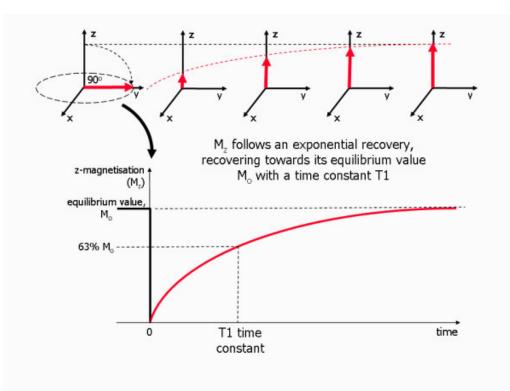
$$\frac{dM_{y'}}{dt} = -(\omega_0 - \omega) M_{x'} - \frac{M_{y'}}{T_2} + 2\pi\gamma B_1 M_z$$

$$\frac{dM_z}{dt} = -\frac{M_z - M_{z0}}{T_1} - 2\pi\gamma B_1 M_y$$

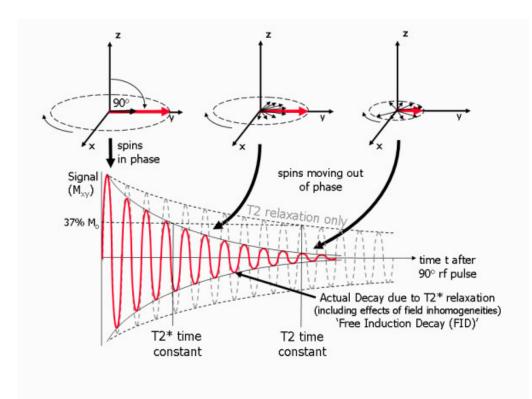
Green Terms are Rotation "Error" Red Term is Decay B_1 is RF field parallel to \hat{x} Blue Terms are Dephasing

May 2023

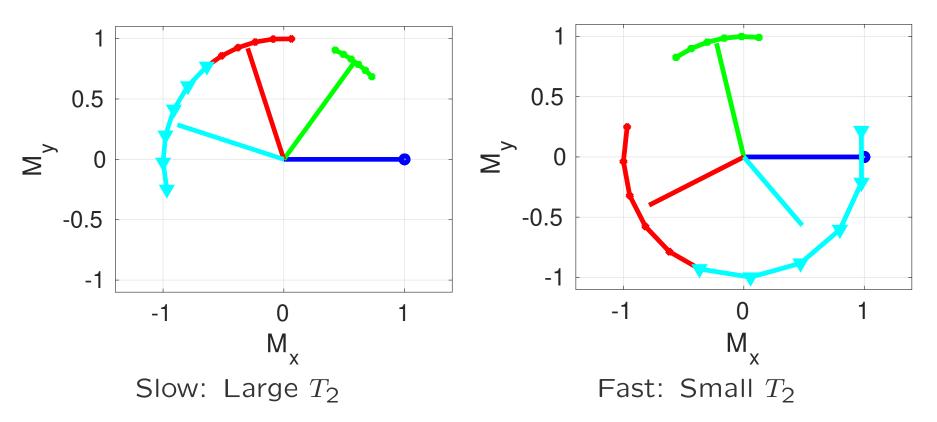
Chuck DiMarzio, Northeastern University


12349..slides3r1-7

Longitudinal Relaxation - T1



• AKA Spin-Lattice relaxation, applies to the z-component of M. Natural decay from spins flipping back to low energy state (thermal decay).


• AKA Spin-Spin relaxation, applies to the xy-components of M. Spins in phase create coherent M_{xy} vector (rotating at ω). Signal decays as spins de-phase. Local field imhomogeneities cause faster-than-expected decay $\rightarrow T2^*$.

Non–Random Dephasing Caused by Field Inhomogeneities is Reversible Random Dephasing Caused by Material is Not.

The Material One is the One We Want.

Example: Long RF Pulse

Blue During Pulse, Red After RF B_1 in \hat{x} direction 0.5 0.5 Sec Pulses Repetition Time of 2 Sec ≥[>] 0 Note T_1 and T_2 in Graph -0.5 1 Х -0.5 0.5 0 1 M_{x} 0.5 Ζ 0 0.5 -0.5 ≥∽ 0 -1 2 3 0 1 4 t, time, sec. -0.5 0.5 -0.5 0 1

M, Net Magnetization

Chuck DiMarzio, Northeastern University

 M_{z}

Example: 90–Degree Pulse

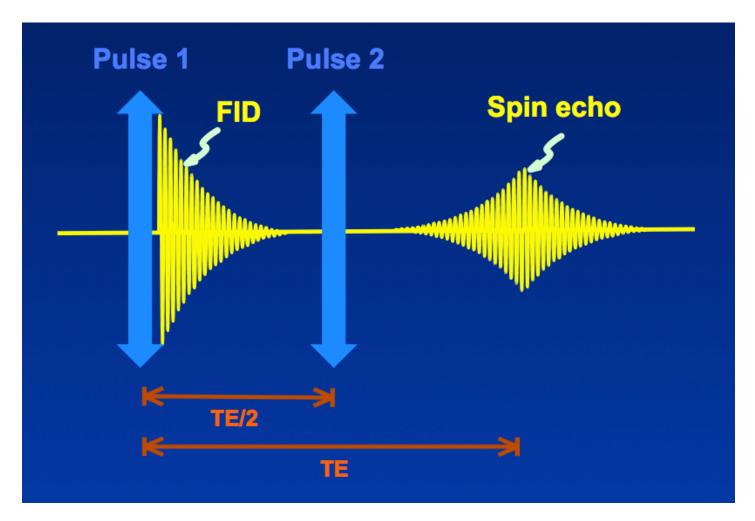
Blue During Pulse, Red After RF B_1 in \hat{x} direction 0.5 0.0643 Sec Pulses Repetition Time of 2 Sec ≥[>] 0 Note T_1 and T_2 in Graph 1 -0.5 Х -0.5 0.5 0 M_{x} 0.5 Ζ 0 0.5 -0.5 ≥[>] 0 -1 2 3 0 1 4 t, time, sec. -0.5 0 0.5 1

M, Net Magnetization

Chuck DiMarzio, Northeastern University

 M_{z}

Spin Echo


- T₂ Random Dephasing (Material Dependent)
- Dephasing due to inhomogeneous *B* (Non–Random, Instrument Dependent)
- T_2^* Combines Both
- Spin Echo: Flip the Spin
- Rewind Inhomogeneous Field Dephasing
- Still Have T_2 Random Dephasing for Signal Decay (Material Dependent)

May 2023

Spin Echo

http://www.mri-q.com/uploads/3/4/5/7/34572113/_7707793_orig.gif

May 2023

Chuck DiMarzio, Northeastern University

12349..slides3r1-14

Northeastern University College *of* Engineering

Measureing Decay Times

- T_R is Pulse Repetition Time
- T_E is Echo Time
- T1 and T2 decay happen simultaneously. Put together:

$$S = k\rho \left(1 - e^{-T_R/T_1} \right) e^{-T_E/T_2}$$

• Rule: $T_1 > T_2$.

Parameter to Which Signal is Sensitive

	T_R Long	T_R Med	T_R Short
T_E Long	0	0	0
T_E Med	<i>T</i> ₂	All	0
T_E Short	ρ	T_1	0

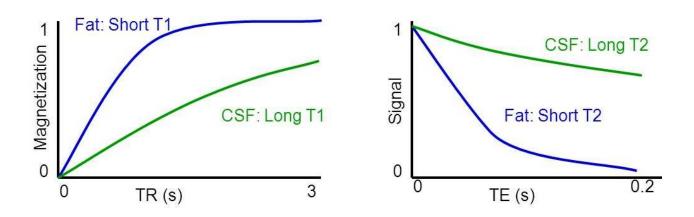
Measuring Decay Times

- Equation: $S = k\rho \left(1 e^{-T_R/T_1} \right) e^{-T_E/T_2}$
- T_R Longer than T_1 : $S = k\rho(1) e^{-T_E/T_2}$ Let Higher State Decay Completely for Big Signal
- T_R Shorter than T_1 : $S = k\rho(0) e^{-T_E/T_2}$ Try to Pump to Higher State before Return to Lower State Nothing to Pump so No Signal
- T_E Longer than T_2 : $S = k\rho \left(1 e^{-T_R/T_1}\right) 0$ T_2 Transverse Decay Goes to Zero; No Signal
- T_E Shorter than T_2 : $S = k\rho \left(1 e^{-T_R/T_1}\right) 1$ Strong Transverse Signal to Measure T_1
- T_R , T_E Both Moderate: Sensitive to Everything.

May 2023

Northeastern University College of Engineering

Decay Times


Material	T1 (ms)	T2 (ms)
Gray	921	101
Fat	259	84
Bone Marrow	752	106
Muscle	868	47

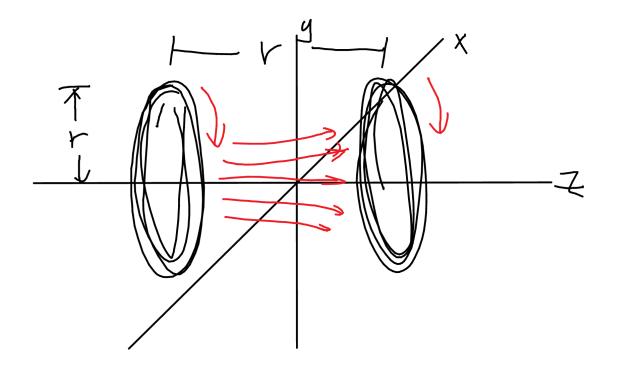
Fractions of a Second: MRI Is Slow

Contrast

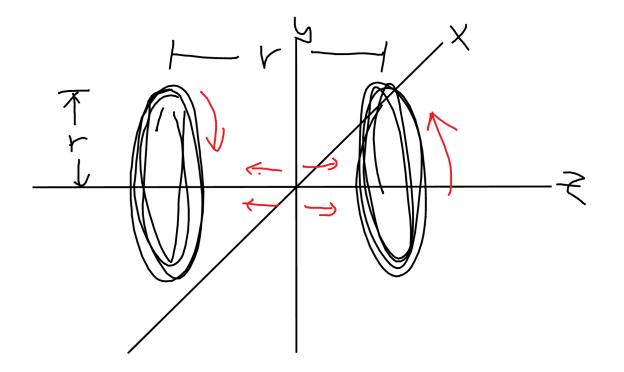
- Endogenous contrast comes from differences in bulk tissue properties:
 - Water, fat: Lots of ${}^{1}H \rightarrow$ High signal (Most of body)
 - Bone: Not as much signal
- Tissues have varying T1 and T2. Compare Fat and CSF:

Contrast Agents

- Exogenous contrast alters T1 and T2 to boost contrast
- Gadolinium


• Iron Oixide Nanoparticles (Ferumoxytol)

Helmholtz Coils

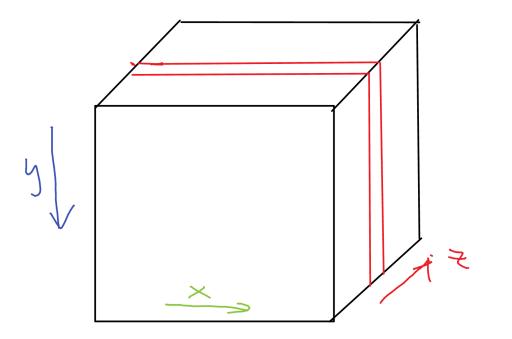

Large, Uniform, DC Magnetic Field

Anti-Helmholtz Coils

Moderate Field Gradient (More is Better)

Big Fields: Big Problems

- Large Coils for Uniform Field
- High Current for High Field
- Superconductors
- Liquid Helium
- High Cost
- B Field Hazards \rightarrow
- dB/dt: Loud Noise
- Start/Stop Challenges



Slice Selection: Excitation Frequency

Excite with Narrow–Band RF Signal, $B = B_0 + G_z z$ $\omega = \gamma B_0 + \gamma G_z z$ Different *B* for Every *z* Slice: Excite Only One Slice

Different B for Every z Slice; Excite Only One Slice

Northeastern University College *of* Engineering Slice Selection

Match the Resonant Frequency

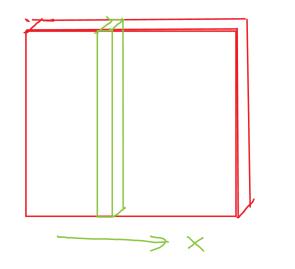
May 2023

Chuck DiMarzio, Northeastern University


12349..slides3r1-24

Free–Induction Decay

Timing Diagram

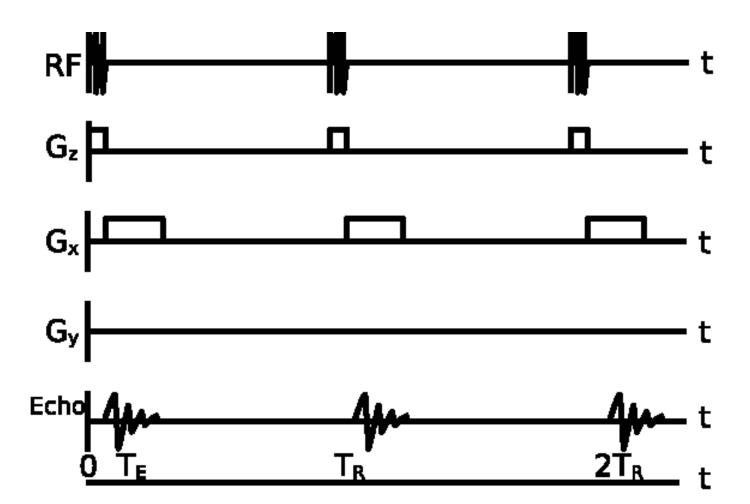

Column Measurement: Detection Frequency

Sort Detected Signal by Frequency, $B = B_0 + G_x x$

 $\omega = \gamma B_0 + \gamma G_x x$

Each Column Emits at a Different Frequency

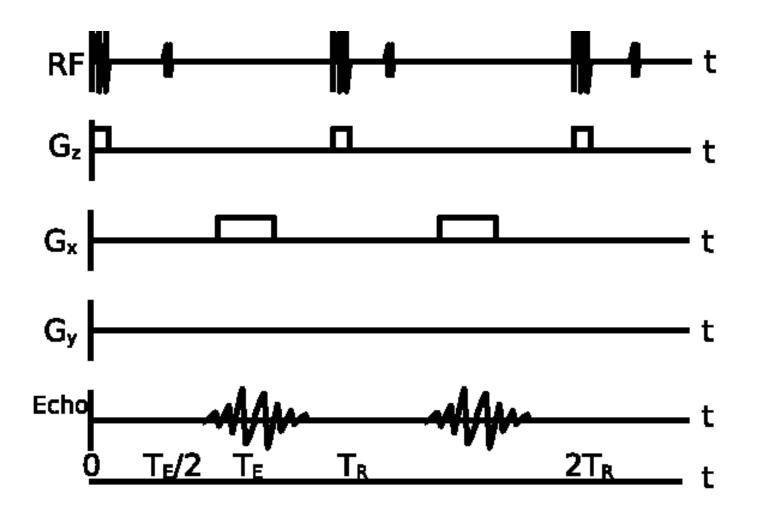
Example: dB/dx = 2 mT/m: $df = \gamma \frac{dB}{dx} dx = 42.58 \text{ MHz} \times 2 \text{ mT/m} \times 1 \text{ mm} \approx 80 Hz$


May 2023

Northeastern University College *of* Engineering

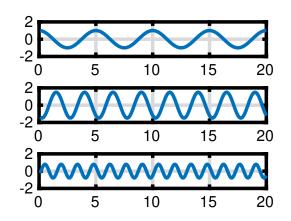
Column Measurement

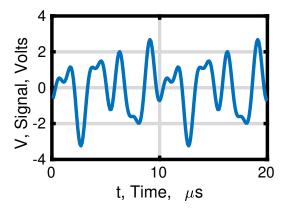
Timing Diagram

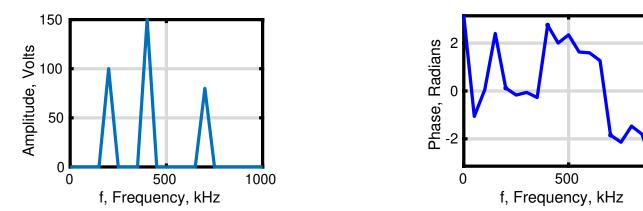


Northeastern University College *of* Engineering

Use Spin Echo


Timing Diagram


Fourier Transforms

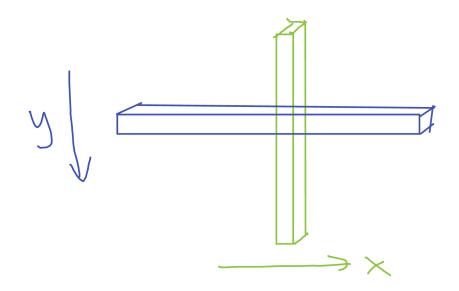

Signals vs. Time

Sum Signal vs. Time

IFT of Sum (Amplitude) IFT Transform of Sum (Phase)

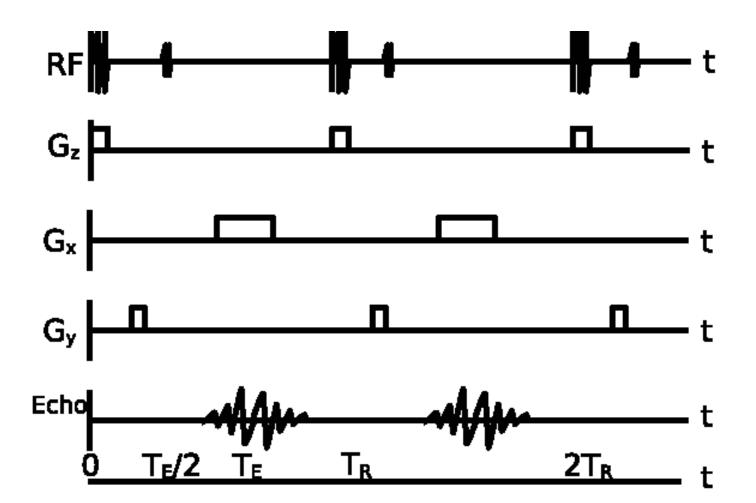
Chuck DiMarzio, Northeastern University


1000



Row Measurement

Sort Detected Signal by Phase, $B = B_0 + G_y y$



Northeastern University College *of* Engineering Row Measurement

Timing Diagram

Measurement Time

- $\bullet~\approx 10~ms$ or more per measurement
- 10 cm cube with 1 mm resolution: 10^6 voxels
- Column Detection in parallel: 10⁴ measurements
- 10^4 measurements takes at least 100 s
- Is $(10 \text{ cm})^3$ Enough?

Resolution

- Typically 0.5 to 1.0 mm
- Ultimately Depends on Field Gradient
- May Depend on Time and Field of View
- Theoretically Better is Possible
 - Bigger/Better Magnets
 - 0.1 mm Estimated at \$250 Million*

Vedrine, IEEE Trans. Superconductivity, 2008

May 2023

More Information

- https://www.cis.rit.edu/htbooks/mri/inside.htm
- https://www.imaios.com/en/e-Courses/e-MRI/
- https://www.youtube.com/watch?v=EDyxBWXp6IU
- https://www.youtube.com/watch?v=1jph1A0hP3U
- Lots of other websites