Northeastern University College of Engineering

Biomedical Imaging Ultrasound

Charles A. DiMarzio
EECE-4649 Dialogues of Civilization
Northeastern University
Universidad de los Andes

May 2023

Ultrasound Agenda

- Ultrasound Waves
- Interactions with Materials
- Pulses and Transit Time
- A-Scans
- B-Scans
- More Scans
- Sources and Detectors
- Doppler Ultrasound
- Mixed Modalities: PAT, UOT, etc.
- Ultrasound Therapy

A Wave is a Wave...

• Pressure Difference Causes Acceleration

$$-\nabla P = \rho a = \rho \frac{\partial \mathbf{v}}{\partial t}$$

• Convergence Increases Pressure

$$K\nabla \mathbf{v} = \frac{\partial P}{\partial t}$$

Solve for Pressure

$$\nabla^2 P = \frac{\rho}{K} \frac{\partial^2 P}{\partial t^2}$$

Plane Wave Solution

$$P = P_0 e^{-j(\omega t - kz)}$$

Plane Waves

• Plane Wave (Previous Page)

$$P = P_0 e^{-j(\omega t - kz)}$$

Speed

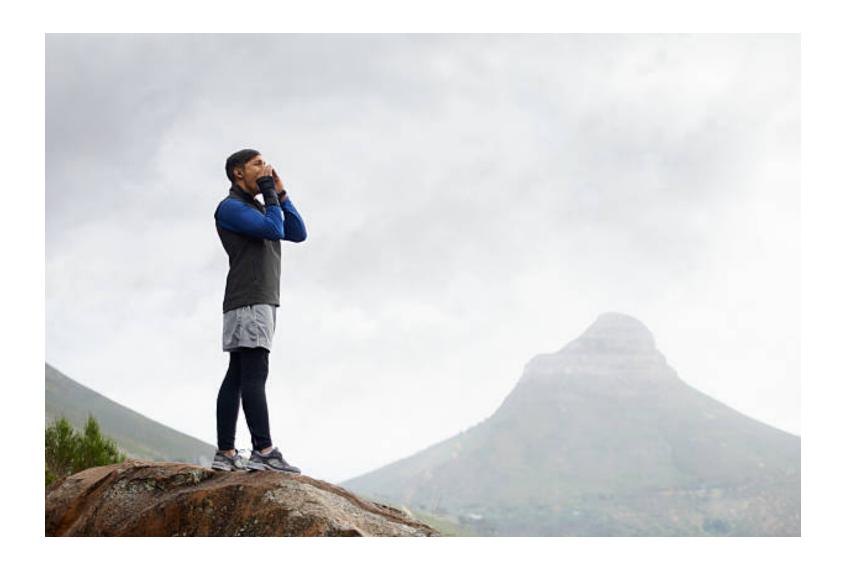
$$c = \sqrt{\frac{K}{\rho}}$$

Impedance

$$Z = \rho c$$

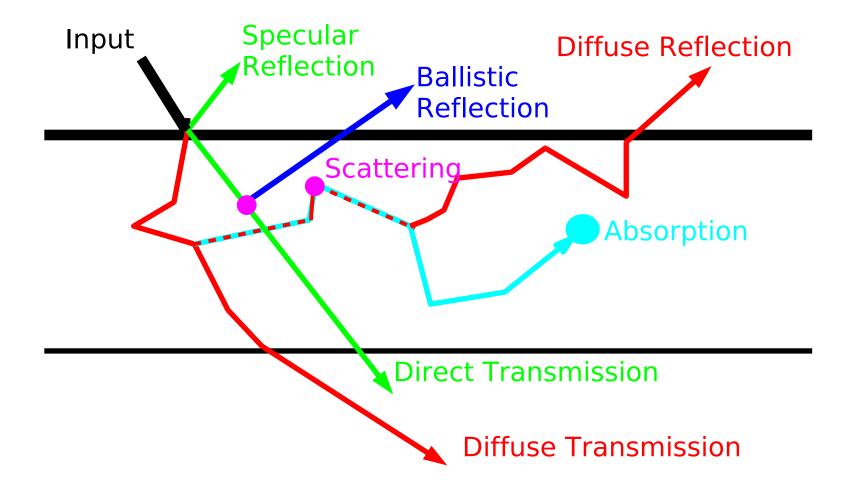
$$R = \frac{\frac{\rho'}{\rho} \cos \theta - \frac{n'}{n} \sqrt{1 - \frac{\sin^2 \theta}{(c/c')^2}}}{\frac{\rho'}{\rho} \cos \theta + \frac{n'}{n} \sqrt{1 - \frac{\sin^2 \theta}{(c/c')^2}}} = \frac{\cos \theta - \frac{Z}{Z'} \sqrt{1 - \frac{\sin^2 \theta}{(c/c')^2}}}{\cos \theta + \frac{Z}{Z'} \sqrt{1 - \frac{\sin^2 \theta}{(c/c')^2}}}$$

Speed


- In Air: c = 344 m/s
- In Water: c = 1482 m/s
- $f\lambda = c$

1	MHz	1500	μ m
2		740	
5		300	
10		150	
100		15	

- Slow Enough for Time-of-Flight
 - 1482 m/s
 - 1482 mm/ms
 - 1482 μ m/ μ s
- Round Trip: 2z = ct


Echo from ρc Contrast

Waves Interactions

(and reverberation, cavitation)

Impedance Matching

Reflection Equation

$$R = \frac{\cos \theta - \frac{Z}{Z'}\sqrt{1 - \frac{\sin^2 \theta}{(c/c')^2}}}{\cos \theta + \frac{Z}{Z'}\sqrt{1 - \frac{\sin^2 \theta}{(c/c')^2}}}$$

$$Z = \rho c$$
 $\frac{\text{kg}}{\text{m}^2\text{s}} = \text{Rayl}$

- Match speed and density
- Ultrasound Gel
- ρc (Rosy!) Rubber
- Acrylamide Gel (Optical Match Too)

Impedance

Sound Speed and Impedance

Material	Velocity (mm/µs)	Impedance(MRayl)	
Water	1.48	1.48	
Blood	1.57 1.61		
Liver	1.55	1.65	
Kidney	1.56	1.62	
Muscle	1.58	1.70	
Fat	1.45	1.40	
Soft tissue	1.54	1.63	
Dense bone	4.10	7.8	
Air	0.33 0.0004		

S. A. Goss, et al. J. Acoust. Soc. Am. 64(2):423–457, 1978.

S. A. Goss, et al. J. Acoust. Soc. Am. . 68(1):93-108, 1980.

F. A. Duck, Physical Properties of Tissue (Academic, New York, 1990).

Note: Air to Soft Tissue, R = 0.999

Thanks to Robin Cleveland, Oxford

Extinction

Attenuation

For tissue it is common to assume attenuation increases linearly with frequency $\bar{\alpha} = \alpha f$

Report α in dB/cm measured at 1 MHz and then extrapolate

1 Np/m = 0.0869 dB/cm

Typical **attenuation** in soft tissue:

Kidney 0.32 dB/cm/MHz
Fat 0.63 dB/cm/MHz
Muscle 1.3 dB/cm/MHz
Skin 3.3 dB/cm/MHz
"Average" 0.5 dB/cm/MHz

FDA derating: 0.3 dB/cm/MHz

9

Beer's Law; $e^{-\mu z}=10^{-\alpha z/10}$ where $\mu=10\log 10\alpha$

Thanks to Robin Cleveland, Oxford

Attenuation, Frequency, Depth

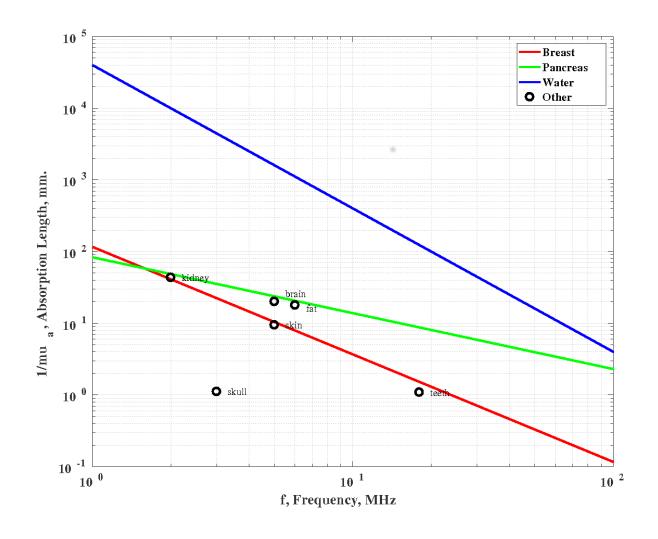
Attenuation - range decreases with higher frequency

Freq (MHz)	λ (mm)	Att. coeff. (dB/cm)	Imaging depth (cm)
2.0	0.75	1.0	15
3.5	0.45	1.8	8
5	0.30	2.5	6
7.5	0.20	3.8	4
10	0.15	5	3

Wavelength:

$$\lambda = \frac{c}{f}$$

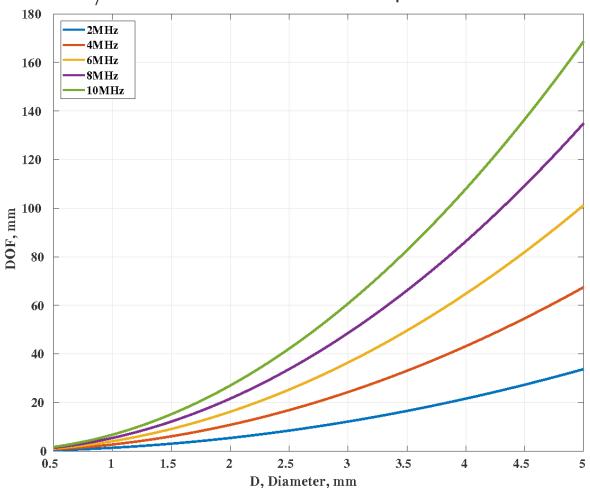
Frequency ✓ → Attenuation ✓ → Imaging depth



Imaging depth is usually on the order of **400 wavelengths** (~ -30dB)

16

Extinction



Resolution & Depth of Focus

Depth of Focus: λ/NA^2

A-Scan

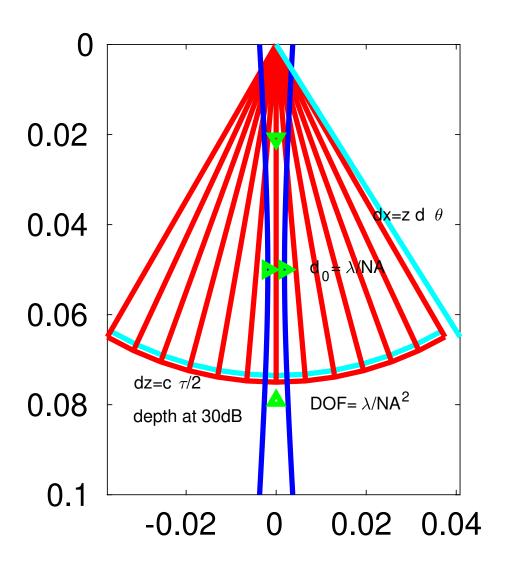
- One Pulse
- Signal vs. Depth
- Assume Known c

$$2z = ct$$

- ullet Transverse Resolution λ/NA
- ullet Axial Resolution for Pulse Length au

$$2z = c\tau$$

Avoid Ambiguity (Pulse Repetition Frequency)



Thanks to Robin Cleveland, Oxford

Ultrasound Distances

Sources and Detectors

- Piezoelectric Transducer (PZT)
 - Usually Resonant, Moderate Q
 - Focused or Not
 - Arrays or Not
- Transmit / Receive Switch
- Maybe Dynamic Focus on Receiver

Doppler Ultrasound

- "Color Doppler"
- Principles

$$f_{doppler} = \frac{2v_{\parallel}}{\lambda}$$

- 100s to 1000s of Hz.
- Pulsed or CW? (Resolution and Ambiguity?)

Miscellaneous

- C-Scans
- Microbubbles
- Elastography
- Photoacoustic Tomography
- Ultrasound Modulated Optical Tomography

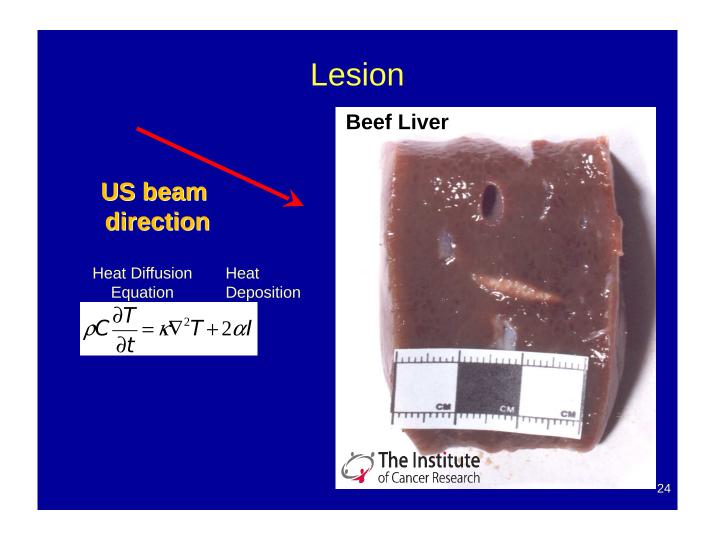
Speckle

- Intereference Effect
- Most Noticable with Highly Coherent Sources
 - Ultrasound
 - Optical Imaging with
 Laser Sources
- Random, High-Contrast
 Pattern
- Normally Unwanted

Image Time

- A-Scan Limited by Depth (wait for return)
- B-Scan Limited by Transverse Resolution Requirement
- Example
 - 20–cm Depth (260 μ s for A–Scan)
 - 128 A-Scans per B-Scan
 - Total 24 ms (29 Hz Frame Rate)

Safety



Mechanical Index Cavitation

Thermal Index Heating

High Power Focused Ultrasound (HIFU)

HIFU Applications

