Disjoint versus Independent Events:

"Disjoint" and "Mutually Exclusive" are equivalent terms

Def: Disjoint Events

Two events, say A and B, are defined as being disjoint if the occurrence of one precludes the occurrence of the other; that is, they have no common outcome. Mathematically: $\mathrm{AB}=\{ \}$.

NOTE: It is tempting to consider this to mean that the events are independent.... Why is this not the case? Lets look at the definition of independent events:

Def: Independent Events

Two events, say A and B, are defined as being statistically independent if the occurrence of one event has no effect on the probability of the occurrence of the other; assuming that $P\{A\}$ and $P\{B\}$ are non-zero: $P\{A \mid B\}=P\{A\}$ and $P\{B \mid A\}=P\{B\}$.

OBSERVE:

$P\{A B\}=P\{A \mid B] P\{B\}=P\{A\} P\{B\}$
$P\{A\}=P\{A B\} / P\{B\}$
If the events were disjoint, then $\mathrm{P}\{\mathrm{AB}\}$ would be zero-hence, $\mathrm{P}\{\mathrm{A}\}$ would have to be zero (which contradicts the assumption that $\mathrm{P}\{\mathrm{A}\}$ is non-zero...

CONCLUSION: The occurrence of an event that is disjoint from some other event actually tells you something about the probability of occurrence of the other; hence disjoint events cannot be independent: $\mathrm{P}\{\mathrm{A}\} \mathrm{P}\{\mathrm{B}\}=\mathrm{P}\{\mathrm{AB}\}$: independence; whereas $\mathrm{P}\{\mathrm{AB}\}=0$: disjoint...

Collective versus Pairwise Indendent Events:

Consider a set of events: $A_{1}, A_{2}, \ldots A_{n}$.

Pairwise indepence is a less rigid requirement than collective indepence... The set of events are considered to be pairwise independent if $P\left\{A_{i} A_{j}\right\}=P\left\{A_{i}\right\} P\left\{A_{j}\right\}$ for (i,j) pairs.

NOTE: Pairwise independence does not imply collective independence over a set of events... Why?

Collective independence means that none of the events individually or collectively will affect the probability of occurrence of any other event; hence, for three events: $P\left\{A_{1} A_{2} A_{3}\right\}=P\left\{A_{1}\right\} P\left\{A_{2}\right\} P\left\{A_{3}\right\}$

Counter Example from homework \#2...

