Disjoint versus Independent Events:

"Disjoint" and "Mutually Exclusive" are equivalent terms

Def: Disjoint Events

Two events, say A and B, are defined as being disjoint if the occurrence of one precludes the occurrence of the other; that is, they have no common outcome. Mathematically: AB = {}.

NOTE: It is tempting to consider this to mean that the events are independent.... Why is this not the case? Lets look at the definition of independent events:

Def: Independent Events

Two events, say A and B, are defined as being statistically independent if the occurrence of one event has no effect on the probability of the occurrence of the other; assuming that $P{A}$ and $P{B}$ are non-zero: $P{A | B} = P{A}$ and $P{B | A} = P{B}$.

OBSERVE:

 $P{AB} = P{A|B}P{B} = P{A}P{B}$ $P{A} = P{AB}/P{B}$ If the events were disjoint, then P{AB} would be zero—hence, $P{A}$ would have to be zero (which contradicts the assumption

that P{A} is non-zero...

CONCLUSION: The occurrence of an event that is disjoint from some other event actually tells you something about the probability of occurrence of the other; <u>hence disjoint events</u> <u>cannot be independent</u>: $P{A}P{B} = P{AB}$: independence; whereas $P{AB} = 0$: disjoint...

Collective versus Pairwise Indendent Events:

Consider a set of events: A_1 , A_2 , ... A_n .

<u>Pairwise indepence</u> is a less rigid requirement than collective indepence... The set of events are considered to be pairwise independent if $P{A_iA_j} = P{A_i}P{A_j}$ for (i,j) pairs.

NOTE: Pairwise independence does not imply collective independence over a set of events... Why?

Collective independence means that none of the events individually or collectively will affect the probability of occurrence of any other event; hence, for three events: $P{A_1A_2A_3} = P{A_1}P{A_2} P{A_3}$

Counter Example from homework #2...