
22 USING THE AMPL STUDENT EDITION UNDER MS-DOS

III. Using CPLEX
CPLEX is an optimization package for linear, network and integer programming. This supple-

ment to AMPL: A Modeling Language for Mathematical Programming summarizes the most
important features of CPLEX for AMPL. Further information on CPLEX is available from:

CPLEX Optimization, Inc.
930 Tahoe Boulevard, Building 802, Suite 279
Incline Village, NV 89451

702-831-7744; fax 702-831-7755

Electronic mail: info@cplex.com
World Wide Web: http://www.cplex.com/

Section III.1 describes the kinds of problems to which this version of CPLEX is applicable, and
Section III.2 explains in general terms how solver-specific directives can be passed from AMPL to
CPLEX. Sections III.3 and III.4 describe CPLEX’s facilities for linear and network optimization
and for pure and mixed integer programming, respectively; each section briefly introduces the
algorithms that CPLEX uses, then categorizes and explains the relevant directives.

III.1 Applicability
CPLEX is designed to solve linear programs as described in Chapters 1-8 and 11-12 of AMPL: A

Modeling Language for Mathematical Programming , as well as the integer programs described in
Chapter 15. Integer programs may be pure (all integer variables) or mixed (some integer and some
continuous variables); integer variables may be binary (taking values 0 and 1 only) or may have
any lower and upper bounds.

For the network linear programs described in Chapter 12, CPLEX also incorporates an espe-
cially fast network optimization algorithm.

CPLEX does not solve nonlinear programs as described in Chapter 13:

ampl: model nltransd.mod; data nltrans.dat;
ampl: option solver cplex;

ampl: solve;
CPLEX 3.0: Sorry, cplex.EXE can’t handle nonlinearities.
<BREAK>

This restriction applies if your model uses any function of variables that AMPL identifies as ‘‘not
linear’’ — even a function such as abs or min that shares some properties of linear functions.

CPLEX does solve piecewise-linear programs, as described in Chapter 14, if AMPL transforms
them to problems that CPLEX’s solvers can handle. The transformation is to a linear program, if
the following conditions are met. Any piecewise-linear term in a minimized objective must be
convex, its slopes forming an increasing sequence as in:

<<-1,1,3,5; -5,-1,0,1.5,3>> x[j]

Any piecewise-linear term in a maximized objective must be concave, its slopes forming a decreas-
ing sequence as in:

<<1,3; 1.5,0.5,0.25>> x[j]

Any piecewise-linear term in the constraints must be either convex and on the left-hand side of a ≤
constraint (or equivalently, the right-hand side of a ≥ constraint), or else concave and on the left-
hand side of a ≥ constraint (or equivalently, the right-hand side of a ≤ constraint). In all other
cases, the transformation is to a mixed-integer program, as explained in the discussion of the direc-
tive in III.4 below. AMPL automatically performs the appropriate conversion, sends the resulting
linear or mixed-integer program to CPLEX, and converts the solution back. The conversion has the
effect of adding a variable to correspond to each linear piece.

USING THE AMPL STUDENT EDITION UNDER MS-DOS 23

The AMPL Student Edition does not incorporate the CPLEX barrier (interior-point) solver for
linear and quadratic programming problems. To learn more about versions of AMPL that support
the barrier option, contact CPLEX Optimization at the above address, or consult the list of vendors
at http://www.ampl.com/ampl/vendors.html.

III.2 Controlling CPLEX from AMPL

In many instances, you can successfully apply CPLEX by simply specifying a model and data,
setting the solver option to cplex, and typing solve. For larger linear programs and espe-
cially the more difficult integer programs, however, you may need to pass specific directives to
CPLEX to obtain the desired results.

To give directives to CPLEX, you must first assign an appropriate character string to the AMPL
option called cplex_options. When CPLEX is invoked by solve, the AMPL/CPLEX interface
program breaks this string into a series of individual directives. Here is an example:

ampl: model diet.mod;
ampl: data diet.dat;

ampl: option solver cplex;
ampl: option cplex_options ’crash=0 dual \
ampl? feasibility=1.0e-8 scale=1 \
ampl? iterations=100’;

ampl: solve;
CPLEX 3.0: crash 0
dual
feasibility 1e-08
scale 1
iterations 100

CPLEX 3.0: optimal solution; objective 88.2
1 iterations (0 in phase I)

CPLEX checks and confirms each directive; it will display an error message if it encounters a direc-
tive that it does not recognize.

CPLEX directives consist of an identifier alone, or an identifier followed by an = sign and a
value; a space may be used as a separator in place of the =. Unlike AMPL, CPLEX treats upper-case
and lower-case letters as being the same.

You may store any number of concatenated directives in cplex_options. The example
above shows how to type all the directives in one long string, using the \ character to indicate that
the string continues on the next line. Alternatively, you can list several strings, which AMPL will
automatically concatenate:

ampl: option cplex_options ’crash=0 dual’
ampl? ’ feasibility=1.0e-8 scale=1’
ampl? ’ iterations=100’;

In this form, you must take care to supply the space that goes between the directives; here we have
put it before feasibility and iterations.

If you have specified the directives above, and then want to try setting, say, optimality to
1.0e–8 and changing crash to 1, you might think to type:

ampl: option cplex_options ’optimality=1.0e-8 crash=1’;

This will replace the previous cplex_options string, however; the other previously specified
directives such as feasibility and iterations will revert to their default values. (CPLEX
supplies a default value for every directive not explicitly specified; defaults are indicated in the dis-
cussion below.) To append new directives to cplex_options, use this form:

ampl: option cplex_options $cplex_options
ampl? ’ optimality=1.0e-8 crash=1’;

24 USING THE AMPL STUDENT EDITION UNDER MS-DOS

A $ in front of an option name denotes the current value of that option, so this statement just
appends more directives to the current directive string. As a result the string contains two direc-
tives for crash, but the new one overrides the earlier one.

III.3 Using CPLEX for linear programming
For linear programs, CPLEX employs the simplex algorithm described in many textbooks.

Three distinct versions of this algorithm are incorporated in the CPLEX package:
• A primal simplex algorithm that first finds a solution feasible in the constraints (Phase I),
then iterates toward optimality (Phase II).
• A dual simplex algorithm that first finds a solution satisfying the optimality conditions
(Phase I), then iterates toward feasibility (Phase II).
• A network primal simplex algorithm that uses logic and data structures tailored to the class
of pure network linear programs.

CPLEX normally chooses one of these algorithms for you, but you can override its choice by the
directives described below.

The simplex algorithm maintains a subset of basic variables (or, a basis) equal in size to the
number of constraints. A basic solution is obtained by solving for the basic variables, when the
remaining nonbasic variables are fixed at appropriate bounds. Each iteration of the algorithm picks
a new basic variable from among the nonbasic ones, steps to a new basic solution, and drops some
basic variable at a bound.

The coefficients of the variables form a constraint matrix , and the coefficients of the basic
variables form a nonsingular square submatrix called the basis matrix. At each iteration, the sim-
plex algorithm must solve certain linear systems involving the basis matrix. For this purpose
CPLEX maintains a factorization of the basis matrix, which is updated at most iterations, and is
occasionally recomputed.

The sparsity of a matrix is the proportion of its elements that are not zero. The constraint
matrix, basis matrix and factorization are said to be relatively sparse or dense according to their
proportion of nonzeros. Most linear programs of practical interest have many zeros in all the rele-
vant matrices, and the larger ones tend also to be the sparser.

The amount of RAM memory required by CPLEX grows with the size of the linear program,
which is a function of the numbers of variables and constraints and the sparsity of the coefficient
matrix. The factorization of the basis matrix also requires an allocation of memory; the amount is
problem-specific, depending on the sparsity of the factorization. When memory is limited, CPLEX
automatically makes adjustments that reduce its requirements, but that usually also reduce its opti-
mization speed.

The following CPLEX directives apply to the solution of linear programs, including network
linear programs. The letters i and r denote integer and real values, respectively, and f denotes any
valid filename.

Directives for problem and algorithm selection
CPLEX consults several directives to decide how to set up and solve a linear program that it

receives. The default is to apply the primal simplex method to the linear program as given, substi-
tuting the network variant if network nodes and arcs were declared in the AMPL model. The fol-
lowing discussion indicates situations in which you should consider experimenting with alterna-
tives.

dualthresh= i (default 32000)

primal
dual

Every linear program has an equivalent ‘‘opposite’’ linear program; the original is customarily
referred to as the primal LP, and the equivalent as the dual. For each variable and each constraint

USING THE AMPL STUDENT EDITION UNDER MS-DOS 25

in the primal there are a corresponding constraint and variable, respectively, in the dual. Thus
when the number of constraints is much larger than the number of variables in the primal, the dual
has a much smaller basis matrix, and CPLEX may be able to solve it more efficiently.

The primal and dual directives instruct CPLEX to set up the primal or the dual formulation,
respectively. The dualthresh directive makes a choice: the dual LP if the number of con-
straints exceeds the number of variables by more than i, and the primal LP otherwise.

primalopt
dualopt

The primalopt and dualopt directives instruct CPLEX to apply the primal or the dual sim-
plex algorithm, respectively. These two variants use basis matrices of the same kind and dimen-
sion, but employ opposite strategies in constructing a path to the optimum. Either can be applied
regardless of whether the primal or the dual LP is set up as explained above; in general the four
combinations of primalopt/dualopt and primal/dual all perform differently.

CPLEX uses primalopt by default if dualopt is not specified. Linear programs that are
highly degenerate (many basic variables at their bounds) and that have little variability in the
right-hand sides (constant terms) of their constraints often solve faster using the dual simplex.
Also consider trying the dual simplex if CPLEX’s primal simplex reports problems of numerical
inaccuracy; few linear programs exhibit poor numerical performance in both the primal and the
dual algorithms.

netopt= i 1 (default 1)
netfind= i 2 (default 1)

CPLEX incorporates an optional heuristic procedure that looks for ‘‘pure network’’ constraints
in your linear program. If this procedure finds sufficiently many such constraints, CPLEX applies
its fast network simplex algorithm to them. Then, if there are also non-network constraints, CPLEX
uses the network solution as a start for solving the whole LP by the general primal or dual simplex
algorithm, whichever you have chosen.

The default value of i 1 = 1 invokes the network-identification procedure if and only if your
model uses node and arc declarations and CPLEX sets up the primal formulation as discussed
above. Setting i 1 = 0 suppresses the procedure, while i 1 = 2 requests its use in all cases. You can
have CPLEX display the number of network nodes (constraints) and arcs (variables) that it has
extracted, by setting the prestats directive (described with the preprocessing options below) to
1.

The netfind directive specifies the extent to which CPLEX may scale the rows and columns of
the constraint matrix in attempting to extract a network: 1 no scaling 2 scaling
by –1 only 3 scaling by any values If your model is specified using var and subj to dec-
larations, then the default setting of i 2 = 1 may be ineffective. Try changing i 2 to 2, and also to 3 if
some of your constraint coefficients take values other than –1, 0 and 1.

CPLEX’s network simplex algorithm can achieve dramatic reductions in optimization time for
‘‘pure’’ network linear programs defined entirely in terms of node and arc declarations. (For a
pure network LP, every arc declaration must contain at most one from and one to phrase, and
these phrases may not specify optional coefficients.) In the case of linear programs that are mostly
defined in terms of node and arc declarations, but that have some ‘‘side’’ constraints defined by
subject to declarations, the benefit is highly dependent on problem structure; it is best deter-
mined by experimentation with the netopt and netfind settings.

relax

This directive instructs CPLEX to ignore any integrality restrictions on the variables. The
resulting linear program is solved by whatever algorithm the above directives specify.

26 USING THE AMPL STUDENT EDITION UNDER MS-DOS

Directives for preprocessing

Prior to applying any simplex algorithm, CPLEX modifies the linear program and initial basis in
ways that tend to reduce the number of iterations required. The following directives select and
control these preprocessing features.

aggregate= i 1 (default 1)
agglim= i 2 (default 10)

When i 1 is left at its default value of 1, CPLEX looks for constraints that (possibly after some
rearrangement) define a variable x in terms of other variables:

• two-variable constraints of the form x = y + b;
• constraints of the form x = Σ j

y j .

Under certain conditions, both x and its defining equation can be eliminated from the linear pro-
gram by substitution. In CPLEX’s terminology, each such elimination is an aggregation of the lin-
ear program.

Aggregation can yield a substantial reduction in the size of some linear programs, such as net-
work flow LPs in which many nodes have only one incoming or one outgoing arc. Aggregation
may also increase the number of nonzero constraint coefficients, however, resulting in more work
at each simplex iteration. The default setting of i 2 = 10 usually makes a good tradeoff between
reduction in size and increase in nonzeroes, but you may want to experiment with lower values if
CPLEX reports that many aggregations have been made. If CPLEX consistently reports that no
aggregations can be performed, on the other hand, you can set i 1 to 0 to turn off the aggregation
routine and save a little memory and processing time.

To request a report of the number of aggregations, see the prestats directive below.

dependency= i (default 0)

A dependent constraint is one that is implied by the other constraints, so that it may be dropped
from the problem without any affect on the optimal value. CPLEX optionally applies some tests for
dependency, and drops any dependent constraints that it finds. The resulting problem is generally
easier to solve, but the savings in solve time do not always outweigh the costs of running the
dependency checker.

When i is left at its default value of 0, dependency checking is not performed. Changing i to 1
turns checking on.

presolve= i (default 1)

Prior to invoking any simplex algorithm, CPLEX attempts to apply various simple and fast
transformations that reduce the size of the linear program without changing its optimal solution. In
this presolve phase, constraints that involve only one non-fixed variable are removed; either the
variable is fixed and also dropped (for an equality constraint) or a simple bound for the variable is
recorded (for an inequality). Each inequality constraint is subjected to a simple test to determine if
there exists any setting of the variables (within their bounds) that can violate it; if not, it is dropped
as nonconstraining. Further iterative tests attempt to tighten the bounds on primal and dual vari-
ables, possibly causing additional variables to be fixed, and additional constraints to be dropped.

AMPL’s presolve phase, as described in Section 10.2 of the AMPL book, also performs many
(but not all) of these transformations. To see how many variables and constraints are eliminated by
AMPL’s presolve, set option show_stats 1. To suppress AMPL’s presolve, so that all pre-
solving is done in CPLEX, set option presolve 0.

CPLEX’s presolve can be suppressed by changing i to 0 from its default of 1. In rare cases the
presolved linear program, although smaller, is actually harder to solve; thus if CPLEX reports that
many variables and constraints have been eliminated by presolve, you may want to compare runs
with and without presolve. On the other hand, if CPLEX consistently reports that presolve elimi-
nates no variables or constraints, you can save a little processing time by turning presolve off. To

USING THE AMPL STUDENT EDITION UNDER MS-DOS 27

request a report of the number of eliminations performed by presolve, see the prestats directive
below.

prestats= i (default 0)

When this directive is changed to 1 from its default of 0, CPLEX reports on the activity of the
aggregation and presolve routines:

Presolve eliminated 1645 rows and 2715 columns in 3 passes.
Aggregator did 22 substitutions.
Presolve Time = 1.70 sec.

During the development of a large or complex model, it is a good idea to monitor this report, and to
turn on its AMPL counterpart by setting option show_stats to 1. An unexpectedly large number
of eliminated variables or constraints may indicate that the formulation is in error or can be sub-
stantially simplified.

scale= i (default 0)

CPLEX normally multiplies both the rows and the columns of the coefficient matrix by positive
"scale" factors. The scaled matrix tends to have a narrower range of coefficient values, and as a
result the floating-point computations of the simplex algorithm are less likely to suffer from signifi-
cant numerical inaccuracies.

The default value of i = 0 implements an equilibration scaling method, which is generally very
effective. A value of 1 invokes a modified, more aggressive scaling method that can produce
improvements on some problems. Try this scaling if CPLEX indicates that the solution process
keeps returning to infeasible solutions after feasibility has first been reached.

To suppress all scaling, set i to –1.

Directives for algorithmic control

Several key strategies of the primal and dual simplex algorithms can be changed through
CPLEX directives. If you are repeatedly solving a class of linear programs that requires substantial
computer time, some experimentation with alternative strategies can be worthwhile.

crash= i (default 1)

This directive governs CPLEX’s procedure for choosing an initial basis, except when the basis
is read from a file as specified by the directive startbasis described below. For the primal
simplex algorithm, a value of i = 0 causes the objective to be ignored in choosing the basis, while
values of –1 and 1 select two different heuristics for taking the objective into account. For the dual
simplex algorithm, chaning i from the default value of 1 to either 0 or –1 selects a more "aggres-
sive" procedure that may yield a starting basis closer to the optimum. The best setting for your
purposes will depend on the specific characteristics of the linear programs you are solving, and
must be determined through experimentation.

pgradient= i (default 0)

This directive governs the primal simplex algorithm’s choice of a ‘‘pricing’’ procedure that
determines which variable is selected to enter the basis at each iteration. Your choice is likely to
make a substantial difference to the tradeoff between computational time per iteration and the num-
ber of iterations. As a rule of thumb, if the number of iterations to solve your linear program
exceeds three times the number of constraints, you should consider experimenting with alternative
pricing procedures.

The recognized values of i are as follows:

28 USING THE AMPL STUDENT EDITION UNDER MS-DOS

–1 Reduced-cost pricing
0 Hybrid reduced-cost/devex pricing
1 Devex pricing
2 Steepest-edge pricing
3 Steepest-edge pricing with slack initial norms
4 Full reduced-cost pricing

The ‘‘reduced cost’’ procedures are sophisticated versions of the pricing rules most often described
in textbooks. The ‘‘devex’’ and ‘‘steepest edge’’ alternatives employ more elaborate computa-
tions, which can better predict the improvement to the objective offered by each candidate for
entering variable.

Compared to the default of i = 0, the less compute-intensive reduced-cost pricing (i = − 1) may
be preferred if your problems are small or easy, or are unusually dense — say, 20 to 30 nonzeros
per column. Conversely, if you have more difficult problems which take many iterations to com-
plete Phase I, consider using devex pricing (i = 1). Each iteration may consume more time, but the
lower number of total iterations may lead to a substantial overall reduction in time. Do not use
devex pricing if your problem has many variables and relatively few constraints, however, as the
number of calculations required per iteration in this situation is usually too large to afford any
advantage.

If devex pricing helps, you may wish to try steepest edge pricing (i = 2). This alternative incurs
a substantial initialization cost, and is computationally the most expensive per iteration, but may
dramatically reduce the number of iterations so as to produce the best results on exceptionally diffi-
cult problems. The variant using slack norms (i = 3) is a compromise that sidesteps the initializa-
tion cost; it is most likely to be advantageous for relatively easy problems that have a low number
of iterations or time per iteration.

Full reduced-cost pricing (i = 4) is a variant that computes a reduced cost for every variable,
and selects as entering variable one having most negative reduced cost (or most positive, as appro-
priate). Compared to CPLEX’s standard reduced-cost pricing (i = − 1), full reduced-cost pricing
takes more time per iteration, but in rare cases reduces the number of iterations more than enough
to compensate. This alternative is supplied mainly for completeness, as it is proposed in many
textbook discussions of the simplex algorithm.

dgradient= i (default 0)

This directive governs the dual simplex algorithm’s choice of a ‘‘pricing’’ procedure that deter-
mines which variable is selected to leave the basis at each iteration. Your choice is likely to make
a substantial difference to the tradeoff between computational time per iteration and the number of
iterations. As a rule of thumb, if the number of iterations to solve your linear program exceeds
three times the number of constraints, you should consider experimenting with alternative pricing
procedures.

The recognized values of i are as follows:

0 Pricing procedure determined automatically
1 Standard dual pricing
2 Steepest-edge pricing
3 Steepest-edge pricing in slack space
4 Steepest-edge pricing with unit initial norms

Standard dual pricing (i = 1), described in many textbooks, selects as leaving variable one that is
farthest outside its bounds. The three ‘‘steepest edge’’ alternatives employ more elaborate compu-
tations, which can better predict the improvement to the objective offered by each candidate for
leaving variable. The default (i = 0) lets CPLEX choose a dual pricing procedure through an inter-
nal heuristic based on problem characteristics.

USING THE AMPL STUDENT EDITION UNDER MS-DOS 29

Steepest-edge pricing involves an extra initialization cost, but its extra cost per iteration is
much less in the dual simplex algorithm than in the primal. Thus if you find that your problems
solve faster using the dual simplex, you should consider experimenting with the steepest-edge pro-
cedures. The standard procedure (i = 2) and the variant ‘‘in slack space’’ (i = 3) have similar com-
putational costs; often their overall performance is similar as well, though one or the other can be
advantageous for particular applications. The variant using ‘‘unit initial norms’’ (i = 4) is a com-
promise that sidesteps the initialization cost; it is most likely to be advantageous for relatively easy
problems that have a low number of iterations or time per iteration.

pricing= i (default 0)

To promote efficiency, CPLEX considers only a subset of the nonbasic variables as candidates
to enter the basis. The default of i = 0 selects a heuristic that dynamically determines the size of the
candidate list, taking problem dimensions into account. You can manually set the size of this list to
i > 0, but only very rarely will this improve performance.

refactor= i (default 0)

This directive specifies the number of iterations between refactorizations of the basis matrix.
At the default setting of i = 0, CPLEX automatically calculates a refactorization frequency by a
heuristic formula. You can determine the frequency that CPLEX is using by setting the display
directive (described below) to 1. Since each update to the factorization uses more memory, CPLEX
may reduce the factorization frequency if memory is low; in extreme cases, the basis may have to
be refactored every few iterations and the algorithm will be very slow.

Given adequate memory, CPLEX’s performance is relatively insensitive to changes in refactor-
ization frequency. For a few extremely large, difficult problems you may be able to improve per-
formance by reducing i from the value that CPLEX chooses.

Directives for improving stability

CPLEX is highly robust and has been designed to avoid problems such as degenerate stalling
and numerical inaccuracy that can occur in the simplex algorithm. However, some linear programs
can benefit from adjustments to the following directives if difficulties are encountered.

perturbation= r (default 0.0001)
doperturb= i (default 0)

The simplex algorithm tends to make very slow progress when it encounters solutions that are
highly degenerate (in the sense of having many basic variables lying at one of their bounds, rather
than between them). When CPLEX detects degenerate stalling, it automatically introduces a pertur-
bation that expands the bounds on every variable by a small amount, thereby creating a different
but closely related problem. Generally, CPLEX can make faster progress on this less constrained
problem; once optimality is indicated, the perturbation is removed by resetting the bounds to their
original values.

The value of r determines the size of the perturbation. If you receive messages from CPLEX
indicating that the linear program has been perturbed more than once, r is probably too large;
reduce it to a level where only one perturbation is required.

The default doperturb value of i = 0 selects CPLEX’s automatic perturbation strategy. If an
automatic perturbation occurs early in the solution process, consider setting i = 1 to select perturba-
tion at the outset. This alternative will save the time of first allowing the optimization to stall
before activating the perturbation mechanism, but is useful only rarely, for extremely degenerate
problems.

feasibility= r 1 (default 1.0e-6)
markowitz= r 2 (default 0.01)
optimality= r 3 (default 1.0e-6)

30 USING THE AMPL STUDENT EDITION UNDER MS-DOS

If a problem is making slow progress through Phase I, or repeatedly becomes infeasible during
Phase II, numerical difficulties have arisen. Adjusting the algorithmic tolerances controlled by
these directives may help. Decreasing the feasibility tolerance, increasing the optimality tolerance
and/or increasing the Markowitz tolerance will typically improve numerical behavior.

The feasibility tolerance r 1 > 0 specifies the degree to which a linear program’s basic variables
may violate their bounds. You may wish to lower r 1 after finding an optimal solution if there is
any doubt that the solution is truly optimal; but if it is set too low, CPLEX may falsely conclude that
the problem has no feasible solution.

The Markowitz threshold 0 < r 2 < 1 influences the order in which variables are eliminated dur-
ing basis factorization. Increasing r 2 may yield a more accurate factorization, and consequently
more accurate computations during iterations of the simplex algorithm. Too large a value may pro-
duce an inefficiently dense factorization, however.

The optimality tolerance r 3 > 0 specifies how closely the optimality (or dual feasibility) condi-
tions must be satisfied for CPLEX to declare an optimal solution.

Directives for starting and stopping
Normally CPLEX uses an internal procedure to determine a starting point for the simplex algo-

rithm, then iterates to optimality. The following directives override these conventions so that you
can start from a saved basis, and can stop when a certain criterion is satisfied.
endbasis f 1

startbasis f 2

CPLEX always sends its final solution back to AMPL, where you can use commands such as
display to view the results. If the endbasis directive is specified, CPLEX also writes a record
of the final simplex basis to the file named f 1, in the standard MPS basis format. Normally this is
an optimal basis, but it may be otherwise if an optimum does not exist or could not be found by the
chosen algorithm, or if the iterations were terminated prematurely by one of the directives
described below.

By default, CPLEX employs a heuristic procedure to determine a starting basis for the simplex
algorithm, as indicated in the discussion of the crash directive above. If the startbasis
directive is specified, then the initial basis is instead read from the file f 2, which must also be in the
standard MPS basis format. (This basis determines the initial solution; CPLEX ignores any initial
values of variables from AMPL.)

This feature can be useful for quickly solving a series of linear programs that differ only in the
data. Before the first one is solved, endbasis is set to the name of a temporary file:

ampl: model steelT3.mod; data steelT3.dat;
ampl: option solver cplex;
ampl: option cplex_options ’endbasis steelT3.bas’;
ampl: solve;
CPLEX 3.0: endbasis steelT3.bas
CPLEX 3.0: optimal solution; objective 514521.7143
31 iterations (1 in phase I)

Then a data value is changed, and startbasis is set to the same filename so that the previously
optimal basis is used as a start:

ampl: let avail[1] := 32;
ampl: option cplex_options ’startbasis steelT3.bas’;
ampl: solve;
CPLEX 3.0: startbasis steelT3.bas
CPLEX 3.0: optimal solution; objective 493648.7143
1 iterations (1 in phase I)

Only 1 iteration is necessary to step to an adjacent basis that is optimal for the modified linear pro-
gram. Although CPLEX will try to make use of any previously saved basis specified by

USING THE AMPL STUDENT EDITION UNDER MS-DOS 31

startbasis, this approach should be relied upon only when the change to the data does not
affect the numbers of variables and constraints. (These numbers can be reduced by simplifications
carried out in AMPL’s presolve phase, even when it would seem that a change in the data should
have no effect. If the number of iterations is unexpectedly high, use the AMPL command option
show_stats 1 to see what presolve has done, or use option presolve 0 to turn presolve
off.)

Another use for this feature is to restart CPLEX, possibly with some directives changed, after it
has reached an iteration limit short of optimality due to one of the directives described next.
iterations= i

CPLEX stops after i iterations and returns its current solution, whether or not it has determined
that the solution is optimal. The default value, determined automatically by CPLEX, is 1000000 or
more.
lowerobj= r 1 (default -1.0e+75)
upperobj= r 2 (default +1.0e+75)

CPLEX stops at the first iteration where the solution is feasible in the constraints, and the objec-
tive value is below r 1 or above r 2. At their default values these directives have no practical effect.
Setting r 1 (for a minimization) or r 2 (for a maximization) to a ‘‘good’’ value for the objective will
cause CPLEX to stop as soon as it achieves this value.
singular= i (default 10)

CPLEX will attempt to repair the basis matrix up to i times when it finds evidence that the
matrix is singular. Once this limit is exceeded, CPLEX terminates with the current basis set to the
best factorizable basis that has been found.
time= r (default 1.0e+75)

CPLEX stops after r seconds of computation time and returns its current solution, whether or
not it has determined that the solution is optimal.

Directives for controlling output
When invoked by solve, CPLEX normally returns just a few lines to your screen to summa-

rize its performance. The following directive lets you choose a greater amount of output, which
may be useful for monitoring the progress of a long run, or for comparing the effects of other direc-
tives on the detailed behavior on CPLEX’s algorithms. Output normally comes to the screen, but
may be redirected to a file by specifying solve >filename.
display= i (default 0)

The default of i = 0 produces a minimal few lines of output from CPLEX, summarizing the
results of the run.

When i = 1, a ‘‘log line’’ recording the iteration number and the scaled infeasibility or objec-
tive value is displayed after each refactorization of the basis matrix:

ampl: model dist.mod; data dist13.dat;
ampl: option solver cplex;
ampl: option cplex_options ’display=1’;
ampl: solve;
CPLEX 3.0: display 1

32 USING THE AMPL STUDENT EDITION UNDER MS-DOS

Iteration Log . . .
Iteration: 1 Scaled Infeas = 1177.162836
Iteration: 84 Scaled Infeas = 397.995513
Iteration: 190 Scaled Infeas = 149.764031
Iteration: 245 Objective = 917884.488147
Iteration: 316 Objective = 905879.868575
CPLEX 3.0: optimal solution; objective 903202.0326
399 iterations (244 in phase I)

Additional information on the operation of the network simplex algorithm is also provided, if appli-
cable. This is usually the appropriate setting for tracking the progress of a long run.

When i = 2, a log line is displayed after each iteration. This level of output is occasionally use-
ful for diagnosing problems of degeneracy or instability in the simplex algorithm.

timing= i (default 0)

When this directive is changed to 1 from its default value of 0, a summary of processing times
is displayed:

Input = 0.06
Solve = 6.42
Output = 0.05

Input is the time that CPLEX takes to read the problem from a file that has been written by AMPL.
Solve is the time that CPLEX spends trying to solve the problem. Output is the time that
CPLEX takes to write the solution to a file for AMPL to read.

version

This directive requests additional information on the version of CPLEX that is being run. For
the version documented in this booklet, you should get a response like the following:

ampl: option solver cplex;
ampl: option cplex_options ’version’;
ampl: solve;
CPLEX 3.0: Student Version 3.0 (19941101)

If an unexpected version is reported, check whether your computer has more than one version of
CPLEX installed. AMPL invokes only the first CPLEX executable that it finds in your operating
system’s search path.

III.4 Using CPLEX for integer programming
For problems that contain integer variables, CPLEX uses a branch-and-bound approach. The

optimizing algorithm maintains a hierarchy of related linear programming subproblems , referred to
as the search tree , and usually visualized as branching downward like this:

There is a subproblem at each node of the tree, represented by a circle in the diagram.
The algorithm starts with just a top (or root) node, whose associated subproblem is the relax-

ation of the integer program — the LP that results when all integrality restrictions are dropped. If
this relaxation happened to have an integer solution, then it would provide an optimal solution to
the integer program. Normally, however, the optimum for the relaxation has some fractional-

USING THE AMPL STUDENT EDITION UNDER MS-DOS 33

valued integer variables. A fractional variable is then chosen for branching, and two new subprob-
lems are generated, each with more restrictive bounds for the branching variable; for example, if
the branching variable is binary (or 0–1), one subproblem will have the variable fixed at zero, the
other node will have it fixed at one. In the search tree, the two new subproblems are represented
by two new nodes connected to the root. Most likely each of these subproblems also has
fractional-valued integer variables, in which case the branching process must be repeated; succes-
sive branchings produce the sort of tree structure shown in our diagram above.

If there are more than a few integer variables, the branching process has the potential to create
more nodes than any computer can hold. There are two key circumstances, however, in which
branching from a particular node can be discontinued:

• The node’s subproblem has no fractional-valued integer variables. It thus provides a feasible
solution to the original integer program. If this solution yields a better objective value than any
other feasible solution found so far, it becomes the incumbent , and is saved for future compari-
son.
• The node’s subproblem has no feasible solution, or has an optimum that is worse than a cer-
tain cutoff value. Since any subproblems under this node would be more restricted, they would
also either be infeasible or have an optimum value that is no better. Thus none of these sub-
problems need be considered.

In these cases the node is said to be fathomed . Because subproblems become more restricted with
each branching, the likelihood of fathoming a node becomes greater as the algorithm gets deeper
into the tree. So long as nodes are not created by branching too much faster than they are inacti-
vated by fathoming, the tree can be kept to a reasonable size.

When no active nodes are left, CPLEX is finished, and it reports the final incumbent solution
back to AMPL. If the cutoff value has been set throughout the algorithm to the objective value of
the current incumbent — CPLEX’s default strategy — then the reported solution is declared opti-
mal. Other cutoff options, described below, cannot provide a provably optimal solution, but may
allow the algorithm to finish much faster.

CPLEX’s memory requirement for solving linear subproblems is about the same as its require-
ment for linear programs discussed in the previous section. In the branch-and-bound algorithm,
however, each active node of the tree requires additional memory. The total memory that CPLEX
needs to prove optimality for an integer program can thus be much larger and less predictable than
for a linear program of comparable size.

Because a single integer program generates many LP subproblems, even small instances can be
very compute-intensive and require significant amounts of memory. In contrast to solving linear
programming problems using CPLEX, where little user intervention is required to obtain optimal
results, you will typically have to set some of the following directives to get satisfactory results on
integer programs. You can either change the way that the branch-and-bound algorithms work, or
relax the conditions for optimality, as explained in the two corresponding subsections below. When
experimenting with these possibilities, it is also a good idea to include directives that set a stopping
criterion and that display some informative output; these are described in the next two subsections.
If you consistently fail to receive any useful solution in response to solve after a reasonable
amount of time, and are in doubt as to how to proceed, consult the troubleshooting tips at the end
of this section.

If you wish to drop all integrality requirements and solve the integer program as a linear pro-
gram, use the relax directive described in Section III.3.

Directives for preprocessing

All of the preprocessing directives described in Section III.3 above are also applicable to prob-
lems that specify integer-valued variables. The following directives control additional preprocess-
ing steps that are applicable to certain mixed-integer programs only.

34 USING THE AMPL STUDENT EDITION UNDER MS-DOS

cliques= i 1 (default 0)
covers= i 2 (default 0)

The performance of the branch-and-bound procedure can sometimes be improved by adding con-
straints that raise the minimum (or lower the maximum) of the LP relaxation, without cutting off
any of the integer solutions. These ‘‘cuts’’ can be highly problem-specific, but there are two kinds
— clique cuts and cover cuts — that CPLEX can try to generate automatically.

At the default settings of 0, CPLEX first scans the problem to determine whether it has the nec-
essary underlying structure for generation of cliques or covers. If the scan is successful then the
cuts are generated, but they are added to the integer program only if an internal test indicates that
they are likely to be effective. Changing i 1 or i 2 to 1 forces the use of any cuts generated. Chang-
ing either to –1 supresses any attempt to find the cuts, and saves some memory that would be used
for the scan even if no cuts were generated.

If CPLEX tries to generate clique or cover cuts, messages indicating the number generated and
number used are displayed when the mipdisplay directive is set to 1. More detailed informa-
tion on the application of cuts is generated in the extended listing produced by setting
mipdisplay to 2 or greater.

coeffreduce= i (default 1)

Coefficient reduction is a procedure for reducing some of an integer program’s constraint coeffi-
cients without changing the set of feasible integer solutions. It tends to improve the bounds given
by the LP subproblems, but sometimes at the cost of making the subproblems harder to solve.

When i is left at its default value of 1, CPLEX attempts to apply coefficient reduction. Chang-
ing i to 0 turns coefficient reduction off.

heuristic= i (default 0)

This directive governs the choice of a method for finding a first feasible integer solution. CPLEX
incorporates two methods: a modified branch-and-bound procedure, and a ‘‘rounding heuristic’’
that attempts to construct a feasible solution by successively rounding fractional variables to inte-
ger values.

At the default setting of 0, CPLEX uses the rounding heuristic if the number of variables eligi-
ble for rounding is sufficiently large (according to an internal criterion), and uses branch-and-
bound otherwise. Changing i to 1 or –1 forces use of the heuristic or of branch-and-bound, respec-
tively.

Steps of the rounding heuristic (if any) are shown when the mipdisplay directive is set to 2
or higher.

sos2= i (default 1)

An optimization problem containing piecewise-linear terms may have to be converted to an
equivalent mixed-integer program, as explained in Section III.1. When i is at its default value of 1,
this conversion results in only one extra variable per piecewise-linear breakpoint. All of the extra
variables associated with a particular piecewise-linear term are marked as belonging together, so
that CPLEX’s branch-and-bound procedure knows to treat them specially. Variables so marked
have come to be known as a ‘‘special ordered set of type 2,’’ whence the name sos2 for this
directive.

When i is changed to 0 from its default of 1, the conversion creates a larger number of vari-
ables, but does not employ the special ordered set feature. This alternative has no known advan-
tages, and is supplied for completeness only.

sosscan= i (default 0)

When i is changed to 1 from its default of 0, CPLEX searches for constraints of the form

Σ j ∈S0

x j − Σ j ∈S1

x j = 1 − S 1,

USING THE AMPL STUDENT EDITION UNDER MS-DOS 35

where all of the variables x j , j ∈(S 0 ∪S 1), are binary (restricted to the values 0 and 1). These vari-
ables are marked as belonging together, and CPLEX’s branch-and-bound procedure uses special
branching rules to handle them efficiently. (Variables so marked are known as a ‘‘special ordered
set of type 3’’ or a sos3 set for short.)

An AMPL constraint is recognized as having the above form even if some terms have been
moved to the other side of the = sign. Thus a sos3 constraint may be written as, for example,

sum {j in S0} x[j] + sum {j in S1} (1-x[j]) = 1;

here it is clear that x[j] must be zero for all j in S0 and one for all j in S1, with exactly one
exception. If we imagine S1 being empty, we get the common special case

sum {j in S0} x[j] = 1;

this says that x[j] must be 1 for exactly one of the indices j in S0.
You can see the number of sos3 sets found by CPLEX, by setting the prestats directive

(described in Section III.3 above) to 1. If few or none are found, then i is best left at its default of
0. Even when many sos3 constraints are found, you may have to experiment to determine whether
CPLEX’s special branching rules offer an advantage for your problem.

Directives for algorithmic control
In contrast to the case of linear programming, the algorithmic control directives for solving

pure and mixed integer programs are unlikely to produce the best possible performance at their
default values. You should expect to specify alternative values for one or more of the following
directives to improve solution times.

You can view each of these directives as corresponding to a particular decision faced at each
step in the branch-and-bound procedure. To be specific, imagine that an LP subproblem has just
been solved. The sequence of decisions and the corresponding directives are then as follows:

• Branch next from which node in the tree? (backtrack, nodesel)
• Branch by constraining which fractional variable at the selected node? (varsel; also
optionally mip_priorities, plobjpri, plconpri)
• Investigate which of a fractional variable’s two resulting branches first? (branch)
• Solve the resulting new subproblem by which LP algorithm? (mipalgorithm)

It is often hard to predict which combination of directives will work best. Some experimentation is
usually required; your knowledge of the problem structure may also suggest certain choices of
branch-and-bound strategy.

backtrack = r (default .85)
nodesel= i (default 1)

The settings of these directives determine the criterion for choosing the next node from which
to branch, once some feasible integer solution has been found.

When i is set to 1 or 2, CPLEX associates a value with each node, and chooses a node based on
these values. For i = 1, a node’s value is the bound on the integer optimum that is given by solving
the LP subproblem at that node. For i = 2, a node’s value is an estimate of the best integer objec-
tive that can be achieved by branching from that node; estimates are derived from so-called pseu-
docosts, which are in turn derived from the solutions to the LP subproblems. Depending on the
value at the current (most recently created) active node, CPLEX either branches from that node, or
else backtracks to the node that has the best bound (i = 1) or best estimate (i = 2) among all active
nodes. Best bound often finds better solutions sooner, but best estimate tends to be faster overall
when the objective values of different integer solutions are tightly clustered.

The decision to backtrack is made by comparing the value (bound or estimate) at the current
node with the values at parent nodes in the tree. If the value of the current node has degraded
(increased for a minimization, decreased for a maximization) by at least a certain amount relative

36 USING THE AMPL STUDENT EDITION UNDER MS-DOS

to the values at parent nodes, then a backtrack is performed. The cutoff for degradation is deter-
mined by an internal heuristic that is regulated by the value of r.

Lower values of r > 0 favor backtracking, resulting in a strategy that is more nearly ‘‘breadth
first’’. The search jumps around fairly high in the tree, solving somewhat dissimilar subproblems.
Good solutions are likely to be found sooner through this strategy, but the processing time per node
is also greater.

Higher values of r (greater than 1.0) tend to discourage backtracking, yielding a strategy that is
more nearly ‘‘depth first’’. Successive subproblems are more similar, nodes are processed faster,
and integer solutions are often quickly found deep in the search tree. Considerable time may be
wasted in searching the descendants of one node, however, before backtracking to a better part of
the tree.

The default value of .85 gives a moderately breadth-first search and represents a good compro-
mise. Lower values often pay off when the LP subproblems are expensive to solve.

Setting i to 0 chooses a pure depth-first strategy, regardless of r. CPLEX automatically uses
this strategy to search for an initial feasible integer solution at the outset of the branch-and-bound
procedure.

varsel= i (default 0)

Once a node has been selected for branching, this directive determines how CPLEX chooses a
fractional-valued variable to branch on. By default (i = 0) the choice is made by an internal heuris-
tic based on the problem and its progress.

The maximum infeasibility rule (i = 1) chooses the variable with the largest fractional part.
This forces larger changes earlier in the tree, and tends to produce faster overall times to reach the
optimal integer solution.

The minimum infeasibility rule (i = − 1) chooses the variable with the smallest fractional part.
This may lead more quickly to a first integer feasible solution, but will usually be slower overall to
reach the optimal integer solution.

A pseudo reduced cost rule (i = 2) estimates the worsening of the objective that will result by
forcing each fractional variable to an adjacent integer, and uses these ‘‘degradations’’ in an internal
heuristic for choosing a variable to branch on. This setting tends to be most effective when the
problem embodies complex tradeoffs, and the dual variables have an economic interpretation.

Strong branching (i = 3) evaluates a number of likely branch choices by partially solving the
resulting subproblems. The chosen branch variable is the one whose partial solution appears "most
promising" according to CPLEX’s internal criteria. This approach incurs the greatest cost per node,
but can be effective for large, difficult mixed-integer programming problems.

option mip_priorities ’v1 i 1 v2 i 2 . . .’ ;
priorities= i (default 1)

If your model contains more than one declaration of integer variables, you should consider the
assignment of branching priorities. Each time that CPLEX must choose a fractional-valued integer
variable on which to branch, it gives preference to the fractional variables that have the highest pri-
orities. A judicious choice of priorities can guide the search in a way that dramatically reduces the
number of nodes generated.

Priorities are not specified via cplex_options like other directives, but are instead read
from the AMPL option mip_priorities. The content of mip_priorities should be a
string consisting of space-separated pairs v k i k, where v k is a name that appears after var in the
model, and 1 ≤ i k ≤ 32767. For example, if the model contains these declarations:

var Locate {CITIES} binary;
var Use {CITIES,MACHINES} integer;

then this AMPL command sets the Locate variables to have priority 700 and the Use variables to
have priority 300:

option mip_priorities ’Locate 700 Use 300’;

USING THE AMPL STUDENT EDITION UNDER MS-DOS 37

A higher number indicates a higher priority. All variables within one indexed collection receive
the same priority; hence v k should not be a subscripted name.

When using this feature, you must arrange for AMPL to write a ‘‘.col file’’ that CPLEX can
use to identify variables by name. See the discussion of auxiliary files on page 333 of the AMPL
book: unless option cplex_auxfiles already contains c, issue the AMPL command

option cplex_auxfiles c;

before giving the solve command. (Similarly, if you use AMPL’s write command, first make
sure option auxfiles contains c; if not, issue the AMPL command option auxfiles c;).
The special keywords !quit and !echo may appear at the beginning of the mip_priorities
string. If CPLEX finds an error in the string, it bails out unless !quit appears in the string before
the error. Normally CPLEX displays the priorities it has read, but !echo suppresses this reporting.

Priorities should be assigned based on your knowledge of the problem. For example, consider
a problem with a binary variable representing a yes/no decision to build a factory, and other integer
variables representing equipment selections within that factory. You would naturally want to
explore whether or not the factory should be built before considering what specific equipment to
purchase within the factory. By assigning a higher priority to the build/no-build decision variable,
you can force this logic into the tree search and eliminate wasted computation time exploring unin-
teresting portions of the tree.

To suppress CPLEX’s use of all priorities specified in option mip_priorities, change
directive priorities from its default value of 1 to 0.

plconpri= i 1 (default 1)
plobjpri= i 2 (default 2)

Certain piecewise-linear expressions in AMPL models give rise to auxiliary CPLEX variables in
groups known as ‘‘special ordered sets of type 2’’. These so-called sos2 variables were discussed
in the entry for the sos2 directive above.

CPLEX takes i 1 to be the branching priority for all sos2 variables that arise from piecewise-
linearities in the constraints, and i 2 to be the branching priority for all sos2 variables that arise from
piecewise-linearities in the objective. CPLEX’s interpretation of these priorities is the same as for
priorities on other variables, as explained in the preceding entry on mip_priorities.

branch= i (default 0)

When branching on a variable x that has fractional value r, CPLEX creates one subproblem that
has the constraint x≥ceil(r) and one that has the constraint x≤ floor(r); these are the ‘‘up branch’’
and ‘‘down branch’’ respectively. By default (i = 0) CPLEX uses an internal heuristic to decide
whether it should first process the subproblem on the up branch or on the down branch. You may
instead specify consistent selection of the up branch (i = 1) or down branch (i = − 1). Sometimes
one of these settings leads the algorithm to examine and discard the ‘‘poorer’’ branches high in the
tree, reducing the tree size and overall solution time.

mipalgorithm= i (default 2)

This directive specifies the algorithm, or combination of algorithms, that CPLEX will apply to
solve the LP subproblem at each branch-and-bound node. The recognized values of i are:

1 Primal simplex

2 Dual simplex, then primal if dual fails

3 Network simplex on the network part of the problem, then dual simplex
(see the netopt directive in Section III.3)

These settings do not significantly affect the number of nodes that must be visited during the
search.

Directives for solving linear programs (as described in Section III.3) also apply when these
algorithms are used to solve subproblems within the branch-and-bound procedure. By changing

38 USING THE AMPL STUDENT EDITION UNDER MS-DOS

the setting of pgradient or dgradient, in particular, you may be able to greatly improve
overall solution times,

Directives for relaxing optimality
In dealing with a difficult integer program, you may need to settle for a ‘‘good’’ solution rather

than a provably optimal one. The following directives offer various ways of weakening the opti-
mality criterion for CPLEX’s branch-and-bound algorithm.

absmipgap= r 1 (default 0.0)
mipgap= r 2 (default 1.0e-4)

The optimal value of your integer program is bounded on one side by the best integer objective
value found so far, and on the other side by a value deduced from all the node subproblems solved
so far. The search is terminated when either

best node − best integer < r 1

or

best node − best integer / (1.0 + best node ) < r 2.

Thus the returned objective value will be no more than r 1 from the optimum, and will also be
within about 100r 2 percent of the optimum if the optimal value is significantly greater than 1 in
magnitude.

Increasing r 1 or r 2 allows a solution further from optimum to be accepted. The search may
be significantly shortened as a result.

lowercutoff= r 1 (default -1.0e+75)
uppercutoff= r 2 (default +1.0e+75)

These directives specify alternative cutoff values; a node is fathomed if its subproblem has an
objective less than r 1 (for maximization problems) or greater than r 2 (for minimization problems).
As a result any solution returned by CPLEX will have an objective value at least as large as r 1 or as
small as r 2. This feature can be useful in conjunction with other limits on the search, but too high
a value of r 1 or too low a value of r 2 may result in no integer solution being found.

objdifference= r 1 (default 0.0)
relobjdiff= r 2 (default 0.0)

When both of these directives are left at their default values of zero, the incumbent integer
solution’s objective value is used as the cutoff for subsequent nodes as explained previously.
When r 1 is changed to some positive value, the cutoff is instead computed by subtracting (if mini-
mizing) or adding (if maximizing) r 1 from the current incumbent value. When r 1 is zero but r 2 is
changed to some positive value, the cutoff is computed by subtracting (if minimizing) or adding (if
maximizing) from the current incumbent value a quantity equal to r 2 times the incumbent value.
In either case, the effect is to make the cutoff more restrictive, by forcing the mixed-integer opti-
mization to ignore integer solutions that are only marginally better than the best one found so far.
As a result there tend to be fewer nodes generated, and the algorithm terminates more quickly, but
the true integer optimum may be missed if its objective value is close to the best integer objective
found.

If r 1 or r 2 is set to a negative value, the same cutoff computation is made, but the effect is to
make the cutoff less restrictive. As a result, additional integer solutions may be generated that have
objective values the same as, or slightly worse than, the best value found so far. The last solution
found is the one returned to AMPL. This option may be useful as a way of generating alternative
optimal (or near-optimal) solutions, but it is not guaranteed to generate all such solutions.

If both r 1 and r 2 are nonzero, the objdifference directive takes precedence.

integrality= r (default 1.0e-5)

USING THE AMPL STUDENT EDITION UNDER MS-DOS 39

In the optimal solution to a subproblem, a variable is considered to have an integral value if it
lies within r of an integer. For some problems, increasing r may give an acceptable solution faster.

Directives for halting and resuming the search
There is usually no need to make exhaustive runs to determine the impact of different search

strategies or optimality criteria. While you are experimenting, consider using one of the directives
below to set a stopping criterion in advance. In each case, the best solution found so far is returned
to AMPL.

You can arrange to save the entire search tree when CPLEX halts, so that the search may be
resumed from where it left off. Directives for this purpose are also listed below.
mipsolutions= i (default 10000)

The search is terminated after i feasible solutions satisfying the integrality requirements have
been found. (The default value may be different on some computers.)
nodes= i (default 500000)

The search is terminated after i linear programming subproblems have been solved. (The
default value may be different on some computers.)
time= r (default 1.0e+75)

The search is terminated after r seconds of computing time.
treememory= r (default 1.0e+75)

The search is terminated when the branch-and-bound search tree reaches a size of r megabytes.
Since the search tree is kept entirely in memory, you can use this directive to assure that CPLEX
will return with a (possibly less than optimal) solution rather than terminating with an out-of-
memory error.

In general, r should be set to a few megabytes less than the amount of memory available, to
allow for memory used by the operating system, by other programs, and by CPLEX and its other
data structures. For example, if your computer has 16 megabytes of real memory, you might start
by setting r to 13. If you can use virtual memory, you may be able to set r substantially higher than
the number of megabytes of physical memory, although performance will be slower as a result.
endtree= f 1

starttree= f 2

CPLEX progressively allocates more memory for the search tree as the branch-and-bound pro-
cedure creates new nodes; it frees all this memory at termination. If the endtree directive is
specified, CPLEX also writes a record of the final tree to the file named f 1, in a compact binary for-
mat.

CPLEX normally starts the branch-and-bound procedure from a tree that consists only of the
root node, as explained at the beginning of this section. If the starttree directive is specified,
then CPLEX instead starts from the search tree stored in the file named f 2. This file must be one
that was previously written, for the same problem, by the endtree directive.

These directives are particularly useful for large and difficult problems that may take hours or
days to solve to optimality. If you would like to look at the first integer solution that CPLEX finds,
for example, you can set mipsolutions=1 together with endtree and any other directives:

40 USING THE AMPL STUDENT EDITION UNDER MS-DOS

ampl: model multmip3.mod;
ampl: data multmip3.dat;

ampl: option solver cplex;
ampl: option cplex_options ’mipsolutions=1 varsel=-1’
ampl? ’ endtree=multmip.tre’;

ampl: solve;
CPLEX 3.0: mipsolutions 1
varsel -1
endtree multmip.tre

CPLEX 3.0: mixed-integer solutions limit; objective 238225
180 simplex iterations
42 branch-and-bound nodes

ampl: display Trans >multmip.so1;
ampl:

A display of the Trans variables, at the values they take in the first integer solution, has been
directed to the file multmip.so1 for future examination. You could also browse through the
values interactively at this point. When you are ready to continue, you need only set starttree
to the same file as endtree, and make any other changes to the branch-and-bound directives that
you wish. Then give the solve command again:

ampl: option cplex_options ’mipsolutions=1 varsel=1’
ampl? ’ starttree=multmip.tre endtree=multmip.tre’;

ampl: solve;
CPLEX 3.0: mipsolutions 1
varsel 1
starttree multmip.tre
endtree multmip.tre

CPLEX 3.0: mixed-integer solutions limit; objective 237125
493 simplex iterations
92 branch-and-bound nodes

ampl: display Trans >multmip.so2;
ampl:

CPLEX’s counts of the numbers of iterations and nodes are cumulative. Since this is a minimiza-
tion problem, the objective at this second solution is lower than at the first. To continue past this
point with all the same CPLEX directives, you need only type solve:

ampl: solve;
CPLEX 3.0: mipsolutions 1
varsel 1
starttree multmip.tre
endtree multmip.tre

CPLEX 3.0: optimal integer solution; objective 235625
508 simplex iterations
98 branch-and-bound nodes

ampl: display Trans >multmip.so3;
ampl: solve;
CPLEX 3.0: mipsolutions 1
varsel 1
starttree multmip.tre
endtree multmip.tre

CPLEX 3.0: optimal integer solution; objective 235625
597 simplex iterations
117 branch-and-bound nodes

ampl:

USING THE AMPL STUDENT EDITION UNDER MS-DOS 41

We see here that the objective value of the third solution (235625) was optimal, but that CPLEX
had to process an additional 19 nodes at the fourth solve to prove optimality. (This is not a fluke.
The branch-and-bound procedure must often examine many nodes to prove optimality after it has
found an optimal solution.)

Directives for controlling output
When invoked by solve, CPLEX normally returns just a few lines to your screen to summa-

rize its performance. The following directives let you choose more output. They are highly recom-
mended for monitoring the progress of a long run, and for comparing the effects of algorithmic
directives on the behavior of the branch-and-bound procedure. Output normally comes to the
screen, but may be redirected to a file by specifying solve >filename.

mipdisplay= i 1 (default 0)
mipinterval= i 2 (default 100)

The default of i 1 = 0 produces a minimal few lines of output from CPLEX, summarizing the
results of the run.

When i 1 = 1, a single ‘‘log line’’ is displayed for every integer solution found:

ampl: option solver cplex;
ampl: option cplex_options ’mipdisplay=1’;
ampl: model multmip1.mod; data multmip1.dat;
ampl: solve;
CPLEX 3.0: mipdisplay 1

Node Log . . .
Best Integer = 2.315500e+05 Node = 13 Best Node = 2.238820e+05
Best Integer = 2.315250e+05 Node = 29 Best Node = 2.250680e+05
Best Integer = 2.314000e+05 Node = 40 Best Node = 2.251940e+05
Best Integer = 2.313500e+05 Node = 71 Best Node = 2.264260e+05
Best Integer = 2.309500e+05 Node = 85 Best Node = 2.268520e+05
Best Integer = 2.305250e+05 Node = 103 Best Node = 2.274330e+05
Best Integer = 2.298500e+05 Node = 114 Best Node = 2.276850e+05

CPLEX 3.0: optimal integer solution; objective 229850
643 simplex iterations
196 branch-and-bound nodes

The information includes the number of nodes processed, and the objective values of the best inte-
ger solution found so far and of the best bound derivable from all of the subproblem solutions com-
puted so far. (The optimal value lies between these two.)

When i 1 = 2, a more detailed log line is displayed once every i 2 nodes, as well as for each node
where an integer solution is found. A * indicates lines of the latter type. The default of i 2 = 1
gives a complete picture of the branch-and-bound process, which may be instructive for small
examples. With a larger choice of i 2, this setting can be very useful for evaluating the progress of
long runs; the log line includes a count of the number of active nodes, which gives an indication of
the rate at which the search tree is growing or shrinking in memory.

When i 1 = 3, CPLEX displays a line for every node (as if mipdisplay=2 and
mipinterval=1 were in effect) and also displays additional information about the progress of
the simplex method on each subproblem, according to the setting of the display directive.

display= i (default 0)

When mipdisplay=3 is in effect and an integer program is being solved, this directive gov-
erns progress reports for the simplex method’s application to each of the LP subproblems. It is
interpreted the same as for linear programming, as described in Section III.3 above.

For other settings of mipdisplay, this directive is ignored.

timing= i (default 0)

42 USING THE AMPL STUDENT EDITION UNDER MS-DOS

This directive can be used to display a summary of processing times. It works the same for
integer programming as for linear programming, as described in Section III.3 above.

Improving performance
If your mixed integer program is not especially small or easy, you are unlikely to get the best

results — or even acceptable results — by simply typing model and data statements and then
solve. Instead you will have to use some of the algorithmic directives described above.

Begin by reading through the descriptions of the directives, to determine which are most likely
to affect the performance of your particular problem. Then plan a series of runs with different
combinations of algorithm settings. Set the mipdisplay and mipinterval directives so that
you can get a general idea of the branch-and-bound procedure’s behavior; record the total run time
(from the time directive) and other summary statistics so that you can systematically compare the
results. Let each run proceed long enough to permit meaningful evaluation, but use one or more
resource-limiting directives (mipsolutions, nodes, time, treememory) to cut unsuccessful
runs short.

Your plan for a series of runs will depend on the nature of your problem and on the extent of
your computing resources. The following strategies have been found to have a high rate of suc-
cess, and can serve as a starting point for making your own plan.

Changing branching. First try the best estimate node selection strategy (directive
nodesel=2). It takes into account infeasibility information, so is very helpful on problems with
tightly clustered objective values. Also try pseudo-cost variable selection in conjunction with best
estimate node selection (varsel=2).

If the first solution is far from the best bound value, or you cannot seem to get an integer solu-
tion, try strong branching (varsel=3). This strategy seems to be best on problems where the
ratio of binary (zero-one) variables to constraints exceeds ten and where no cuts are generated; it
has also been very successful on some general integer proglems. When you try strong branching
remember that significantly more computation is invested in variable selection; thus each branch
consumes more time, but very good solutions can be obtained in few total nodes and hence less
total time.

Many integer programs have a choice component; that is, one of a set of binary variables needs
to be set to one and the rest must be zero. The constraint that enforces this is a sum of binary vari-
ables either ≤ or = 1. In such cases try preselecting the ‘‘up’’ branching direction (branch=1).
This causes the selected branching variable to be set first to one, when then forces all the rest of the
variables in the constraint to zero, eliminating all the infeasibilities (fractional variable values) in
that constraint. The ‘‘down’’ branch is weaker, since it sets the branching variable first to zero,
eliminating the infeasibility only in that variable.

Changing optimality criteria. Sometimes a good integer solution is found early, but many
additional nodes are required to prove it is the optimal solution. You can speed the process if you
are willing to relax your optimality criteria. The default relative optimality tolerance is 0.0001; this
means that the final integer solution is guaranteed to be within 0.01% of the optimal value. Many
integer programming applications do not require such a strong guarantee, or have imprecise data
that render such a guarantee meaningless in any case. If you can accept a larger tolerance — say,
1% (directive mipgap=0.01) — you may be able to avoid a lot of unnecessary computation.

If the objective values are near zero, then a percentage guarantee of optimality may not be very
meaningful. Instead, set the absolute optimality tolerance (directive absmipgap) to a small posi-
tive value.

The objective difference directives can also be set to hasten conclusion of the branch-and-
bound procedure. They direct the search to skip all potential solutions within a certain margin —
either relative (directive relobjdiff) or absolute (objdifference) — of the best integer
solution found so far. Since the true integer optimum may be in one of these skipped intervals,
these directives also have the effect of changing the guarantee of optimality.

USING THE AMPL STUDENT EDITION UNDER MS-DOS 43

The cutoff parameter can also be very helpful in restricting the search. If you know that there
exist feasible solutions attaining a certain objective value, specify this value as the upper cutoff
(directive uppercutoff) for minimization problems or the lower cutoff (lowercutoff) for
maximization problems. CPLEX normally uses a special depth-first strategy for the branch-and-
bound search until the first feasible solution is found, then switches to the strategy specified by the
algorithmic directives (backtrack, branch, nodesel, varsel). When a cutoff is set, the
strategy specified by these directives is instead used from the beginning.

Using priority orders. Problems that have integer variables for different types of decisions,
say variables to activate processes and variables to use processes, should have higher priorities
assigned to the variables that should be decided first. Priorities based on the magnitude of vari-
ables’ objective coefficients are often effective. (AMPL allows you to give a different priority to
each separately declared indexed collection of variables, by use of the mip_priorities option,
but does not yet support different priorities for individual variables within an indexed collection.)

Formulation. Take another look at the form of your problem’s objective and constraints. A
reformulation can speed the branch-and-bound procedure significantly, to the point of making an
unsolvable problem into a solvable one. Chapter 15 of the AMPL book offers some brief sugges-
tions for improved formulations, and some references for further information.

CPLEX uses objective function coefficients in various ways to guide the branch-and-bound
search. Thus it is advisable to make substitutions that move coefficients from constraints into the
objective. For example, if you write

minimize total_cost: variable_cost + fixed_cost;

subj to variable_cost_defn: variable_cost =
sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p];

subj to fixed_cost_defn: fixed_cost =
sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];

then the significant objective coefficients (vcost[i,j,p] and fcost[i,j]) are ‘‘hidden’’ in
the constraints. You may get better performance by instead writing

minimize total_cost:
sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]

+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];

If you find the first formulation easier to understand, you may want to have it converted automati-
cally to the second formulation by turning on defined-variable substitution in AMPL (option
substout 1, linelim 1) or by relying on CPLEX’s aggregation preprocessor (directives
aggregate, agglim). These features rely on the constraints being in a recognizable form, how-
ever; you may want to turn on additional output (option show_stats 1 or CPLEX directive
prestats) to check that substitutions are being made as expected.

Simplex parameters. Since the starting solution (or simplex basis) for solving each subprob-
lem is derived from the optimal solution of its parent in the search tree, the number of simplex iter-
ations to solve most subproblems should be very small; less than 10 is not uncommon. If the num-
ber of iterations is frequently more than 100 per subproblem, consider changing the choice of sub-
problem algorithm (directive mipalgorithm) or changing the default (dual simplex) algorithm’s
pricing strategy to steepest edge (directive dgradient).

Common performance problems
The following troubleshooting tips address the three difficulties most often encountered in

solving integer programs with CPLEX: insufficient memory, failure to prove optimality, and slow
solution of subproblems.

Running out of memory. The most common failure when solving integer problems is running
out of memory. This problem arises when the branch-and-bound tree becomes so large that insuffi-
cient memory is available to continue the branch-and-bound procedure. In any integer program-

44 USING THE AMPL STUDENT EDITION UNDER MS-DOS

ming run, a substantial initial allocation of memory is required to set up the data structures required
by the algorithms that solve the subproblems (directive mipalgorithm); switching to a
steepest-edge simplex method (via directive pgradient or dgradient) further increases the
initially allocation. Each active node of the search tree then takes additional memory. As memory
gets tight, you may observe frequent warning messages while CPLEX attempts to navigate through
various operations within limited memory. Eventually the solution process will be terminated with
an unrecoverable integer failure message.

The tree information saved in memory can be substantial. CPLEX saves a basis for every unex-
plored node. When you use the best-bound or best-estimate strategy of node selection, the list of
such nodes can become very long for large or difficult problems. Moreover, once a run has failed
because of insufficient memory, there is no reliable way to predict how much additional memory
might be necessary for success.

To avoid out-of-memory failures, you can set the treememory directive described above.
CPLEX will then return to AMPL the best integer solution it has been able to find within the avail-
able memory.

You may be able to reduce CPLEX’s memory requirements by modifying the search strategy to
generate a smaller tree and use less memory. Switching to a more nearly depth-first node selection
strategy (by increasing the backtrack directive) often works. Depth-first search rarely generates
a large unexplored node list since it dives deep into the branch-and-bound tree rather than jumping
around at higher levels. Strong branching is also a memory-conserving strategy; by putting more
work into selecting a branching variable, it usually needs to create fewer nodes than other options.

If your problem does not benefit from the use of cuts, turning them off (via directives
cliques=-1 and covers=-1) may save some memory.

Failing to prove integer optimality. One frustrating aspect of the branch-and-bound technique
for integer programming is that the solution process can continue long after the optimal solution
has been found. In these situations the branch-and-bound tree is being exhaustively searched in an
effort to guarantee that the current integer feasible solution is indeed optimal. Remember that the
branch-and-bound tree for a problem in n binary variables may be as large as 2n nodes; a problem
containing only 30 such variables could produce a tree having over one billion nodes! Although
CPLEX’s search strategies avoid visiting the vast majority of nodes, the search can still easily take
more computer time than you can afford to wait for.

In general you should set at least one limit on the number of nodes processed, number of
improved solutions found, or total processing time (directive nodes, mipsolutions, or time).
Setting limits ensures that the tree search will terminate in reasonable time. You can then inspect
the solution and, if necessary, re-run the problem using different directive settings. Consider some
of the directives for improving performance, particularly those for relaxing optimality (mipgap or
absmipgap, lowercutoff or uppercutoff, objdifference or relobjdiff,
integrality). They may provide you with an optimal or very nearly optimal solution, even
though a proof of optimality would require more computer resources than you have available.

Difficulty solving MIP subproblems. The average time per node to process each branch-and-
bound node should be only a small fraction of the time to solve the LP relaxation at the root.
Higher times per node indicate that the LP subproblems at the nodes are proving to be especially
difficult for the default choice of solver. To get further information that may help you diagnose the
difficulty, you can set directive mipdisplay=3 and display=1 or display=2.

CPLEX’s default setting is to use the dual simplex algorithm to solve MIP subproblems. If the
number of iterations seems too large, consider using a stronger pricing procedure. Best results are
usually given by the full dual steepest-edge procedure (directive dgradient=2) but other options
may also be worth trying. You should find that the number of iterations is reduced, though the cost
per iteration is somewhat higher.

If many iterations on the subproblems make no improvement in the objective, then long solve
times are most likely due to dual degeneracy. If steepest-edge pricing does not help in this situa-
tion, consider switching to the primal simplex algorithm (directive mipalgorithm=1). You

USING THE AMPL STUDENT EDITION UNDER MS-DOS 45

may want to experiment with different pricing procedures (directive pgradient) in the primal
simplex, too.

Acknowledgement
Much of this material is based on text provided by Janet Lowe.

