
G205
Fundamentals of Computer
Engineering
CLASSES 14/15, Wed. Oct. 27 03
Stefano Basagni
Fall 2003
M-W, 9:50am-11:30am, 410 Ell

10/27/2003 2

Elementary Graph Algorithms

Graph G=(V,E)
Finite set of vertices V, |V|=n
Finite set of edges E joining pairs of nodes,
|E|=m

G can be
Directed: E ⊆ V x V, (a,b)≠(b,a), a,b ∊ V
Undirected: E={{a,b}: a,b ∊ V}

Allows natural graphical representation

10/27/2003 3

Graph Representation

Two common ways to represent a
graph

Adjacency list
Adjacency matrix

Running time is expressed in term of
both |V|=n and |E|=m
In asymptotic notation we will drop the
cardinality: O(V+E)=O(n+m)

10/27/2003 4

Adjacency Lists

Array Adj of n lists, one per vertex
u’s list = all vertices v such that (u, v) ∈ E
u and v are said to be neighbors
Works for directed and undirected graphs
Edge weights w:E→R can be listed
Space: Ѳ(V + E)
Time: to list all neighbors of u:Ѳ(deg(u))
Time: to check if (u,v)∈E: O(deg(u))

10/27/2003 5

Adjacency Matrix

G is represented by a n x n matrix A = (ai,j)
ai,j = 1 if (i,j) ∈ E
ai,j = 0 if (i,j) ∈ E

Space: Ѳ(n2)
Time: to list all vertices adjacent to u: Ѳ(V)
Time: to determine if (u,v) ∈ E: Ѳ(1)
Can store weights instead of bits for weighted
graph

10/27/2003 6

Breadth-First Search, BFS 1

Input: Graph G = (V, E), directed or
undirected, and source vertex s ∈ V
Output: d[v] = distance (smallest # of
edges) from s to v, for all v ∈ V
Also π[v]=u such that (u,v) is last edge on
shortest path s ↝ v

u is v’s predecessor
Set of edges {(π[v], v) : v = s} forms a tree

10/27/2003 7

BFS 2

Compute only d[v], not π[v]
Omitting colors of vertices
Idea: Send a wave out from s

First hits all vertices 1 edge from s
From there, hits all vertices 2 edges from s
Etc.

Use FIFO queue Q to maintain “wavefront”
v ∈ Q if and only if wave has hit v but has not
come out of v yet

10/27/2003 8

BFS 3

BFS(V,E,s)
for each u∈V\{s} do d[u]=∞
d[s]=0; Q=0
ENQUEUE(Q, s)
while Q≠0 do
u=DEQUEUE(Q)
for each v ∈ Adj[u] do
if d[v]=∞ then

d[v]=d[u]+1
ENQUEUE(Q, v)

10/27/2003 9

BFS, Analysis

Time = O(V + E)
O(V) because every vertex enqueued at
most once
O(E) because every vertex dequeued at
most once and we examine (u,v) only
when u is dequeued
Every edge examined at most once if
directed, at most twice if undirected

10/27/2003 10

Depth-First Search, DFS 1

Input: G=(V,E), directed or undirected. No
source vertex given!
Output: 2 timestamps on each vertex:

d[v] = discovery time
f[v] = finishing time
(These will be useful for other algorithms later on)

Can also compute π[v]
Will methodically explore every edge

Start over from different vertices as necessary

10/27/2003 11

DFS 2

As soon as a vertex is discovered, explore
from it (no queue like BFS)
As DFS progresses, every vertex has a color:

WHITE = undiscovered
GRAY = discovered, not finished
BLACK = finished (found everything reachable)

Discovery and finish times:
Unique integers from 1 to 2|V|
For all v, d[v] < f[v]
In other words, 1 ≤ d[v] < f[v] ≤ 2|V|

10/27/2003 12

DFS 3

DFS(V,E)
for each u ∈ V
do color[u] = WHITE
time = 0
for each u ∈ V do
if color[u] = WHITE

then DFS-VISIT(u)

10/27/2003 13

DFS 4

DFS-VISIT(u)
color[u]=GRAY // discover u
time=time+1
d[u]=time
for each v ∈ Adj[u] do // explore (u,v)

if color[v] = WHITE
then DFS-VISIT(v)

color[u]=BLACK
time=time+1
f[u]=time // finish u

10/27/2003 14

DFS Analysis

Time = Ѳ(V + E)
Similar to BFS analysis
Ѳ, not just O, since guaranteed to examine
every vertex and edge
DFS forms a depth-first forest comprised of
> 1 depth-first trees.
Each tree is made of edges (u,v) such that u
is gray and v is white when (u,v) is explored

10/27/2003 15

DFS, Parenthesis Theorem

For all u and v exactly one of the following
holds:

1. d[u]<f[u]<d[v]<f[v] or d[v]<f[v]<d[u]<f[u] and
u and v are not descendant of each other

2. d[u]<d[v]<f[v]<f[u] and v is a descendant of u
3. d[v]<d[u]<f[u]<f[v] and u is a descendant of v

So d[u]<d[v]<f[u]<f[v] cannot happen
Corollary: v is a proper descendant of u if
and only if d[u]<d[v]<f[v]<f[u]

10/27/2003 16

DFS, White Path Theorem

v is a descendant of u if and only if at
time d[u], there is a path u ↝ v
consisting of only white vertices
(Except for u, which was just colored
gray)

10/27/2003 17

Classification of Edges

Tree edge: in the depth-first forest. Found
by exploring (u,v)
Back edge: (u,v), u is a descendant of v
Forward edge: (u,v), where v is a
descendant of u, but not a tree edge
Cross edge: any other edge
Theorem: In DFS of an undirected graph,
we get only tree and back edges. No forward
or cross edges

10/27/2003 18

Assignments

Textbook, Chapter 22, pages 524—549

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2003fa

	G205Fundamentals of Computer Engineering
	Elementary Graph Algorithms
	Graph Representation
	Adjacency Lists
	Adjacency Matrix
	Breadth-First Search, BFS 1
	BFS 2
	BFS 3
	BFS, Analysis
	Depth-First Search, DFS 1
	DFS 2
	DFS 3
	DFS 4
	DFS Analysis
	DFS, Parenthesis Theorem
	DFS, White Path Theorem
	Classification of Edges
	Assignments

