G205

'Fundamentals of Computer
Engineering

CLASS 8, Mon. Oct. 4 2004
Stefano Basagni

Fall 2004

M-W, 1:30pm-3:10pm

4

Sets

N

#Collection of objects
#As important as in math
#Dynamic sets: Change over time

#Basic techniques for representing and
manipulating finite dynamic sets

#Best way of implementing a dynamic
set depends on the operations to be
performed on the set

10/4/2004

Elements of a Dynamic Set

#Each element is seen as an object with
different fields

#0Often one field is identifies as the key

#Non-key fields are satellite data unused
in the set implementation

#0ften a total ordering is assumed
among the keys of a set

10/4/2004 3

N

Operations on Dynamic Sets

#Two categories
= Modifying operations: Change the set

m Queries: Return information about the set
#Modifying operations

m Insert(S,x): Insert (element pointed by) x
InS

m Delete(S,x): Remove (element pointed by)
X from S

10/4/2004 4

N

Query Operations

Search(S,k): Returns a pointer x to an
element in S such that key[x]=k, or NIL

Minimum(S): Returns a pointer x to the

element of S with the smallest k
Maximum(S): Similar to Minimum(S)

Successor(S,x): Returns a pointer to the next
larger element in S, or NIL if x is the
maximum

Predecessor(S,x): Similar to Successor(S,x)

10/4/2004 5

N

Stacks and Queues

#Simple data structures for representing
dynamic sets that use pointers

#Delete operation is pre-specified

m Stack: Delete the most recently inserted
element (implements LIFO)

s Queue: Delete the element in the set for
the longest time (implements FIFO)

10/4/2004

Stacks

#Implementation of a stack with at most

ne
#top

ements with an array S[1...n]

'S] maintains the index of the most

recently inserted element in the array
#The stack consist of S[1...top[S]]
#\When top[S] is 0, the stack is empty

#\\/e

do not worry here with stack

overflows (top[S] > n)

10/4/2004

Stack Operations

Stack-Empty(S)
return top[S] = 0
Push(S,x) // Insert
top[s] = top[s] + 1
S[top[S]] = X
Pop(S) // Delete
if Stack-Empty(S) then error “underflow”
else top[S] = top[S] — 1
return S[top[S]+1]

10/4/2004

N

Queues

Implementation of a queue with at most n-1
elements with an array Q[1...n]

head[Q] maintains the index to the head of

the queue (the element first to be removed)

tail[Q] indexes the next location a new
element is inserted

When head[Q]=tail[Q] the queue is empty
When head[Q]=tail[Q]+1 the queue is full
(Addresses are “wrapped around”)

10/4/2004

Queues Operations

Enqueue(Q,x) // Insert
Q[tail[Q]] = x
if tail[Q]=n then tail[Q]=1
else tail[Q]=tail[Q]+1
Dequeue(Q) /| Delete
x=Q[head[Q]]
if head[Q]=n then head[Q]=1
else head[Q]=head[Q]+1
return X

10/4/2004

10

Linked Lists

N

Objects are arranged in linear order

Order is determined by a pointer (not by an
index)

Support all operations on dynamic sets

Doubly-Linked List implementation: key, prev
and next fields
= Head of the list has no prev element
= Tail of the list has no next element

head[L] points to the first element in the list

If head[L] is NIL, the list is empty

10/4/2004 11

Different Linked Lists

N

#Doubly linked lists
#Singly linked lists: No prev pointer

#Circular list

= The prev pointer of the head of the list
points to the talil

= The next pointer of the tail of the list
points to the head

#Lists can be sorted or unsorted

10/4/2004

12

N

Searching a Linked List

Finds the first element in the list with a given
key

Linear search that returns a pointer: ®(n)

List-Search(L,k)
X = head[L]
while x # NIL and key[x] # k do
X = next[x]
return X

10/4/2004 13

Inserting Into a Linked List

#Insertion at the front of the list: O(1)
List-Insert(L,x)
next[x]=head[L]
if head[L] = NIL
then prev[head[L]]=x
head[L]=X
prev[x]=NIL

10/4/2004 14

N

Deleting from a Linked List

Use Search-List to retrieve the element’s
pointer: ©(n)

List-Delete(L,x)

if prev[x]#+NIL
then next[prev[x]]=next[X]
else head[L]=next[x]

if next[x] = NIL
then prev[next[x]]=prev|[x]

10/4/2004 15

Rooted Trees

N

#Each tree node is an object with a key
field and pointers

#BINARY TREES:

= Three pointers: left, right and p to the left
child, to the right child and to the parent

m If p[x] = NIL then x is the root
m root[T] isthe root of atree T
m If root[T] = NIL then the tree is empty

10/4/2004 16

Unbounded Branches Trees

N

Left-child, right-sibling representation

#p is the pointer to the parent and
root[T] points to the root

#Each node has only two other pointers:

m |left-child[x] points to the leftmost child of x

= right-sibling[x] points to the sibling of x
immediately to the right

10/4/2004 17

N

Assignments

Textbook, pages 196—217

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2004fa

10/4/2004 18

	G205Fundamentals of Computer Engineering
	Sets
	Elements of a Dynamic Set
	Operations on Dynamic Sets
	Query Operations
	Stacks and Queues
	Stacks
	Stack Operations
	Queues
	Queues Operations
	Linked Lists
	Different Linked Lists
	Searching a Linked List
	Inserting Into a Linked List
	Deleting from a Linked List
	Rooted Trees
	Unbounded Branches Trees
	Assignments

