
G205
Fundamentals of Computer 
Engineering
CLASS 8, Mon. Oct. 4 2004
Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm



10/4/2004 2

Sets

Collection of objects
As important as in math
Dynamic sets: Change over time
Basic techniques for representing and 
manipulating finite dynamic sets
Best way of implementing a dynamic 
set depends on the operations to be 
performed on the set 



10/4/2004 3

Elements of a Dynamic Set

Each element is seen as an object with 
different fields
Often one field is identifies as the key
Non-key fields are satellite data unused 
in the set implementation
Often a total ordering is assumed 
among the keys of a set



10/4/2004 4

Operations on Dynamic Sets

Two categories
Modifying operations: Change the set
Queries: Return information about the set

Modifying operations
Insert(S,x): Insert (element pointed by) x 
in S
Delete(S,x): Remove (element pointed by) 
x from S



10/4/2004 5

Query Operations

Search(S,k): Returns a pointer x to an 
element in S such that key[x]=k, or NIL
Minimum(S): Returns a pointer x to the 
element of S with the smallest k
Maximum(S): Similar to Minimum(S)
Successor(S,x): Returns a pointer to the next 
larger element in S, or NIL if x is the 
maximum
Predecessor(S,x): Similar to Successor(S,x)



10/4/2004 6

Stacks and Queues

Simple data structures for representing 
dynamic sets that use pointers
Delete operation is pre-specified

Stack: Delete the most recently inserted 
element (implements LIFO)
Queue: Delete the element in the set for 
the longest time (implements FIFO)



10/4/2004 7

Stacks

Implementation of a stack with at most 
n elements with an array S[1…n]
top[S] maintains the index of the most 
recently inserted element in the array
The stack consist of S[1…top[S]]
When top[S] is 0, the stack is empty
We do not worry here with stack 
overflows (top[S] > n)



10/4/2004 8

Stack Operations

Stack-Empty(S)
return top[S] = 0 

Push(S,x) // Insert
top[s] = top[s] + 1
S[top[S]] = x

Pop(S) // Delete
if Stack-Empty(S) then error “underflow”

else top[S] = top[S] – 1
return S[top[S]+1]



10/4/2004 9

Queues

Implementation of a queue with at most n-1 
elements with an array Q[1…n]
head[Q] maintains the index to the head of 
the queue (the element first to be removed)
tail[Q] indexes the next location a new 
element is inserted
When head[Q]=tail[Q] the queue is empty
When head[Q]=tail[Q]+1 the queue is full
(Addresses are “wrapped around”)



10/4/2004 10

Queues Operations

Enqueue(Q,x) // Insert
Q[tail[Q]] = x
if tail[Q]=n then tail[Q]=1

else tail[Q]=tail[Q]+1
Dequeue(Q) // Delete
x=Q[head[Q]]
if head[Q]=n then head[Q]=1

else head[Q]=head[Q]+1
return x



10/4/2004 11

Linked Lists

Objects are arranged in linear order
Order is determined by a pointer (not by an 
index)
Support all operations on dynamic sets
Doubly-Linked List implementation: key, prev 
and next fields

Head of the list has no prev element
Tail of the list has no next element

head[L] points to the first element in the list
If head[L] is NIL, the list is empty



10/4/2004 12

Different Linked Lists

Doubly linked lists
Singly linked lists: No prev pointer
Circular list

The prev pointer of the head of the list 
points to the tail
The next pointer of the tail of the list 
points to the head

Lists can be sorted or unsorted



10/4/2004 13

Searching a Linked List

Finds the first element in the list with a given 
key
Linear search that returns a pointer: Θ(n)

List-Search(L,k)
x = head[L]
while x ≠ NIL and key[x] ≠ k do
x = next[x]

return x



10/4/2004 14

Inserting Into a Linked List

Insertion at the front of the list: O(1)
List-Insert(L,x)

next[x]=head[L]
if head[L] ≠ NIL 

then prev[head[L]]=x
head[L]=x
prev[x]=NIL



10/4/2004 15

Deleting from a Linked List

Use Search-List to retrieve the element’s 
pointer: Θ(n)

List-Delete(L,x)
if prev[x]≠NIL 
then next[prev[x]]=next[x] 
else head[L]=next[x]

if next[x] ≠ NIL 
then prev[next[x]]=prev[x]



10/4/2004 16

Rooted Trees

Each tree node is an object with a key 
field and pointers
BINARY TREES:

Three pointers: left, right and p to the left 
child, to the right child and to the parent
If p[x] ≠ NIL then x is the root
root[T] is the root of a tree T
If root[T] = NIL then the tree is empty



10/4/2004 17

Unbounded Branches Trees

Left-child, right-sibling representation
p is the pointer to the parent and 
root[T] points to the root
Each node has only two other pointers:

left-child[x] points to the leftmost child of x
right-sibling[x] points to the sibling of x 
immediately to the right 



10/4/2004 18

Assignments

Textbook, pages 196—217

Updated information on the class web 

page:

www.ece.neu.edu/courses/eceg205/2004fa


	G205Fundamentals of Computer Engineering
	Sets
	Elements of a Dynamic Set
	Operations on Dynamic Sets
	Query Operations
	Stacks and Queues
	Stacks
	Stack Operations
	Queues
	Queues Operations
	Linked Lists
	Different Linked Lists
	Searching a Linked List
	Inserting Into a Linked List
	Deleting from a Linked List
	Rooted Trees
	Unbounded Branches Trees
	Assignments

