Blackbody Distribution Function

The radiant power emitted per unit area by an object at temperature T at wavelengths between λ and λ +d λ is given by the Plank law, where $\epsilon(\lambda,T)$ is the object emissivity:

$$M_{e,\lambda}(\lambda,T)d\lambda = \epsilon(\lambda,T)\frac{2\pi hc^2 d\lambda}{\lambda^5 [e^{hc/\lambda kT} - 1]}$$

- a. Plot $M_{e,\lambda}$ as a function of λ for $10 \text{nm} < \lambda < 10000 \text{ nm}$ for an object with $\epsilon(\lambda,T)=1$ ("blackbody") at T=5000K. Use semilogx and loglog plot.
- b. What is the wavelength of maximum energy emission?
- c. How much total power is emitted between λ =550nm and λ =560nm from a 1cm² area of this object?
- d. Find an expression for $M_{p,\lambda}$ d λ , the number of photons emitted per unit area between λ and λ +d λ by an object at temperature T with emissivity $\epsilon(\lambda,T)$.
- e. Plot $M_{p,\lambda}$ as a function of λ for 10nm $<\lambda<10000$ nm for an object with $\epsilon(\lambda,T)=1$ ("blackbody") at T=5000K. Use semilogx and loglog plots.
- f. What is the wavelength at which the maximum number of photons are emitted.
- g. How many photons/second are emitted between λ =550nm and λ =560nm from a 1cm² area of this object?
- h. Find an expression for $M_{e,v}$ where $M_{e,v}$ dv is the radiant power emitted per unit area by an object at temperature T between frequency v and v+dv.
- i. Plot $M_{e,v}$ as a function of v from v_1 =c/10000nm to v_2 =c/100nm for an object with $\epsilon(\lambda,T)$ =1 ("blackbody") at T=5000K. Use semilogx and loglog plots.
- j. What is the frequency of maximum energy emission? What wavelength does this frequency correspond to.
- k. How much total power is emitted between v=c/550nm and v=c/560nm from a 1cm² area of this object?
- l. Find an expression for $M_{p,v}$ dv, the number of photons emitter per unit area between v and

v+dv by an object at temperature T with emissivity $\epsilon(v,T)$.

- m. Plot $M_{p,v}$ as a function of v from $v_1 = c/10000$ nm to $v_2 = c/100$ nm for an object with $\epsilon(v,T) = 1$ ("blackbody") at T=5000K. Use semilogx and loglog plots.
- n. At what frequency is the maximum number of photons emitted? What wavelength does this frequency correspond to?
- o. How many photons/second are emitted between v=c/550nm and v=c/560nm from a 1cm² area of this object?
- p. It is often stated that the human eye, with a maximum sensitivity at around 550nm, has evolved to be most sensitive at the wavelength of the maximum output of the sun (modeled as a blackbody of T=5000K). Based on the results of this exercise, would you have any misgivings about this statement?