1

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NORTHEASTERN UNIVERSITY

ECE G287

OPTICAL DETECTION

Spring 2004

Homework Set 1, Problem 2

Here we explore the assumptions and results associated with the Poisson distribution. Start with an unknown distribution function;

$$P(n,T)$$
,

which is the probability of detecting n photons in a time interval T. Now, assume a short additional time, dT, during which we can expect either one or no photons. The probability of detecting one photon during this time is αdt .

(a) Write an expression for

$$P(n+1,T+dT),$$

in terms of P(n,t) and α .

- (b) Now arrange this expression as a differential equation with everything involving P(n + 1, ?) on the left and P(n, ?) on the right.
- (c) Now, if you are feeling courageous, solve this differential equation. If not, substitute in

$$P(n,t) = e^{-\bar{n}} \frac{\bar{n}^n}{n!},$$

and find an equation for \bar{n} .

- (d) Plot the distribution for different values of \bar{n} , in powers of 10, from 10^{-2} to 10^{3} . You may wish to use logarithmic scales on some of these plots.
- (e) Show that

$$\sigma_n = \sqrt{n}$$
.

¹10478/poisson.tex — 15 January 2004 at 12:07