Optmization
ECEU326

Dr. Rachida Kebichi
Northeastern University
Department of Electrical and Computer Engineering
318 Dana Research Center
Boston, MA

Spring semester 2004

email: rkebichi@ece.neu.edu <mailto:rkebichi@ece.neu.edu>
phone: 617-373-4854
Office Hours: Monday 12:30 AM – 01:30 PM, Wednesday 12:30 AM – 01:30 PM,

Office: #425
Classroom: 320 Shillman,
Class hours: MW, 01:35 PM – 2:40 PM
Course Description

In ECEU326 you will learn how to use an object-oriented programming language to solve engineering problems. The course covers the design and implementation of basic data structures, including arrays, lists, stacks, queues, trees and graphs. The amphasis is on separating the interface of a data structure from its underlying implementation using abstract data types implemented in C++. We will then study classic algorithms to solve engineering problems using these data types.

Prerequisites

Students in ECEU326 may be majoring in electrical engineering, computer engineering or both. In addition, students come to Northeastern with varying amounts of programming experience in languages like C, C++ and Java. Therefore, students taking this class have a wide range of backgrounds and abilities.

To take ECEU326, you must have completed COM1101, Algorithms and Data Structures 1. In addition, you should know how to write programs in a high-level language like C or Java ; using arrays, loops, conditional statements, functions, parameters, and simple I/O.If you do not have this background, you should read Appendix A of the course textbook, or any introductory C textbook in the library.

This class will not assume that you already know how to write programs using an object-oriented language like C++. We will cover classes, abstract data types, encapsulation, polymorphism, constructors, destructors, etc.

Text

· "Data abstraction and problem solving with C++" Carrano and Prichard, 3rd edition, Addison Wesley, 2002.

C/C++

· Practical C programming, by Steve Oualline, O’Reilly.

· Practical C++ programming, by Steve Oualline, O'Reilly.

· A C++ tutorial: contact Dr. Kebichi for a copy of this document.

Outline

	Review of C (Appendix A)

	Staements, I/O, functions, iteration, arrays, structures, libraries, parameter passing.

	Software engineering (Chap 1)
	Modular design, OO approach, debugging.

	Data abstraction (Chap 3)
	Abstract data types, list ADT, sorted list ADT, implementing ADTs in C++, classes, header files, constructors, destructors, exceptions, array-based implementation of list ADT.

	Lists (Chap 4)
	Pointers, dynamic allocation, inserting, deleting, array-based implementation, pointer-based implementation, copying, passing as parameters, circular, doubly linked.

	Stacks (Chap 6)
	Stack ADT, array-based implementation, pointer-based implementation, list ADT-based implementation, evaluating postfix expressions, converting infix to postfix, searching using a stack.

	Queues (Chap 7)
	Queues ADT, pointer-based implementation, array-based implementation, list ADT-based implementation, applications.

	Recursion (Chap 2)
	Factorial, reversing strings, Fibonacci, binary search, Towers of Hanoi, efficiency, backtracking (8queens).

	Sorting and algorithm efficiency (Chap 9)
	Execution time of algorithms, algorithm growth rates, worst-case analysis, big-O notation, selection sort, bubble sort, insertion sort, merge sort, quick sort, complexity analysis of sorting algorithms.

	Trees (Chap 10)
	Introduction to trees and binary trees, binary tree ADT, preorder/postorder/inorder traversals, insertion, deletion, array-based implementation, pointer-based implementation.

	Graphs (Chap 13)
	Introduction to graphs, graph ADT, adjacency matrix implementation, adjacency list implementation, depth-first/breadth-first traversals, topological sorting, spanning trees, shortest paths.

Teaching Assistant

Stephen Frechette
sfrechet@ece.neu.edu
(617)3734779

Assignments

There will be weekly homework assigned.

There will be a mid-term exam and a final exam.

Homework

This will consist mostly in programming assignments using C++. You can use any computing environment you want, including Nunet, COEnet, COE Unix, or your own computer running Windows or Linux.

Nunet computers are available in the Info Commons in the library and on the second floor of Snell Engineering. You do not need a password to access these computers. You can use Microsoft Visual C++ 6.0 to develop your programs and this package can be found by clicking on Start, NUnet, Applications, Programming and Microsoft Visual Studio v6.0. There is no permanent storage assigned to you within Nunet, so you will need to save your files on a floppy disk.

COEnet computers are available on the second floor of Snell Engineering and to use them you must have a COE computer account and a Samba account. You can get a COE account by following this link: http://www.coe.neu.edu/computer/ and clicking on “Need to Apply for a COE computer account”. After getting a COE account, sign up for a Samba account by talking to one of the COE system support staff in 273-277 Snell engineering or by clicking on “Account Information for New Users”, and then enabling your COE account for Windows. Once you have logged onto a COEnet computer, you can use Microsoft Visual C++ 6.0 which can be found by clicking on Start, All Programs, and Microsoft Visual Studi 6.0. COEnet provides users with permanent storage that can be accessed from any COEnet computer. Save your files by clicking on Save as, and then selecting the WinFiles directory. This directory corresponds to a WinFiles directory in your COE Unix home directory.

Computers running Unix are available on the second floor of Snell Engineering and to use them, you must have a COE account. You can get a COE account by following the instructions above. Once you have logged onto a COE UNIX computer, you can compile your programs using g++.

On your own computer running Linux, make sure that some version of g++ is installed. On your own computer running Windows, you will need to install some type of C++ programming environment. NU does not provide any software for installation on student computers.

The first assignment will be distributed soon, so you should start experimenting with these computer systems and tools now. Make sure that by next week, you have access to the programming environment that you will be using to complete your programming assignments.

Examination

The mid-term exam is intended to evaluate students understanding of the contents of the course up-to the date of the exam. The final exam will test students for the concepts taught afterwards.

Grading

Homework

35%

Mid-term

30%

Final

35%

