
by
Prof. David Kaeli

Mr. Yue Liu
Ms. Judy Nortz

Northeastern University
Dept. of Electrical and Computer Engineering

A Tutorial on
C++

2

Table of Contents

1.0 INTRODUCTION .. 3

2.0 MASTERING C++ ... 3

2.1 CLASSES IN C++.. 3

2.2 OVERLOADING .. 8

2.3 DERIVATION.. 10

2.4 VIRTUAL FUNCTIONS ... 14

2.5 GENERIC FUNCTIONS ... 16

2.6 TEMPLATES ... 17

2.7 FUNCTION TEMPLATES... 18

3.0 REFERENCES ... 19

3

1.0 Introduction

C++ was developed in the early 1980’s by Bjarne Stroustrup of AT&T Bell Laboratories.

C++ has quickly become the most popular OOP programming language. C++ improves C

by introducing several new programming constructs that directly support OOP techniques,

such as data abstraction, inheritance, and polymorphism. In addition, structures such as

templates and mechanism such as generic functions provide generics which make

programming easier and more dynamic.

In C++, the class mechanism supports data abstraction, which is one of the motivation

behind creating objects. You can encapsulate data with functions to define a new data

type that is complete with its own operators. Through inheritance, you can express the

differences among related classes as you share the functions and member data that

implement common features. Inheritance also helps you to reuse existing code from one

or multiple classes by simply deriving a new class from an existing class. Additionally, you

can use inheritance to extend an existing class by adding new members to it. Polymorphic

functions can work with many different argument types. C++ supports this kind of

polymorphism through function overloading. Another type of polymorphism simplifies

the syntax of performing the same operation with a hierarchy of classes. Templates allow

container classes, such as lists, array, etc., to be simply defined and implemented without

loss of static type checking and run-time efficiency. For example, a template can make a

list of generic objects where the objects are specified at run time. Furthermore, several

“types” of list can be created. A generic function simply refers to calling function by its

address. Generic functions are more flexible in that a pointer’s address can be changed

dynamically (e.g., using a case statement) and passed into another function. A global

template function is similar to the generic function, however, it takes a template as one of

its argument.

2.0 Mastering C++

Mastering a new programming language such as C++ is not an easy task. This tutorial is

geared towards C++ beginners. It is assumed that the student has sufficient background in

the C programming language. Many of the new features provided by C++ are discussed.

Fifteen example programs are given in this tutorial to demonstrate the important features

of C++.

2.1 Classes in C++

A class is the most fundamental abstraction mechanism in C++. The C++ class construct

is not simply an aggregation of data, as the C struct is. A class can group together both

data and functions. Functions and data grouped in a class are called member functions

and member data respectively. They are “members” of the class containing them. A class

definition has the following syntax:

4

class Class_name

{

protected:

data and functions, ...

private:

data and functions, ...

public:

data and functions, ...

}

The access to a class member is controlled using the keywords private, public, and

protected. The appearance of these three keywords, followed by a colon, designates the

access protection for the members following it, up to the end of the class definition or up

to the next such designation. The default protection is in effect prior to the appearance of

the first such designation. The access control attributes have the following semantics:

• public members of an object are accessible by any function having access to the

declaration of that object’s class and scope access to the object itself.

• protected members of an object are accessible only by member functions of that

object’s class or of its directly derived classes (its child classes). A derived class

object cannot access the protected fields of its grandparent classes.

• private members of an object are accessible only by member functions of that object’s

class.

Figure 1 shows an example of a simple class definition.

1. #include <iostream.h>

2. //CONVERT SECONDS TO MINUTES AND SECONDS

3. const int modulus = 60;

4. //DEFINE Mod_Int Class

5. class Mod_Int

6. {

7. private:

8. int v; // PRIVATE DATA

9. public:

10. Mod_Int(int i) {v = i%modulus;} // CONSTRUCTOR

11. void assign(int i) {v = i%modulus;}

12. void print() {cout << v << "\t";}

13. };

14. main()

15. {

16. int seconds = 400;

17. Mod_Int z(seconds); // DECLARE Z AND CALL CONSTRUCTOR

18. cout << seconds << " seconds equals " << seconds/60

19. << " minutes ";

20. z.print(); // ACCESS MEMBER FUNCTION print()

21. cout << "seconds\n";

22. }

5

Output:

400 seconds equals 6 minutes 40 seconds

Figure 1: Definition of a simple class

This example defines a class named Mod_Int. It has private data v and three member

functions. The member function named Mod_Int() is called the constructor of the

Mod_Int class. You can use a constructor to handle any specific requirements for

initializing objects of a class. For example, if an object needs extra storage, you can

allocate memory for it in the constructor. On line 17 in Figure 1, the constructor

Mod_Int(400) is called when an object z of class Mod_Int is declared. It initializes private

data v as 40 (400 % 60 = 40). The member function assign(int i) is not used in the

example in Figure 1.

The way an object accesses its member function is similar to the way you would access

members of a C structure. The operators . and →→ are used. If you use an object’s name

to index a function, the dot operator (.) should be used. If you use a pointer to an object

to index a function, the arrow operator (→) should be used. We will see more examples

later that use the dot and arrow operators.

C++ treats anything following the double forward slash (//) and everything up to the end

of the line as a comment. C++ also recognizes the standard C comments that start with

the characters /* and end after the characters */. C++ also introduces new syntax and

functions for producing I/O. These are contained in the iostream library. To use this

library, your C++ program should include the header file <iostream.h>. This file contains

the definitions of the classes that implement the stream objects and provides the buffering.

The file <iostream.h> is analogous to <stdio.h> in C.

 In iostream library, cout is an output stream connected to the standard output and is

analogous to stdout in C. You should notice three things in the example in Figure 1:

• The << operator is a good choice to represent the output operation, because it points

in the direction of data movement that, in this case, is toward the cout stream.

• You can concatenate multiple << operators in a single line, all feeding the same

stream.

• You use the same syntax to print all the basic data types on a stream. The << operator

automatically converts the internal representation of the variable into a textual

representation. Contrast this with the need to use different format strings for printing

different data types using printf.

The const keyword used to prefix the name of a variable indicates that the contents of the

variable must not be modified by the program. Similarly, if a function’s argument is a

6

pointer, and if the pointer is declared to be const, the function cannot modify the contents

of the location referenced by that pointer.

Figure 2 illustrates more complex data structures and member functions.

1. #include <iostream.h>

2. struct listelem{ char data; listelem *next; };

3. class List {

4. private:

5. listelem *h; // THE HEAD OF THE LIST

6. public:

7. List(){h = 0;}// THE CONSTRUCTOR

8. // 0 DENOTES AN EMPTY LIST

9. ~List() {release();} // DESTROYS LIST

10. void prepend(char c); // ADDS TO THE HEAD

11. void append(char c); // ADDS TO THE TAIL

12. void del() {

13. listelem *temp = h; // DELETES THE HEAD

14. h = h->next; delete temp;}

15. listelem *first() {return(h);} // RETURNS THE HEAD

16. void print(); // PRINTS THE LIST

17. void release(); // FREES THE LIST MEMORY

18. };

19. void List::prepend(char c) {

20. listelem *temp = new listelem; //CREATE A NEW LIST ELEMENT

21. temp->next = h; // LINK TO THE LIST

22. temp->data = c;

23. h = temp; // UPDATE THE HEAD OF THE LIST

24. }

25. void List::append(char c){

26. listelem *ntemp = new listelem; //CREATE A NEW LIST ELEMENT

27. listelem *temp = h;

28. while (temp->next != 0) //TRAVERSE THE LIST,

29. temp = temp->next; // LOOKING FOR THE END

30. temp->next = ntemp;

31. ntemp->data = c; // SET THE DATA VALUE

32. ntemp->next = 0; // SET THE NEXT VALUE

33. }

34. void List::print(){

35. listelem *temp = h; // POINT TO BEGINNING OF LIST

36. while (temp != 0) { // WHILE NOT THE END OF LIST, PRINT

37. cout << temp->data << "->";

38. temp = temp->next;

39. }

40. cout << "\n###\n";

41. }

42.

43. void List::release() // RETURN STORAGE

44. {

45. while (h != 0) // WHILE NOT END OF THE LIST

46. del();

47. }

7

48. main()

49. {

50. List w;

51. w.prepend('B'); // PREPEND B

52. w.prepend('A'); // PREPEND A

53. w.print(); // PRINT THE LIST

54. w.append('C'); // APPEND C

55. w.print(); // PRINT THE LIST

56. cout << w.first()->data << "\n"; // PRINT THE HEAD

57. cout << w.first()->next->data << "\n"; // PRINT THE 2nd ELEMENT

58. cout << w.first()->next->next->data << "\n";

59. // PRINT THE 3rd ELEMENT

60. }

Output:

A->B->

###

A->B->C->

###

A

B

C

Figure 2: A linked list

From this example we can see that C++ continues to support C’s struct keyword. In fact,

C++ expands the definition of struct by allowing inclusion of member functions. In C++,

the only difference between a class and a structure is that the contents of a structure are

always public by default. The instances of List class contain the pointer that points to

listelem structure.

Note that the List class has a member function named List() and another named ~List().

These two member functions are, respectively, the constructor and destructor of class

List. You can define a destructor if there is any need to clean up after an object is

destroyed, e.g. if you want to free memory allocated by the constructor.

Some member functions of the class List are defined inside the body of List (which is

called inline) and some are outside. Both methods are acceptable syntax. You do not have

to define a function inside a class to make it inline. C++ provides the inline keyword. This

will be discussed in example 8. The syntax of a member function defined outside its class

body is:

type Class_name::function_name(type arg1, type arg2, ...)

The double colon denotes which class the function belongs to and is called the scope

resolution operator. Note the C++ function prototype differs from C. All arguments

should have their type explicitly declared inside the parentheses.

Other new syntax in this example are the keywords new and delete. They are C++

operators. The operator new is used to dynamically allocate memory; the operator delete

8

is used to free up the memory allocated by new operator. Delete is always applied to a

pointer. In lines 28 and 35 of Figure 2

listelem *temp = new listelem;

allocates memory of the size of listelem to pointer temp, and in line 20

delete temp;

releases the memory that pointer temp points to.

2.2 Overloading

Let us move on to Figure 3. Notice that there are now three constructors in class A and

they all have the same name! This is called overloading. The constructor without any

arguments is called the default constructor. Overloading causes no confusion or

ambiguity; the compiler will call the appropriate constructor depending upon the types of

the arguments. In other words, the types of arguments determine which constructor the

C++ compiler calls. For example, if you define an instance but do not specify any initial

value, the default constructor will be called. The destructor can not be overloaded.

1. #include <iostream.h> // EXAMPLE 3: MEMORY ALLOCATION

2. class A {

3. private: int xx; // PRIVATE DATA

4. public:

5. A(){xx=0;cout<<"A() called\n";} // A CONSTRUCTOR

6. A(int n) { xx = n; // ANOTHER CONSTRUCTOR

7. cout << "A(int " << n << ") called\n"; }

8. A(double y) { xx = y + 0.5; // ANOTHER CONSTRUCTOR

9. cout << "A(fl " << y << ") called\n"; }

10. ~A(){cout<<"~A() called A::xx = "<<xx<< "\n";}

11. // DEFAULT DESTRUCTOR

12. };

13. main(){ cout << "enter main\n"; // PRINT ENTER MAIN

14. int x = 14; float y = 17.3;

15. A z(11), zz(11.5), zzz(0); // INVOKE CONSTRUCTORS

16. A d[5] = {0, 1, 2, 3, 4}; // INVOKE CONSTRUCTOR

17. cout << "\nOBJECT ALLOCATION LAYOUT\n"; // PRINT ADDRESSES

18. cout << "\nx is at " << &x << "\ny is at " << &y;

19. cout << "\nz is at " << &z << "\nzz is at " << &zz << "\nzzz is at

" << &zzz;

20. cout << "\n-------------------------\n";

21. zzz = A(x); // INSTANTIATE AND INITIALIZE

22. zzz = A(y); // INSTANTIATE AND INITIALIZE

23. cout << "exit main\n";

24. }

Output:

enter main

A(int 11) called

A(fl 11.5) called

A(int 0) called

A(int 0) called

A(int 1) called

9

A(int 2) called

A(int 3) called

A(int 4) called

OBJECT ALLOCATION LAYOUT

x is at 0x7fffb848

y is at 0x7fffb84c

z is at 0x7fffb850

zz is at 0x7fffb858

zzz is at 0x7fffb860

A(int 14) called

~A() called A::xx = 14

A(fl 17.3) called

~A() called A::xx = 17

exit main

~A() called A::xx = 4

~A() called A::xx = 3

~A() called A::xx = 2

~A() called A::xx = 1

~A() called A::xx = 0

~A() called A::xx = 17

~A() called A::xx = 12

~A() called A::xx = 11

Figure 3: Constructor overloading and memory allocation

Notice the sequence in which the constructor and its corresponding constructor are called.

The destructors are invoked in the opposite order that the constructors are called. For

example, object z’s constructor is called first and its destructor is called last. When

instantiating zzz, which is accomplished by calling constructors A(x) and A(y) (lines 21, 22

in Figure 3), what actually happens is that a temporary object of class A is created, and the

object zzz gets its new value of xx by copying from the temporary object. Then the

temporary object is destroyed. When the destructor of zzz is called before the program

finishes, the value of xx is changed to 17. (NOTE: Results may different on different

computing platforms for this example.)

The this pointer is an important feature in C++. The this pointer points to the specific

object that is being invoked. Figure 4 shows how to use the this pointer.

1. #include <iostream.h>

2. // EXAMPLE 4: THIS POINTER

3. class C_pair { // DEFINE CLASS

4. char c1, c2;

5. public:

6. void init(char b) { c2 = b; c1 = 1 + b;}

7. C_pair &increment(){c1++; c2++;return(*this);}

8. void *where_am_I() {return (this);} // RETURN ADDRESS

9. void print() {cout << c1 << c2 << "\t";} // PRINT c1 AND c2

10. };

10

11. main()

12. {

13. C_pair a, b, c; // CALLS THE DEFAULT CONSTRUCTOR

14. a.init('A'); // CREATE BA

15. b.init('B'); // CREATE CB

16. c.init('D'); // CREATE ED

17. a.print();

18. cout << " is at " << a.where_am_I() << endl;

19. b.print();

20. cout << " is at " << b.where_am_I() << endl;

21. c.print();

22. cout << " is at " << c.where_am_I() << endl;

23. c.increment().print(); // PRINT FE AND UPDATE

24. cout << " is at " << c.where_am_I() << endl;

25. c.print();

26. cout << " is at " << c.where_am_I() << endl;

27. }

Output:

BA is at 0x7fffb868

CB is at 0x7fffb870

ED is at 0x7fffb878

FE is at 0x7fffb878

FE is at 0x7fffb878

Figure 4: This Pointer

Note the difference between using *this and this. The member function increment()

updates the member variable c1 and c2, but returns the same object that invokes this

function. Thus calling c.where_am_I() and c.increment().where_am_I() will result in

printing out the same value. The function where_am_I() returns the address of the object,

not the object itself.

Some new syntax in this example is endl (lines 18, 20, 22, 24, and 26 in Figure 4). An endl

sends a new line to ostream and flushes the buffer. It is similar as \n in C.

2.3 Derivation

C++ allows one class to be derived from another. This is called inheritance. The program

in Figure 5 is an example of using inheritance.

1. #include <iostream.h>

2. // EXAMPLE 5: INHERITANCE EXAMPLE

3. class Student {// DEFINE THE Student CLASS

4. protected:

5. int sid;

6. int year;

7. char name[13];

8. public:

9. Student(char *nm, int id, int y) // CONSTRUCTOR

11

10. {strcpy(name, nm); sid = id; year = y;}

11. void print();

12. };

13. class Grad_student: public Student{// DEFINE THE Grad_student CLASS

14. protected: // INHERIT THE PUBLIC PART OF Student

15. float support;

16. char thesis[30];

17. public:

18. Grad_student(char *nm, int id, int y, // CONSTRUCTOR

19. float sup, char *th):

20. Student(nm, id, y)

21. { support = sup; strcpy(thesis, th);}

22. void print();

23. };

24. void Student::print() // Student print MEMBER FUNCTION

25. { cout << "\n" << name << " STUDENT NO. " << sid << " YEAR " << year

<< endl; }

26. void Grad_student::print() // Grad_student print MEMBER FUNCTION

27. {

28. cout << "\n" << name << " STUDENT NO. " << sid

29. << " YEAR " << year << " SUPPORT " << support

30. << " THESIS " << thesis << endl;

31. }

32. main()

33. {

34. Student s("Joe Smith", 1234, 1994), *ps = &s;

35. Grad_student gs("Johnny Smart", 5678, 1999, 10000., "World

Peace"), *pgs;

36. ps->print(); // PRINT STUDENT INFORMATION

37. ps = pgs = &gs;

38. ps->print(); // PRINT STUDENT INFORMATION

39. pgs->print(); // PRINT GRAD STUDENT INFORMATION

40. }

Output:

Joe Smith STUDENT NO. 1234 YEAR 1994

Johnny Smart STUDENT NO. 5678 YEAR 1999

Johnny Smart STUDENT NO. 5678 YEAR 1999 SUPPORT 10000 THESIS World Peace

Figure 5: Inheritance example

When you are deriving a new class from the existing class, you can add additional

capabilities to the derived class by:

• defining new member variables

• defining new member functions

• overriding the definition of inherited member functions

In Figure 5, the class Grad_student is a derived class of the class Student. Therefore the

Grad-student class has three member variables as does the Student class, and it adds two

new member variables of its own. Both the Grad_student class and the Student class have

12

member function print(). In C++, an overloaded member function in the derived class

hides all inherited member functions of the same name. Thus, when called by a pointer to

an object of the Grad_student class (line 39 in Figure 5), the print() of Grad_student is

invoked.

In C++, you can use a reference or a pointer to any derived class in place of a reference or

a pointer to the base class without an explicit type cast. The opposite is not true.

Therefore, when using ps to call print(), the member function of Student class is invoked.

Figure 6 illustrates how to implement multiple inheritance.

1. #include <iostream.h>

2. // A Construction Through Inheritance Example

3. class Labor { // DEFINE Labor Class

4. protected:

5. int c;

6. public:

7. Labor(int cost) { c = cost; } // Constructor

8. int cost() { return(c); }

9. };

10. class Parts { // DEFINE Parts Class

11. protected:

12. int c;

13. public:

14. Parts(int cost) { c = cost; } // Constructor

15. int cost() { return(c); }

16. };

17. // DEFINE Service Class, Inherit from Labor and Parts

18. class Service: public Labor, public Parts {// MULTIPLE INHERITANCE

19. private:

20. int num_parts;

21. char name[20];

22. public:

23. Service(int num,char *nm,int lc,int pc):Labor(lc),Parts(pc)

24. {

25. num_parts = num;

26. strcpy(name, nm);

27. }

28. int cost()// Calculate Total Cost

29. {return(num_parts *(Parts::cost()+Labor::cost()));}

30. void print(){ cout << endl;

31. cout << name << " cost " << Labor::c << " dollars per

install "<<endl;

32. cout << name << " cost " << Parts::c << " dollars per

part " << endl;

33. cout << num_parts << " " << name << " installed cost

" << cost() << " dollars " << endl;

34. }

35. };

36. main()

37. {

38. Service computer(10, "widgets", 50, 90); //Declare and Initialize

39. Service display(20, "tubes", 500, 10);

40. computer.print(); // Print the cost of computer service

41. display.print(); // Print the cost of display service

13

42. }

Output:

widgets cost 50 dollars per install

widgets cost 90 dollars per part

10 widgets installed cost 1400 dollars

tubes cost 500 dollars per install

tubes cost 10 dollars per part

20 tubes installed cost 10200 dollars

Figure 6: Multiple inheritance

Service is a derived class of Labor and Parts. A point worth noting is how the base class

is initialized. The constructor of Service has a initializer list (Labor(lc), Parts(pc)), which

is used to initialize the base class (line 23 in Figure 6). You can also initialize member

variables using an initializer list. By using an initializer list, you can avoid creating

unnecessary temporary objects. It is an efficient way to initialize member variables.

1. // EXAMPLE 7: OVERLOADING

2. #include <iostream.h>

3. #include <math.h>

4. class Complex{// Define Complex Class

5. private:

6. double real, imag;

7. public:

8. Complex(double r) { real = r; imag = 0;} // Constructor

9. void assign(double r, double i) {real = r; imag = i;}

10. void print() {cout << real << " + " << imag << "i "; }

11. operator double(){return(sqrt(real*real + imag*imag));}

12. };

13. // greater is an overloaded function

14. inline int greater(int i, int j){return(i > j ? i : j);}

15. inline double greater(double x, double y){return(x > y ? x : y);}

16. inline Complex greater(Complex w, Complex z){return(w > z ? w : z);}

17. main()

18. {

19. int i = 10, j = 5;

20. float x = 7.0;

21. double y = 14.5;

22. Complex w(0), z(0), zmax(0);

23.

24. w.assign(x,y); // conversion from float to double is performed

25. z.assign(i,j); // conversion from int to double is performed

26. cout << " compare " << i << " and " << j << " greater is " <<

greater(i,j) << endl; // invokes int greater

27. cout << " compare " << x << " and " << y << " greater is " <<

greater(x,y) << endl; // invokes double greater

28. cout << " compare " << y << " and " ;

29. z.print();

30. cout << " greater is " << greater(y, double(z)) << endl;

31. // invokes the double greater

32. zmax = greater(w,z); // invokes the Complex greater

33. cout << " compare ";

34. w.print();

35. cout << " and ";

36. z.print();

14

37. cout << " greater is ";

38. zmax. print();

39. cout << endl;

40. }

Output:

compare 10 and 5 greater is 10

compare 7 and 14.5 greater is 14.5

compare 14.5 and 10 + 5i greater is 14.5

compare 7 + 14.5i and 10 + 5i greater is 7 + 14.5i

Figure 7: Overloading

In Figure 7, greater() is an overloaded function. Which greater() function is called

depends on the types of the arguments. By giving the similar function the same name,

overloaded functions can simplify your program and give your code better readability.

Note in this function the presence of an include for math.h. You will need to compile with

the -lm switch.

The inline keyword before each definition of greater() (lines 14, 15, and 16 in Figure 7)

tells the C++ compiler to inline the body of greater() function wherever it is called.

Remember that you can only use an inline function in the file in which it is defined. This is

because the compiler needs the entire definition of an inline function.

For an overloaded inline function (as in this example), the compiler will pick up the

appropriate function according to the argument type and then insert its body

appropriately.

Type conversion is performed by the compiler when invoking w.assign(x, y) and

z.assign(i, j) (lines 24 and 25 in Figure 7). The value of float variable x and int variables i

and j are converted to double. But when calling an overloaded function, you should check

the argument types to make sure that there is an overloaded function defined for those

types. Otherwise, the compiler’s automatic type conversion may generate an undesirable

result.

2.4 Virtual Functions

Virtual function is the mechanism in C++ to realize dynamic binding. You can define a

virtual function using the following syntax:

virtual type function_name(type arg1, type arg2, ...)

The virtual keyword preceding a function signals to the C++ compiler that the function

should be defined in a derived class and that the compiler may have to call it indirectly

through a pointer. In Figure 8, the member function print_i() of A class is a virtual

function. Therefore, the B class, which is the only derived class of A, must also have a

member function called print_i(). Both member functions are called through pointers.

1. // EXAMPLE 8: A VIRTUAL FUNCTION

15

2. #include <iostream.h>

3. class A {// Define Class A

4. public:

5. int i;

6. virtual void print_i() { cout << i << " inside A\n"; }

7. // print_i is a virtual function

8. };

9. class B: public A { // Define Class B, inheriting from Class A

10. public:

11. void print_i() { cout << i << " inside B\n"; }

12. // print_i is a virtual function

13. };

14. main(){

15. A a;

16. A* pa = &a;

17. B f;

18. f.i = 1 + (a.i = 1); // Assign i in 2 instances

19. pa->print_i(); // What will this print?

20. pa = &f;

21. pa->print_i(); // What will this print?

22. }

Output:

1 inside A

2 inside B

Figure 8: Virtual function

Figure 9 shows an example of how to access another class’s member functions.

1. #include <iostream.h>

2. class A {

3. protected:

4. int a;

5. public:

6. A(int x) { a = x;}

7. int geta() {return(a);}

8. void set_a(int x) { a = x;}

9. };

10. class B {

11. protected:

12. int b;

13. public:

14. B(int x) { b = x;}

15. void printab(A ap) { cout << ap.geta() << b << endl;}

16. };

17. main(){

18. A ai(1), &ap = ai;

19. B bi(2);

20. bi.printab(ap);

21. }

Output:

12

Figure 9: Access member functions

16

The member function printab() is called (line 20 of Figure 9) by an argument which has

the type of an object class A. Printab() is defined in B class, but its argument is of type

class A. Printab() prints out the protected member variables of A and B. The result of

this example is 12.

2.5 Generic Functions

A function is normally called by its name and a list of arguments. However, a function can

also be called with a pointer that points to a function as shown in Figure 10.

1. void function(char *p)

2. void (*funcptr) (char *); // pointer to a function

3. void sample()

4. {

5. funcptr = &function; // funcptr points to function

6. (*funcptr) (“string”); // calling function through funcptr

7. }

Figure 10: Calling A Function Through a Void Pointer

To call a function through a void pointer we must first dereference the pointer. This is

done in line 2 (note that line 2 is not *funcptr (“error”);, but rather *(funcptr(“error”))).

Pointers to functions need to have the same argument types as the functions they call.

Pointers to functions can be used to provide polymorphic routines. Polymorphic routines

are routines that can be applied to objects of many different types, as shown in example 11

below.

1. typedef int (*compare) (void *, void *);

2. void sort(void* base, unsigned n, unsigned int sz, compare cmp)

3. // Sort the “n” elements of vector “base”

 // into increasing order using the comparison

4. // function pointed to by “cmp”. The elements are the size “sz”.

5. {

6. for (int i=0; i<n-1; i++)

7. for (int j=n-1; i<j; j--)

8. {

9. char* elementj = (char*) base + j * sz;// b[j]

10. char* elementk = elementj - sz; // b[j-1]

11. if ((*cmp) (elementj,elementk) < 0)

12. { // cmp will return -1 if

 // elementj < elementk, else

 // will return +1

13. for (int k=0; k<sz; k++) // swap b[j] and b[j-1]

14. {

15. char temp = elementj[k];

16. elementj[k] = elementk[k];

17. elementk[k]= temp;

18. }

19. }

20. }

21. }

Figure 11: Polymorphic Pointer To A Sorting Function

17

The advantage of using a pointer to a function is that the sort() function does not need to

know the type of objects that it is sorting.

2.6 Templates

C++ uses the keyword template to provide parametric polymorphism. Templates allow

container classes to be simply defined and implemented. A container class holds objects

of many different types such as lists, arrays, associative arrays and other sets. Static type

checking and run-time efficiency are not lost. To make an analogy, a class template

specifies how individual classes can be constructed similar to how a class declaration

specifies how individual objects can be constructed. Figure 12 defines a stack of arbitrary

type elements.

1. template <class TYPE>

2. class stack {

3. TYPE* v;

4. TYPE* p;

5. int sz;

6. public:

7. stack(int s) { v=p=new TYPE[sz=s]; }

8. ~stack() { delete[] v; }

9. void push (TYPE a) { *p++ = a; }

10. TYPE pop() { return *--p; }

11. int size() const { return p-v; }

12. };

Figure 12: A Simple Stack Template

Here, a template <class TYPE> is declared. TYPE is the type defined in the instantiation,

and it can take on a variety of types, such as a class, or a character (as shown below).

Once the template is defined, classes conforming to this template can be instantiated. The

name of a class template followed by a bracketed (< >) type defines a new class as

specified by the template and is used exactly like other classes. Figure 13 defines object sc

of class stack<char> where TYPE is of type char. The class definitions in Figures 13 and

14 are equivalent.

1. stack<char> sc(100); //stack of characters

Figure 13: A Class Defined By A Template

18

1. class stack_char {

2. char* v;

3. char* p;

4. int sz;

5. public:

6. stack_char (int s) { v=p=new char[sz=s]; }

7. ~stack_char() { delete[] v; }

8. void push(char a) { *p++ = a; }

9. char pop() { return *--p; }

10. int size() const { return p-v; }

11. };

Figure 14: Equivalent Class Definition To Figure 13

1. stack<int> si(100); // stack of integer elements

2. stack<char*> stk_str(50); // stack of string elements

3. stack<complex> stk_cmplx(10); // stack of complex elements

Figure 15: A Class Defined By A Template

Figure 15 shows three more instantiations of different types of stacks. Templates save the

programmer from rewriting class definitions when only a new type is to be considered.

The template argument (TYPE) can be used throughout the class definition.

TIP: It is usually a good idea to thoroughly debug a class before converting it to a

template.

2.7 Function Templates

Many times functions will have the same code, independent of type. For example, Figure

16 shows initialization of one array from another.

1. template<class TYPE>

2. void copy(TYPE a[], TYPE b[], int n)

3. // copy the n elements from b[] to a[]

4.

5. {

6. for (int i=0; i<n; i++)

7. a[i] = b[]i];

8. }

Figure 16: A Template Function For Copying

We can then use copy this template function to successfully perform copies 1-4 shown

below in Figure 17:

19

double f1[50], f2[50];

char c1[10], c2[20];

int i1[4], i2[4];

char *ptr1, *ptr2;

1. copy(f1, f2, 50);

2. copy(c1, c2, 10);

3. copy(i1, i2, 3);

4. copy(ptr1, ptr2, 30);

5. copy(i1, (int*)f2, 50);

Figure 17: A Global Template Function For Sorting

If we tried to perform the copy operation in 5, we might get an undesirable result. Instead

we should perform a generic copy as follows in Figure 18:

1. template<class T1, class T2>

2. void copy(T1 a[], T2 b[], int n)

3. // copy the n elements from b[] to a[]

4.

5. {

6. for (int i=0; i<n; i++)

7. a[i] = b[]i];

8. }

Figure 18: A Template Function For Copying

This form of copying is much safer, performing an element by element copy.

3.0 References

The provided programs are simple examples. They are examples of some of the features in

C++ that help you develop object-oriented programs. It is recommended that you consult

reference books for further information about C++. A list of recommended books is

provided below.

1. H.M. Deitel and P.J. Deitel, How to Program C++, Prentice-Hall, 1994.

2. R. Sessions, Class Construction in C and C++, Prentice-Hall, 1992.

3. S.B. Lippman, C++ Primer, Addison-Wesley, 1989.

4. I. Pohn, C++ for C Programmers, Addison-Wesley, 1989.

5. B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1986.

6. B. Stroustrup, The C++ Programming Language, Addison-Wesley, 2nd Edition, 1994.

