
ECEU574 Wireless Communication Circuits Spring, 04
Assignment 5 Prof. Brady

1. Transatlantic Cable. The transatlantic cable was laid in approximately 1865, and had a length
l = 3600km. The following transmission line parameters hold for the cable over the frequency range
of interest (10-1000Hz): L = 460nHm−1, C = 75pFm−1, R = 0.007Ωm−1, and 0 < G << C.

a. Heaviside’s Fix. Determine whether or not the cable may be considered to have no dispersion,
using Heaviside’s condition. Does the condition hold? Show your work.

Solution. Heaviside’s fix requires that R
L

= G
C

. Since R
L

= 15 × 103 and G
C
≈ 0 by assumption,

Heaviside’s fix does not apply.

b. High-Reactance Approximation. Determine whether or not the cable may be considered
to have no dispersion using the high-reactance approximation. Does the high-reactance condition
hold? Show your work.

Solution. Since R
L

= 153, the transmission line is highly resistive, not reactive.

c. Attenuation and phase functions. Start with the expression for jk from the notes, and
determine approximate formulas for its real part (attenuation α) and imaginary part (’phase con-
stant’ β). Use the fact that 0 < G << C, and

√
r
j

=
√

r(1 − j) for any real number r. Does the

term ’phase constant’ apply to the expression for β?

Solution. Since Heaviside’s fix and the high-reactance approximation both do not apply, we must
assume that we have a dispersive transmission line. Beginning with the general formula for jk

jk = jω
√

LC

√(
1 + R

jωL

) (
1 + G

jωC

)
,

≈ (1 + j)
√

ωRC,
= α + jβ (Using hint in the homework).

(1)

This method uses the hint in the homework, which is less accurate than the method in the book,

for two reasons. First, I had a typo in the hint (replace
√

r by
√

r/2). Second, the hint assumes

that R
jωL

>> 1, which is not quite true at 1000Hz. A more accurate method is given in the book,

and uses the approximation
√

z ≈ √z0 + z−z0

2
√

z0
. Further, the book uses

√
r
j

=
√

r
2
(1−j). This second

approach works well when z0 is close to z. Here, we take z0 = R
jωL

and z = z0 + 1.

α = ω
√

LC
(√

R
jωL

+ 1
2

√
jωL
R

)
,

≈
√

ωRC
2

β = ω
√

LC
(√

R
jωL

− 1
2

√
jωL
R

)
,

≈
√

ωRC
2

(More accurate approach).

(2)
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Due to the typo, I’ll take either answer. Clearly, the ’phase constant’ is not constant here, but
depends on ω.

d. Phase velocity. Determine an expression for the phase velocity v.

Solution. The phase velocity is computed as

v = ω
β
,

=
√

ω
RC

(Using homework hint.)
(3)

or
v = ω

β
,

=
√

2ω
RC

(Using method in book.)
(4)

e. Total attenuation. Determine an expression for the total attenuation (over the entire cable
length). What is the relative attenuation of a signal at 1kHz relative to one at 10Hz (in dB)?

Solution. The total attenuation is given by

attenuation = e−αl

= e−
√

ωRCl, (homework hint),

= e−
√

ωRC
2

l, (method in the book),

(5)

The relative attenuation at 1000 Hz versus 10 Hz is

relative attenuation = e−
√

2πRC(
√

1000−
√

10)l, (homework hint)

= − log10(e)20
√

2πRC(
√

1000−
√

10)l(homework hint, dB),
= −31, 447dB(homework hint),

= e−
√

RCπ(
√

1000−
√

10)l, (method in the book),

= − log10(e)20
√

RCπ(
√

1000−
√

10)l, (method in the book, dB),
= −22, 236dB(method in the book, dB).

(6)

Either way, the signal components near 1000 Hz are strongly suppressed by the cable, relative to
those near 10 Hz. Again, either calculation will be given full credit.

f. Ideal phase delay. The ideal phase transfer function (radians versus frequency) of any linear
time-invariant system should be linear in f . How does the phase delay (seconds versus frequency)
of the same system vary with f?

Solution. The ideal transmission line has a constant phase delay with f , so we should expect that
the ideal system has a constant phase delay. If the ideal system is real, then the phase at f = 0 is
zero, and the phase has the form af for some real a. Phase delay has units of seconds, while phase
has units of radians. It is clear that to convert from one to the other, we must multiply the phase
with something having units of seconds / radian. That ’something’ is reciprocal ω.

phase delay = phase/ω = af/ω = a/(2π).
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As this suggests, an ideal transmission line (constant phase delay) can be modeled as an ideal linear
time invariant system with linear phase response.

g. Actual phase delay. The expression for the total phase delay of the transatlantic cable is
θ = l

v
, where v is the phase velocity from part d, and l is the cable length. How far from ideal is the

transatlantic cable at 1kHz, using 10Hz as the reference? Express your answer as a percentage.

Solution. The higher frequency components lead the lower frequency components.

relative phase delay = v(10)
v(1000)

− 1,

=
√

10√
1000

− 1,

= −90%.

(7)

The difference in phase delay is approximately 90% of the phase delay at 10Hz. The negative sign
indicates that the high frequency components arrive sooner than the lower frequency components.

h. Cable repair. Engineer a solution for the dispersion and distortion of the transatlantic
cable which could be implemented prior to deployment, based on class notes. You may use only
passive components. Support your proposal with calculations. Specify the implementation, and the
resulting expressions for attenuation and phase delay.

Solution. Both Heaviside’s solution and the high-inductance approximation required adding dis-
crete inductors occasionally along the transmission line, so as to increase the total inductance per
meter, Lnet. For both the Heaviside fix and the high-inductance approximation, we would require
Lnet

R
> ω, for all ω in the range of interest. If we choose Lnet

R
= K, for example, then we must

add KR − L inductance per meter. If we insert an inductor every d meters, then the value of the
discrete inductor we must insert is d(KR − L). A correct answer is any combination of d > 0 and
K > 2 ∗ π× 1000 with a discrete inductance of d(KR−L). With line conditioning, the expressions
for attenuation and phase delay become

High reactance method :

Z0 =
√

Lnet

C
,

attenuation = −8.686× 20× l × R
2Z0

dB,

phase delay = l ×
√

LnetC,

(8)

and
Heaviside method :

Z0 =
√

Lnet

C
,

attenuation = −8.686× 20× l × R
Z0

dB,

phase delay = l ×
√

LnetC.

(9)

Note that as Lnet increases, the characteristic impedance increases, the attenuation decreases, while
the phase delay increases. From a practical perspective, one should not choose too high of a value
of K (or Lnet), as phase delay may be unacceptably high.
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