M. Parseval's Relations:

$$\int_{-\infty}^{\infty} x_1(\lambda) X_2(\lambda) \, d\lambda = \int_{-\infty}^{\infty} X_1(\lambda) x_2(\lambda) \, d\lambda \tag{5.62}$$

$$\int_{-\infty}^{\infty} x_1(t) x_2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(\omega) X_2(-\omega) d\omega$$
 (5.63)

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$
 (5.64)

Equation (5.64) is called *Parseval's identity* (or *Parseval's theorem*) for the Fourier transform. Note that the quantity on the left-hand side of Eq. (5.64) is the normalized energy content E of x(t) [Eq. (1.14)]. Parseval's identity says that this energy content E can be computed by integrating $|X(\omega)|^2$ over all frequencies ω . For this reason, $|X(\omega)|^2$ is often referred to as the *energy-density spectrum* of x(t), and Eq. (5.64) is also known as the *energy theorem*.

Table 5-1 contains a summary of the properties of the Fourier transform presented in this section. Some common signals and their Fourier transforms are given in Table 5-2.

TABLE 5-1 Properties of the Fourier Transform

PROPERTY	SIGNAL	FOURIER TRANSFORM
	x(t)	$X(\omega)$
	$x_1(t)$	$X_1(\omega)$
	$x_2(t)$	$X_2(\omega)$
Linearity	$a_1 x_1(t) + a_2 x_2(t)$	$a_1X_1(\omega) + a_2X_2(\omega)$
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0} X(\omega)$
Frequency shifting	$e^{j\omega_0 t} x(t)$	$X(\omega - \omega_0)$
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Time reversal	x(-t)	$X(-\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Time differentiation	$\underline{dx(t)}$	$j\omega X(\omega)$
Frequency differentiation	dt = (-jt)x(t)	$\frac{dX(\omega)}{d\omega}$
Integration	$\int_{-\infty}^{t} x(\tau) \ d\tau$	$\pi X(0) \delta(\omega) + \frac{1}{j\omega} X(\omega)$
Convolution	$x_1(t) * x_2(t)$	$X_1(\omega)X_2(\omega)$
Multiplication	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$
Real signal	$x(t) = x_e(t) + x_o(t)$	$X(\omega) = A(\omega) + jB(\omega)$ $X(-\omega) = X^*(\omega)$
Even component	$x_{\rho}(t)$	$Re\{X(\omega)\} = A(\omega)$
Odd component	$x_o(t)$	$j\operatorname{Im}\{X(\omega)\}=jB(\omega)$
Parseval's relations		
	$\int_{-\infty}^{\infty} x_1(\lambda) X_2(\lambda) \ d\lambda = \int_{-\infty}^{\infty} X_1(\lambda) x_2(\lambda) \ d\lambda$	
	$\int_{-\infty}^{\infty} x_1(t) x_2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(\omega) X_2(-\omega) d\omega$	
	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$	

CHAPTER 5 Fourier Analysis of Continuous-Time

TABLE 5.2 Common Fourier Transforms Pairs

x(t)	$X(\omega)$
$\delta(t)$	1
$\delta(t-t_0)$	$e^{-j\omega t_0}$
1	$2\pi\delta$ (ω)
$e^{j\omega_0t}$	$2\pi\delta\left(\omega-\omega_{0}\right)$
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
$\sin \omega_0 t$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$
u(-t)	$\pi\delta(\omega) - \frac{1}{j\omega}$
$e^{-at}u(t), a > 0$	$\frac{1}{j\omega + a}$
$t e^{-at} u(t), a > 0$	$\frac{1}{(j\omega+a)^2}$
$e^{-a t }, a > 0$	$\frac{2a}{a^2 + \omega^2}$
$\frac{1}{a^2 + t^2}$	$e^{-a \omega }$
$e^{-at^2}, a > 0$	$\sqrt{\frac{\pi}{a}} e^{-\omega^2/4a}$
$p_a(t) = \begin{cases} 1 & t < a \\ 0 & t > a \end{cases}$	$2a\frac{\sin \omega a}{\omega a}$
$\frac{\sin at}{\pi t}$	$p_a(\omega) = \begin{cases} 1 & \omega < a \\ 0 & \omega > a \end{cases}$
sgn t	$\frac{2}{1}$
$\sum_{k=-\infty}^{\infty} \delta(t - kT)$	$p_{a}(\omega) = \begin{cases} 1 & \omega < a \\ 0 & \omega > a \end{cases}$ $\frac{2}{j\omega}$ $\omega_{0} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_{0}), \omega_{0} = \frac{2\pi}{T}$

5.5 The Frequency Response of Continuous-Time LTI Systems

A. Frequency Response:

In Sec. 2.2 we showed that the output y(t) of a continuous-time LTI system equals the convolution of the input x(t) with the impulse response h(t); that is,

$$y(t) = x(t) * h(t)$$
 (5.65)

Applying the convolution property (5.58), we obtain

$$Y(\omega) = X(\omega)H(\omega) \tag{5.66}$$

where $Y(\omega)$, $X(\omega)$, and $H(\omega)$ are the Fourier transforms of y(t), x(t), and h(t), respectively. From Eq. (5.66) we have

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} \tag{5.67}$$