

EECE 2150 - Circuits and Signals: Biomedical
Applications Fall 2018 - Section 3
Quiz 5

Prof. Charles A. DiMarzio

18 October 2018

Student Name: _____

$$z_1 = 5\angle 30^\circ \quad z_2 = 5\angle 60^\circ$$

1. What is the sum of z_1 and z_2 ?

Rectangular form: $z_1 + z_2 =$ _____

Polar form: $z_1 + z_2 =$ _____

2. What is the product of z_1 and z_2 ?

Polar form only: $z_1 z_2 =$ _____

3. What is the sum of z_1 and its complex conjugate?

$z_1 + z_1^* =$ _____

4. What is the product of z_1 and the complex conjugate of z_2 ?

$z_1 z_2^* =$ _____

5. A signal is expressed by its complex voltage, $V = 2 \text{ Volts} \times e^{j2\pi ft}$. The real signal is $V + V^*$. This voltage is applied across a resistor, R . What is equation for the power as a function of time? Hint: use $P = V^2/R$.

$P(t) =$ _____

$$z_1 = 5\angle 30^\circ \quad z_2 = 5\angle 60^\circ$$

1.

$$\begin{aligned}
 z_1 + z_2 &= 5 \cos(30 \text{ deg}) + j5 \sin(30 \text{ deg}) + 5 \cos(60 \text{ deg}) + j5 \sin(60 \text{ deg}) \\
 &= 5 \cos(30 \text{ deg}) + j5 \sin(30 \text{ deg}) + 5 \sin(30 \text{ deg}) + j5 \cos(30 \text{ deg}) \\
 &= 6.83 + j6.83 \\
 &= 6.83 \times \sqrt{2} \angle 45 \text{ deg} = 9.66 \angle 45 \text{ deg}
 \end{aligned}$$

2.

$$z_1 z_2 = 5 \times 5 \angle (30 + 60)^\circ = 25j$$

3.

$$\begin{aligned}
 z_1 + z_1^* &= 5 \cos(30 \text{ deg}) + j5 \sin(30 \text{ deg}) + 5 \cos(30 \text{ deg}) - j5 \sin(30 \text{ deg}) = \\
 &10 \cos(30 \text{ deg}).
 \end{aligned}$$

4.

$$5\angle 30^\circ \times 5\angle -60^\circ = 5 \times 5 \angle (30 - 60) \text{ deg} = 25\angle -30^\circ$$

5.

$$\begin{aligned}
 v^2 &= (2 \text{ Volts} \times e^{j2\pi ft} + 2 \text{ Volts} \times e^{-j2\pi ft}) \times \\
 &(2 \text{ Volts} \times e^{j2\pi ft} + 2 \text{ Volts} \times e^{-j2\pi ft}) =
 \end{aligned}$$

$$\begin{aligned}
 &8 \text{ Volts}^2 \times e^{j2\pi ft} \times e^{-j2\pi ft} + \\
 &4 \text{ Volts}^2 \times e^{j2\pi ft} \times e^{j2\pi ft} + 4 \text{ Volts}^2 \times e^{-j2\pi ft} \times e^{-j2\pi ft} =
 \end{aligned}$$

$$8 \text{ Volts}^2 + 4 \text{ Volts}^2 \times e^{j4\pi ft} + 4 \text{ Volts}^2 \times e^{-j4\pi ft} =$$

$$8 \text{ Volts}^2 + \text{Volts}^2 \cos 4\pi ft.$$