

EECE 2150 - Circuits and Signals: Biomedical Applications Fall 2018, Quiz 7

Prof. Charles A. DiMarzio

1 November 2018

Student Name: _____

Consider the circuit in the figure.

1. Write the equation for the amplifier gain in simplest rectangular form.

$$A_v = \text{_____} + j \text{_____}$$

2. Now, use the values, $R = 1\text{k}\Omega$ and $C = 10\mu\text{F}$. The phase is -45° at a frequency of 10kHz . That is, the real and imaginary parts of A_v are equal at that frequency. What is the value of the inductor?

$$L = \text{_____} \text{ H.}$$

3. What is the DC gain ($f = 0$)?

$$A_v = \text{_____}.$$

4. What is the gain at $f = 1\text{MHz}$? Express it in polar coordinates with the angle in degrees.

$$\circ \quad A_v = \text{_____} \angle \text{_____}$$

1.

$$A_V = -\frac{R + j\omega L}{1/(j\omega C)}$$

$$A_V = -j\omega C \times R - j\omega C \times j\omega L$$

$$A_V = \omega^2 LC - j\omega RC$$

2.

$$\omega^2 LC = \omega RC$$

$$L = \frac{R}{\omega}$$

$$L = \frac{1000 \Omega}{2\pi 10^4 \text{ Hz}} = 15.9 \text{ mH.}$$

3.

$$Z_1 \rightarrow \infty \quad A_v = 0.$$

4.

$$A_V = \omega^2 LC - j\omega RC$$

$$A_V = (2\pi 10^{12} \text{ Hz})^2 \times 0.0159 \text{ H} \times 10^{-5} \text{ F} - j2\pi 10^6 \text{ Hz} \times 1000 \Omega \times 10^{-5} \text{ F}$$

$$A_v = 6.28 \times 10^6 - j6.28 \times 10^4.$$

$$|A_v| = 6.28 \times 10^6 \quad \phi = -0.57^\circ$$

To a good approximation, the gain is real.