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Fourier Optics Terminology

Field Plane Fourier Plane
C Field Amplitude, E(x, y) Ẽ(fx, fy)

Amplitude Point–Spread
Function, h(x, y)

Amplitude Transfer Function,
h̃(x, y)

Coherent Point–Spread Function Coherent Transfer Function
Point–Spread Function Transfer Function
PSF, APSF, CPSF ATF, CTF
Eimage = Eobject ⊗ h Ẽimage = Ẽobject × h̃

I Irradiance, I(x, y) Ĩ(fx, fy)
Incoherent Point–Spread
Function, H(x, y)

Optical Transfer Function,
H̃(fx, fy)

Point–Spread Function OTF
PSF, IPSF

Modulation Transfer Function,∣∣H̃∣∣
MTF
Phase Transfer Function, 6 H̃
PTF

Iimage = Iobject ⊗H Ĩimage = Ĩobject × H̃
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Three Configurations for Fourier
Optics

See Chapter 8 for Fresnel–Kirchoff Integral Equation

Use One of These Configurations to Remove Curvature

E (x1, y1, z1) =
jkejkz1

2πz1
e
jk
(x2

1
+y2

1)
2z1 ×

∫ ∫
E (x, y,0) e

jk
(x2+y2)

2z1 e
−jk

(xx1+yy1)
z1 dxdy
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Fourier Optics Equations (1)

• Fresnel–Kirchoff Integral

E (x1, y1, z1) =
jkejkz1

2πz1
e
jk
(x21+y21)

2z1 ×

∫ ∫
E (x, y,0) e

jk
(x2+y2)

2z1 e
−jk

(xx1+yy1)
z1 dxdy

• In Spatial Frequency with Source Curvature Removed

E (fx, fy, z1) =
j2πz1e

jkz1

k
e
jk
(x21+y21)

z1

∫ ∫
E (x, y,0) e−j2π(fxx+fyy)dxdy

• Both Curvatures Removed

E (fx, fy, z1) =
j2πz1e

jkz1

k

∫ ∫
E (x, y,0) e−j2π(fxx+fyy)dxdy

Nov. 2012 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides11–3



Fourier Optics Equations (2)

• Define Frequency–Domain Field

Ẽ (fx, fy) = j z1λe
jkz1E (fx, fy, z1) ,

• Fourier Transform

Ẽ (fx, fy) =
∫ ∫

E (x, y,0) e−j2π(fxx+fyy)dxdy,

• Inverse Fourier Transform

E (x, y) =
∫ ∫

Ẽ (fx, fy) e
−j2π(fxx+fyy)dfxdfy
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Optical Fourier Transform

fx =
k

2πz
x1 =

x1
λz

fy =
k

2πz
y1 =

y1
λz

Nov. 2012 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides11–5



Fourier Analysis: FT and IFT

• Pupil to Field (x1, y1) to (x, y): Fourier Transform

E (x1, y1, z1) =
jkejkz1

2πz1

∫ ∫
E (x, y,0) e

−jk
(xx1+yy1)

z1 dxdy

– Field to Pupil: (x, y) to (x2, y2): Fourier Transform. . .

E (x2, y2, z2)
?

=

jkejkz2

2πz2

∫ ∫
E (x, y,0) e

−jk
(xx2+yy2)

z2 dxdy

– . . . or Inverse Fourier Transform?

E (x2, y2, z2)
?

=

jke−jkz1

2πz1

∫ ∫
E (x, y,0) e

jk
(xx2+yy2)

z1 dxdy

– Negative Signs and Scaling (z1 vs. z2)

x2 = −
f2
f1

x1 y2 = −
f2
f1

y1
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Computation: The Amplitude
Transfer Function

• Field Plane: Convolve with Point–Spread Function

• Pupil Plane: Multiply by Amplitude Transfer Function
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Computation: Steps

1. Multiply the object by a binary mask to account for the en-
trance window, and by any other functions needed to ac-
count for non–uniform illumination, transmission effects in
field planes, etc.,

2. Fourier transform.

3. Multiply by the ATF, which normally includes a binary mask
to account for the pupil, and any other functions that mul-
tiply the field amplitude in the pupil planes.

4. Inverse Fourier transform.

5. Scale by the magnification of the system.
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Isoplanatic Systems

• Analogy to Temporal Signal Processing

– Linear Time–Shift–Invariant Systems

– Convolution with Impulse Response in Time Domain

– Multiplication with Transfer Function in Frequency Do-

main

– Fourier Optics Assumption

∗ Linear Space–Shift–Invariant Systems

∗ Convolution with Point–Spread Function in Image

∗ Multiplication with 2–D Transfer Functions in Pupil
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Non–Isoplanatic Systems

• Some Aberrations Depend on Field Location

– Coma

– Astigmatism and Field Curvature

– Distortion

– Somewhat Isoplanatic over Small Regions

• Twisted Fiber Bundle

– Random Re–location of light from pixels

– Not at All Shift–Invariant
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Anti–Aliasing Filter

• Spatial Frequency in the

Pupil Plane

fx =
u

λ
• Cutoff Frequency

fcutoff =
NA

λ
• Example: λ = 500nm and

NA = 0.5

fcutoff = 1cycle/µm

– Nyquist Sampling in the

Object Plane

fsample = 2cycles/µm

• In Image Plane

m =
4

2
×

4.5

6
= 1.5

– Pixel pitch

0.5µm×m = 1.33µm

– Smaller than Practical

– Need More Magnification
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Anti–Aliasing: Practical
Examples

• Microscope, λ = 500nm

– 100X, Oil Immersion

NA = 1.4

– Object Plane

fcutoff =
NA

λ
=

2.8Cycles/µm

– Image Plane

fcutoff =
NA

λ
/m =

fsample = 2fcutoff =

0.056pixels/µm

– pixel spacing ≤ 4.5µm

• Camera (Small m)

– Small NA, Large F

NAimage = n′
1

|m− 1|2F
≈

1

2F

fsample = 2fcutoff =

2×
NA

λ
=

1

λFmin

• F–Number

Fmin =
1

λfsample
=

xpixel

λ
=

5µm

500nm
= 10
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Fourier Optics with Coherent
Light

PSF h (x, y) =

∫ ∫
h̃ (fx, fy,0) e

−j2π(fxx+fyy)dfxdfy

Eimage (x, y) = Eobject (x, y)⊗ h (x, y)

ATF h̃ (fx, fy) =

∫ ∫
h (x, y,0) ej2π(fxx+fyy)dxdy

Ẽimage (fx, fy) = Ẽobject (fx, fy) h̃ (fx, fy)
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Gaussian Apodization Degrades
Resolution, Reduces Sidelobes
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Improved (?) Imaging with
Gaussian Apodization
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Coherent Fourier Optics
Summary

• Isoplanatic imaging system; pairs of planes such that field in one is scaled
Fourier transform of that in the other. Several Configurations.

• It is often useful to place the pupil at one of these planes and the image
at another.

• Then the aperture stop acts as a low–pass filter on the Fourier transform
of the image. This filter can be used a an anti–aliasing filter for a
subsequent sampling process.

• Other issues in an optical system can be addressed in this plane, all
combined to produce the transfer function.

• The point–spread function is a scaled version of the inverse Fourier trans-
form of the transfer function.

• The transfer function is the Fourier transform of the point–spread func-
tion.

• The image can be viewed as a convolution of the object with the point–
spread function.
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Fourier Optics for Incoherent
Imaging (1)

• Even an LED Source Usually Results in an Incoherent Image

δλ = λ/30 τc ≈
30

ν
= 30

λ

c
≈ 60fs 〈h (x, y)〉 = 0 T � τc

• Incoherent Point–Spread Function

H (x, y) = 〈h (x, y)h∗ (x, y)〉

Iimage (x, y) = [h (x, y)⊗ Eobject (x, y)]
[
h∗ (x, y)⊗ E∗

object (x, y)
]

• Cross Terms to Zero: Linear Equation

Iimage (x, y) = [h (x, y)h∗ (x, y)]⊗
[
Eobject (x, y)E

∗
object (x, y)

]
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Fourier Optics for Incoherent
Imaging (2)

• Incoherent Image as Convolution

Iimage (x, y) = H (x, y)⊗ Iobject (x, y)

H̃ (fx, fy) = h̃ (fx, fy)⊗ h̃∗ (fx, fy)

h̃∗ (fx, fy) = h̃ (−fx,−fy)

• OTF (Incoherent) is autocorrelation of ATF (Coherent)
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Optical Transfer Function

• Optical Transfer Function, OTF (Previous Page)

H̃ (fx, fy) = h̃ (fx, fy)⊗ h̃∗ (fx, fy)

• Modulation Transfer Function, MTF∣∣∣H̃ (fx, fy)
∣∣∣

• Phase Transfer Function, PTF

6
[
H̃ (fx, fy)

]
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Fourier Optics Example: Square
Aperture ATF

“AC” Amplitude Reduced more than “DC:” Contrast Degraded
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Fourier Optics Example:
Coherent and Incoherent
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Image Shift (Prism in Pupil)

• Amplitude Transfer Function: Phase Ramp

gh̃ (fx, fy) = exp
[
i2π fx/4

1/128

]
for f2x + f2y ≤ f2max

0 Otherwise
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Image through Image Shifter

Object Above, Image Below Coherent Object: sin (2πfxx)
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Incoherent Imaging with Camera

• Pixel Current

imn =
∫ ∫

pixel
ρi (x−mδx, y − nδy)E(x, y)E∗(x, y) dx dy

• Signal as Convolution with Pixel

imn = {
[
E(x, y)E∗(x, y)

]
⊗ ρi} × δ (x− xm) δ (y − yn)

• Complete Transfer Function

ĩ = ĨH̃ρ̃i
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Summary of Incoherent Imaging

• The incoherent point–spread function is the squared magni-

tude of the coherent one.

• The optical transfer function (incoherent) is the autocorre-

lation of the amplitude transfer function (coherent).

• The OTF is the Fourier transform of the IPSF.

• The DC term in the OTF measures transmission.

• The OTF at higher frequencies is usually reduced both by

transmission and by the width of the point–spread function,

leading to less contrast in the image than the object.

• The MTF is the magnitude of the OTF. It is often normal-

ized to unity at DC. The PTF is the phase of the OTF. It

describes a displacement of a sinusoidal pattern.
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Characterizing an Optical
System

• Overall light transmission. e.g. OTF at Dc, or equivalently

the integral under the incoherent PSF.

• The 3–dB (or other) bandwidth or the maximum frequency

at which the transmission exceeds half (or other fraction) of

that at the peak.

• The maximum frequency that where the MTF is above some

very low value which can be considered zero. (Think Nyquist)

• Height, phase, and location of sidelobes.

• The number and location of zeros in the spectrum. (Missing

spatial frequencies)

• The spatial distribution of the answers to any of these ques-

tions in the case that the system is not isoplanatic.
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System Metrics

• What is the diffraction–limited system performance, given

the available aperture?

• What is the predicted performance of the system as de-

signed?

• What are the tolerances on system parameters to stay within

specified performance limits?

• What is the actual performance of a specific one of the sys-

tems as built?
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Test Objects

• PSF

• LSF: Line

Spread

Function

• ESF:

Edge

Spread

Function

• MTF and

. . .

• PTF

(partial)

A. Point and Lines B. Knife Edge

C. X Bar Chart D. Y Bar Chart

Nov. 2012 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides11–28



The Air–Force Resolution Chart

x =
1mm

2G+1+(E−1)/6
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Radial Bar Chart
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Effect of Pixels

(A) 30X30 (B) 30X10
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Summary of System
Characterization

• Some systems may be characterized by measuring the PSF
directly.

• Often there is insufficient light to do this.

• Alternatives include measurement of LSF or ESF.

• The OTF can be measured directly with a sinusoidal chart.

• Often it is too tedious to use the number of experiments
required to characterize a system this way.

• A variety of resolution charts exist to characterize a system.
All of them provide limited information.
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