Optics for Engineers Chapter 12

Charles A. DiMarzio Northeastern University

Nov. 2012

Radiometry and Photometry

Radiometric Quantities

Quantity	Symbol	Equation	SI Units
Radiant Energy	Q		Joules
Radiant Energy Density	w	$w = \frac{d^3Q}{dV^3}$	Joules/m ³
Radiant Flux or Power	$P \text{ or } \Phi$	$\Phi = \frac{dQ}{dt}$	W
Radiant Exitance	M	$M = \frac{d\Phi}{dA}$	W/m^2
Irradiance	E	$E = \frac{d\Phi}{dA}$	W/m^2
Radiant Intensity	Ι	$I = \frac{d\Phi}{d\Omega}$	W/sr
Radiance	L	$lm = \frac{d^2\Phi}{dA\cos\theta d\Omega}$	W/m ²
Fluence	Ψ	$\frac{dQ}{dA}$	J/m ²
Fluence Rate	F	$\frac{d\Psi}{dt}$	J/m ²
Emissivity	ϵ	$\epsilon = \frac{M}{M_{bb}}$	Dimensionless
Spectral ()	$()_{\nu}$	$\frac{d()}{d\nu}$	()/Hz
	or () $_{\lambda}$	$\frac{d()}{d\lambda}$	()/µm
Luminous Flux or Power	$P \text{ or } \Phi$		Im
Luminous Exitance	M	$M = \frac{d\Phi}{dA}$	lm/m ²
Illuminance	E	$E = \frac{d\Phi}{dA}$	lm/m ²
Luminous Intensity	Ι	$I = \frac{d\Phi}{d\Omega}$	lm/sr
Luminance	L	$L = \frac{d^2 \Phi}{dA \cos \theta d\Omega}$	lm/m ²
Spectral Luminous Efficiency	$V(\lambda)$		Dimensionless
Color Matching Functions	$ar{x}(\lambda) \ ar{u}(\lambda)$		
	$\frac{s}{\overline{z}}(\lambda)$		Dimensionless

Irradiance

• Poynting Vector for Coherent Wave

$$d\mathbf{S} \approx \frac{dP}{4\pi r^2} \left(\sin\theta\cos\zeta\hat{x} + \sin\theta\sin\zeta\hat{y} + \cos\theta\hat{z}\right)$$

• Irradiance (Projected Area, $A_{proj} = A \cos \theta$)

$$dE = \frac{d^2P}{dA'} = \frac{dP}{\left(4\pi r^2\right)}$$

Irradiance and Radiant Intensity

• Solid Angle

$$\Omega = \frac{A'}{r^2}$$

• Intensity from Irradiance (Unresolved Source, A)

$$I = Er^2 \qquad E = \frac{I}{r^2}$$

$$dI = \frac{d^2 P}{d\Omega} = \frac{d^2 P}{d\frac{A'}{r^2}} = \frac{dP}{\left(4\pi r^2\right)}$$

Intensity and Radiance

 Resolved Source: Many Unresolved Sources Combined

$$I = \int dI = \int \frac{\partial I}{\partial A} dA$$

• Radiance

$$L(x, y, \theta, \zeta) = \frac{\partial I(\theta, \zeta)}{\partial A}$$

$$I(\theta,\zeta) = \int_{A} L(x,y,\theta,\zeta) dxdy$$

• On Axis
$$(x' = y' = 0)$$

 $L(x, y, \theta, \zeta) = \frac{\partial I(\theta, \zeta)}{\partial A} = \frac{\partial^2 P}{\partial A \partial \Omega}$
• Off Axis (Projected Area)
 $L = \frac{\partial I}{\partial A \cos \theta} = \frac{\partial^2 P}{\partial A \partial \Omega \cos \theta}$

Radiant Intensity and Radiant Flux

$$\Omega = \int_0^{2\pi} \int_0^{\Theta} \sin \theta' d\theta' d\zeta = 2\pi \left(1 - \cos \Theta\right) 2\pi \left(1 - \sqrt{1 - \sin^2 \Theta}\right)$$

Radiance and Radiant Exitance

• Radiant Exitance (Same Units as Irradiance)

$$M(x,y) = \int \int \left[\frac{\partial^2 P}{\partial A \partial d\Omega}\right] \sin \theta d\theta d\zeta$$

• Radiant Exitance from Radiance

$$M(x,y) = \int \int L(x,y,\theta,\zeta) \cos\theta \sin\theta d\theta d\zeta$$

• Radiance from Radiant Exitance

$$L(x, y, \theta, \zeta) = \frac{\partial M(x, y)}{\partial \Omega} \frac{1}{\cos \theta}$$

Radiance and Radiant Exitance: Special Cases

• Constant L and Small Solid Angle

$$M(x,y) = L\Omega\cos\theta$$
$$\Omega = 2\pi \left(1 - \sqrt{1 - \left(\frac{NA}{n}\right)^2}\right) \quad \text{or} \quad \Omega \approx \pi \left(\frac{NA}{n}\right)^2$$

• Constant *L*, over Hemisphere

$$M(x,y) = \int_0^{2\pi} \int_0^{\pi/2} L\cos\theta\sin\theta d\theta d\zeta = 2\pi L \frac{\sin^2\frac{\pi}{2}}{2}$$

$$M(x,y) = \pi L$$
 (Lambertian Source)

Radiant Exitance and Flux

• Power or Flux from Radiant Exitance

$$P = \Phi = \int \int M(x, y) \, dx \, dy,$$

• Radiant Exitance from Power

$$M\left(x,y\right) = \frac{\partial P}{\partial A}$$

The Radiance Theorem

• Solid Angle two ways

$$\Omega = \frac{A'}{r^2} \qquad \Omega' = \frac{A}{r^2}$$

• Power Increment

$$dP = LdAd\Omega = LdA\frac{dA'}{r^2}\cos\theta$$
 $dP = LdA'd\Omega' = LdA'\frac{dA}{r^2}\cos\theta$

Using the Radiance Theorem: Examples Later

- Radiance is Conserved in a Lossless System
- Losses Are Multiplicative
 - Fresnel Reflections and Absorption
- Radiance Theorem Simplifies Calculation of Detected Power
 - Determine Object Radiance
 - Multiply by Scalar, T_{total} , for Loss
 - Find Exit Window (Of a Scene or a Pixel)
 - Find Exit Pupil
 - Compute Power

$$P = L_{object} T_{total} A_{exit window} \Omega_{exit pupil}$$

Etendue

• Abbe Invariant:

$$n'x'd\alpha' = nxd\alpha$$

• Etendue

$$n^2 A \Omega = \left(n'\right)^2 A' \Omega'$$

• Power Conservation

$$\int \int \int \int Ld^2Ad^2\Omega = \int \int \int \int \int L'd^2A'd^2\Omega'$$

$$\int \int \int \int \frac{L}{n^2} n^2 d^2 A d^2 \Omega = \int \int \int \int \frac{L'}{n^2} \left(n'\right)^2 d^2 A' d^2 \Omega'$$

$$\frac{L}{n^2} = \frac{L'}{\left(n'\right)^2}$$

• Basic Radiance, L/n^2 , Conserved (Thermodynamics Later)

Radiance Theorem Example: Translation

• Translation Matrix Equation

$$\begin{pmatrix} dx_2 \\ d\alpha_2 \end{pmatrix} = \begin{pmatrix} 1 & z_{12} \\ 0 & 1 \end{pmatrix} \left[\begin{pmatrix} x_1 + dx_1 \\ \alpha_1 + d\alpha_1 \end{pmatrix} - \begin{pmatrix} x_1 \\ \alpha_1 \end{pmatrix} \right] = \begin{pmatrix} dx_1 \\ d\alpha_1 \end{pmatrix}$$

$$dx_2 d\alpha_2 = dx_1 d\alpha_1$$

Radiance Theorem Example: Imaging

• Imaging Matrix Equation

$$\mathcal{M}_{SS'} = \begin{pmatrix} m & 0 \\ 0 & \frac{n}{n'm} \end{pmatrix}$$

Radiance Theorem Example: Dielectric Interface

• Dielectric Interface Matrix Equation

$$\begin{pmatrix} 1 & 0 \\ 0 & \frac{n}{n'} \end{pmatrix}$$

• Power Increment

$$d^{2}\Phi = L_{1}dA\cos\theta_{1}d\Omega_{1} = L_{2}dA\cos\theta_{2}d\Omega_{2}$$

 $L_1 dA \cos \theta_1 \sin \theta_1 d\theta_1 d\zeta_1 = L_2 dA \cos \theta_2 \sin \theta_2 d\theta_2 d\zeta_2$

• Snell's Law and Derivative

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $n_1 \cos \theta_1 d\theta_1 = n_2 \cos \theta_2 d\theta_2$

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} \qquad \frac{d\theta_1}{d\theta_2} = \frac{n_2 \cos \theta_2}{n_1 \cos \theta_1}$$

• Radiance Theorem

$$\frac{L}{n^2} = \frac{L'}{\left(n'\right)^2}$$

Radiance Theorem Example: Telecentric Relay

• Fourier–Optics Matrix Equation

$$\mathcal{M}_{FF'} = \begin{pmatrix} 0 & f \\ \frac{1}{f} & 0 \end{pmatrix}$$

$$\det \mathcal{M}_{FF'} = 1 = n'/n \qquad n^2 A \Omega = \left(n'\right)^2 A' \Omega'$$

• Radiance Theorem

$$\frac{L}{n^2} = \frac{L'}{\left(n'\right)^2}$$

Idealized Example: 100W Lamp

- P = 100W, Uniform in Angle
- Tungsten Filament: Area $A = (5mm)^2$, Distance, R
- Radiant Exitance

$$M = 100 W / (5 mm)^2 = 4 W / mm^2$$

• Radiance (Uniform in Angle)

$$L = M/(4\pi) \approx 0.32 W/mm^2/sr$$

• Intensity

$$I = 100 \mathrm{W}/(4\pi) \approx 7.9 \mathrm{W/sr}$$

• Reciever: Area A': Received Power and Irradiance

$$PA'/(4\pi r^2) = IA'/r^2$$
 $E = \frac{I}{r^2} \approx 8W/sr/(10m)^2 = 0.08W/m^2$

100W Lamp at the Receiver

• Using Source Radiance at Receiver

$$E = L\frac{A}{r^2} = L\Omega'$$

• Irradiance Same as Previous Page

$$E \approx 0.32 \text{W/mm}^2/\text{sr} \times \frac{(5\text{mm})^2}{(10\text{m})^2} \approx 0.08 \text{W/m}^2$$

- Useful if ${\sf R}$ and A are Not Known
 - Only Depends on Ω' (Measured at Reciever)

Practical Example: Imaging the Moon

- Known Moon Radiance $L_{moon} = 13 W/m^2/sr$
- Calculation
 - Jones matrices for Transmission (0.25), other multiplicative losses (12 Lenses: 0.94^{12}).

 ${\it L} = 13 W/m^2/sr \times 0.25 \times 0.92^{12} = 13 W/m^2/sr \times 0.25 \times 0.367 = 1.2 W/m^2/sr$

- Exit Pupil (NA = 0.1) and exit window (Pixel: $d = 10 \mu m$).
- Irradiance, $E = L\Omega$ and Power on a Pixel, $P = EA = LA\Omega$

$$P = 1.2 \text{W/m}^2/\text{sr} \times 2\pi \left(1 - \sqrt{1 - NA^2}\right) \times \left(10 \times 10^{-6} \text{m}\right)^2$$

 $P = 1.2 W/m^2/sr \times 0.315 sr \times 10^{-10} m^2 = 3.8 \times 10^{-12} W$

- If desired, multiply by time (1/30sec) to obtain energy.
 * About One Million Photons (and Electrons)
- Alternative to Solve in Object Space (Need Pixel Size on Moon)

Radiometry Summary

- Five Radiometric Quantities: Radiant Flux Φ or Power P, Radiant Exitance, M, Radiant Intensity, I, Radiance, L, and Irradiance, E, Related by Derivatives with Respect to Projected Area, $A\cos\theta$ and Solid Angle, Ω .
- Basic Radiance, L/n^2 , Conserved, with the Exception of Multiplicative Factors.
- Power Calculated from Numerical Aperture and Field Of View in Image (or Object) Space, and the Radiance.
- Losses Are Multiplicative.
- Finally "Intensity" is Not "Irradiance."

Spectral Radiometry Definitions

- Any Radiometric Quantity Resolved Spectrally
 - Put the Word Spectral in Front
 - Use a Subscript for Wavelength or Frequency
 - Modify Units
- Example: Radiance, L, Spectral Radiance (Watch Units)

$$L_{\nu} = \frac{dL}{d\nu} \text{ W/m}^2/\text{sr/THz}$$
 or $L_{\lambda} = \frac{dL}{d\lambda} \text{ W/m}^2/\text{sr/}\mu\text{m}$

• Spectral Fraction

$$f_{\lambda}(\lambda) = \frac{X_{\lambda}(\lambda)}{X}$$
 for $X = \Phi, M, I, E$, or L

Spectral Radiometric Quantities

Quantity	Units	d/d u	Units	$d/d\lambda$	Units
Radiant	W	Spectral	W/Hz	Spectral	$W/\mu m$
Flux, Φ		Radiant		Radiant	
		Flux, Φ_{ν}		Flux, Φ_{λ}	
Power,					
P					
Radiant	W/m ²	Spectral	W/m²/Hz	Spectral	$W/m^2/\mu m$
Exi-		Radiant		Radiant	
tance,		Exi-		Exi-	
$\mid M$		tance,		tance,	
		M_{ν}		M_{λ}	
Radiant	W/sr	Spectral	W/sr/Hz	Spectral	$W/sr/\mu m$
Inten-		Radiant		Radiant	
sity,		Inten-		Inten-	
I		sity,		sity,	
		I_{ν}		I_{λ}	
Radiance,	W/m²/sr	Spectral	W/m²/sr/Hz	Spectral	$W/m^2/sr/\mu m$
$\mid L$		Radi-		Radi-	
		ance,		ance,	
		L_{ν}		$\mid L_{\lambda}$	

Spectral Fraction: Sunlight on Earth

• 500K Black Body (Discussed Later) Defines M_λ

$$f_{\lambda}(\lambda) = \frac{M_{\lambda}(\lambda)}{M} \qquad M = \int_{0}^{\infty} M_{\lambda} d\lambda$$

• Compute Spectral Irradiance with Known $E = 1000 \text{W}/\text{m}^2$

$$E_{\lambda}(\lambda) = Ef_{\lambda}(\lambda), \quad \text{with} \quad f_{\lambda}(\lambda) = \frac{M_{\lambda}(\lambda)}{M} = \frac{M_{\lambda}(\lambda)}{\int_{0}^{\infty} M_{\lambda}(\lambda) d\lambda}$$

Spectral Fraction: Molecular Tag

- Excitation: Argon 488nm
- Green Emission Power, Φ

$$\Phi_{\lambda}\left(\lambda\right) = \Phi f_{\lambda}\left(\lambda\right),$$

$$f_{\lambda}(\lambda) = \frac{S_{\lambda}(\lambda)}{\int_{0}^{\infty} S_{\lambda}(\lambda) \, d\lambda}$$

- Dash-Dot on Plot
- Obtained from
 Experiment
 (Radiometric Calibration not Needed)
- Available from Vendor

- Fluorescein Spectra
 - Dash: Absorption
 Spectrum
 - Solid: Emission
 - Spectrum
 - Dash-Dot: Spectral
 - Fraction for Emission

Molecular Tag in **Epi**–Fluorescence

Nov. 2012

©C. DiMarzio (Based on *Optics for Engineers*, CRC Press)

slides12-25

Spectral Matching Factor (1)

- Reflective Filter (Ch. 8)
- Spectral Radiance Output of Filter

 $L_{\lambda}^{\prime}(\lambda) = L_{\lambda}(\lambda) R(\lambda)$

• Total Radiance Output

$$L' = \int_0^\infty L'_\lambda(\lambda) \, d\lambda = \int_0^\infty L_\lambda(\lambda) \, R(\lambda) \, d\lambda$$

Blue Filter Green Detector

Spectral Matching Factor (2)

• Total Radiance (Previous Page)

$$L' = \int_0^\infty L'_\lambda(\lambda) \, d\lambda = \int_0^\infty L_\lambda(\lambda) \, R(\lambda) \, d\lambda$$

- Define Reflectance for This Filter; R = L'/L
 - Relate to Transmission at Spectral Maximum
 - Characterize SMF for Given Input Spectrum

$$R = R_{max} \int_{0}^{\infty} \frac{R(\lambda)}{R_{max}} f_{\lambda}(\lambda) \, d\lambda = R_{max} SMF$$

$$SMF = \frac{\delta\lambda_f}{\delta\lambda_s} \qquad \delta\lambda_f \ll \delta\lambda_s$$

Summary of Spectral Radiometry

- For every radiometric quantity, there exists a spectral radiometric quantity. In the name, no distinction is made between frequency and wavelength derivatives.
- The notation: subscript ν for frequency or λ for wavelength.
- The units are the original units divided by frequency or wavelength units.
- Spectral Fraction, f_{λ} can be applied to any of the radiometric quantities.
- The spatial derivatives (area and angle) are valid for the spectral quantities, wavelength-by-wavelength.
- The behavior of filters is more complicated, and is usually treated with the spectral matching factor.

Photometry and Colorimetry

- Spectral Luminous Efficiency, $\bar{y}(\lambda)$
- Source Spectral Radiance, $L_{\lambda}(\lambda, x, y)$
- Eye Response

$$Y(x,y) = \int_0^\infty \bar{y}(\lambda) L_{\lambda}(\lambda, x, y) d\lambda$$

- Four LEDs: Equal Radiance
 - Blue, 400 Appears Weak
 - Green, 550 Appears Strong
 - Red, 630 Moderately Weak
 - IR, 980 Invisible

Lumens

• Power or Radiant Flux (Watts)

$$P = \int_0^\infty P_\lambda\left(\lambda\right)$$

• Eye Response

$$Y = \int_0^\infty \bar{y}(\lambda) P_\lambda(\lambda) d\lambda$$

• Luminous Flux (Lumens, Subscript $_V$ for Clarity)

$$P_{(V)} = \frac{683 \text{ lumens/Watt}}{\max(\bar{y})} \int_{0}^{\infty} \bar{y}(\lambda) P_{\lambda}(\lambda) d\lambda$$

• Luminous Efficiency

$$\frac{P_{(V)}}{P} = 683 \text{ lumens/Watt} \int_{0}^{\infty} \frac{\bar{y}(\lambda)}{\max(\bar{y})} \frac{P_{\lambda}(\lambda)}{P} d\lambda$$

Some Typical Radiance and Luminance Values

Object	W/m ² /sr		$nits = Im/m^2/sr$	Footlamberts	Im/W
Minimum Visible	7×10^{-10}	Green	5×10^{-7}	1.5×10^{-7}	683
Dark Clouds	0.2	Vis	40	12	190
Lunar disk	13	Vis	2500	730	190
Clear Sky	27	Vis	8000	2300	300
Bright Clouds	130	Vis	2.4×10 ⁴	7×10^{3}	190
	300	All			82
Solar disk	4.8×10 ⁶	Vis	7×10^{8}	2.6×10^{7}	190
	1.1×10^{7}	All		×10 ⁷	82

Tristimulus Values: Three is Enough

• X, Y, Z

$$X = \int_{0}^{\infty} \bar{x}(\lambda) L_{\lambda}(\lambda) d\lambda$$

$$Y = \int_{0}^{\infty} \bar{y}(\lambda) L_{\lambda}(\lambda) d\lambda$$

$$Z = \int_{0}^{\infty} \bar{z}(\lambda) L_{\lambda}(\lambda) d\lambda$$
• Example: 3 Lasers
Krypton $\lambda_{red} = 647.1$ nm

$$X_R = \int_0^\infty \bar{x}(\lambda) \,\delta\left(\lambda - 647.1\,\mathrm{nm}\right) d\lambda = \bar{x}\left(647.1\,\mathrm{nm}\right)$$

 $X_R = 0.337$ $Y_R = 0.134$ $Z_R = 0.000$ Krypton $\lambda_{green} = 530.9$ nm

$$X_G = 0.171$$
 $Y_G = 0.831$ $Z_G = 0.035$

Argon $\lambda_{blue} = 457.9$ m $X_B = 0.289$ $Y_B = 0.031$ $Z_B = 1.696$

Chromaticity Coordinates (1)

- Three Laser Powers, R, G, and B, Watts
- Tristimulus Values

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} X_R & X_G & X_B \\ Y_R & Y_G & Y_B \\ Z_R & Z_G & Z_B \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

• Chromaticity Coordinates (Normalized X, Y

$$x = \frac{X}{X + Y + Z} \qquad y = \frac{Y}{X + Y + Z}$$

• Monochromatic Light

$$x = \frac{\bar{x}(\lambda)}{\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)} \qquad y = \frac{\bar{y}(\lambda)}{\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)}$$

Chromaticity Coordinates (2)

Generating Colored Light

- Given $P_{(V)}$, x, and y
- Required Tristimulus Values

$$Y = \frac{P_L}{y \times 683 \text{Im/W}}$$

$$X = \frac{x P_L}{y \times 683 \text{Im/W}}$$

$$Z = \frac{(1 - x - y) P_L}{y \times 683 \text{Im/W}}$$

• Powers of Three Lasers

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} X_R & X_G & X_B \\ Y_R & Y_G & Y_B \\ Z_R & Z_G & Z_B \end{pmatrix}^{-1} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

• Projector: 100lux "White" -x = y = 1/3

$$-400$$
 m on $(2m)^2 = 4m^2$

$$-X = Y = Z =$$

400 Im/(1/3)/683 Im/W

$$-R = 1.2W, G = 0.50W,$$

Nov. 2012 (C. DiMarzio (Based on *Optics for Engineers*, CRC Press)

slides12-35

Another Example: Simulating Blue "Laser" Light

- Monochromatic Light from Blue Argon Laser Line
 - $\lambda = 488unnm$ X = 0.0605 Y = 0.2112 Z = 0.5630
- Solution with Inverse Matrix

R = -0.2429 G = 0.2811 B = 0.3261

- Old Bear–Hunters' Saying:
 - Sometimes You Eat the Bear, ...
 - and Sometimes the Bear Eats You.
- Best Compromise (Right Hue, Insufficient Saturation)

$$R = 0$$
 $G = 0.2811$ $B = 0.3261$

Summary of Color

- Three color–matching functions \bar{x} , \bar{y} , and \bar{z}
- Tristimulus Values: 3 Integrals X, Y, and Z Describe Visual Response
- Y Related to Brightness. 683Im/W, Links Radiometric to Photometric Units
- Chromaticity Coordinates, x and y, Describe Color. Gamut of Human Vision inside the Horseshoe Curve.
- Any 3 sources R, G, B, Determine Tristimulus Values.
- Sources with Different Spectra May Appear Identical.
- Light Reflected or Scattered May Appear Different Under Different Sources Of Illumination.
- R, G, and B, to X, Y, Z Conversion Can Be Inverted over Limited Gamut.

The Radiometer or Photometer

- Aperture Stop
- Field Stop
- Measured Power

 $P = LA\Omega = LA'\Omega'$

- Adjustable Stops (Match FOV)
- Sighting Scope?

- Calibration Required
- Spectrometer on Output?
- Spectral Filter?
- Photometric Filter?
- Computer
 - Radiance
 - Luminance (All Units)
 - Spectral Quantities

Integrating Sphere

- Power from Intensity
- Integrate over Solid Angle
 - Goniometry
 - * Information-Rich
 - * Time–Intensive
 - * Integrating Sphere
 - · Easy
 - · Single Measurement
- Applications
 - Wide-Angle Sources
 - Diffuse Materials
- Variations
 - Two Spheres
 - Spectroscopic Detector
 - More

Blackbody Radiation Outline

- Background
- Equations, Approximations
- Examples
- Illumination
- Thermal Imaging
- Polar Bears, Greenhouses

Nov. 2012

Blackbody Background

• Cavity Modes

$$\frac{2\pi\nu_x\ell}{c} = N_x\pi$$

$$\frac{2\pi\nu_x\ell}{c} = N_y\pi$$

$$\frac{2\pi\nu_x\ell}{c} = N_z\pi$$

• Mode Frequencies

$$\nu = \sqrt{\nu_x^2 + \nu_y^2 + \nu_z^2} \qquad \nu_0 = \frac{c}{2\ell}$$

$$\nu = \nu_0 \sqrt{N_x^2 + N_y^2 + N_z^2}$$

• Boundary Conditions

• Waves in a Cavity

 $\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} + \frac{\partial^2 E}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$

$$E(x, y, z, t) = \sin \frac{2\pi\nu_x x}{c} \sin \frac{2\pi\nu_y y}{c} \sin \frac{2\pi\nu_z z}{c} \sin 2\pi\nu t$$

Counting Modes

• \times 2 for Polarization

$$N_{\nu} = \frac{8\pi\nu^2\ell^3}{c^3}$$

- Energy Distribution
 - Rayleigh–Jeans: Equal Energy, k_BT (Dash–Dot)

$$J_{\nu} = k_B T \frac{8\pi\nu^2\ell^3}{c^3}$$

- * "Ultraviolet Catastrophe"
- * Wein $h\nu \exp{(h\nu/kT)}$ per Mode

$$J_{\nu} = h\nu \exp\left(h\nu/kT\right) \frac{8\pi\nu^2\ell^3}{c^3}$$

· Dashed

Planck Got it Right

- Planck
 - Mode Energy Quantized

$$J_N = Nh\nu$$

- -N Random
- Average Energy Density

$$P\left(J_N\right) = e^{\frac{-J_N}{k_B T}}$$

• Average Energy

$$\bar{J} = \frac{\sum_{N=0}^{\infty} Nh\nu e^{\frac{-Nh\nu}{k_BT}}}{\sum_{N=0}^{\infty} e^{\frac{-Nh\nu}{k_BT}}} =$$

$$h
urac{\sum_{N=0}^{\infty}Ne^{rac{-Nh
u}{k_BT}}}{\sum_{N=0}^{\infty}e^{rac{-Nh
u}{k_BT}}}$$

• With Some Work...

$$ar{J} = h
u - rac{e^{h
u/k_B T}}{(1 - e^{h
u/k_B T})^2} = rac{1}{(1 - e^{h
u/k_B T})}$$

$$rac{h
u}{e^{h
u/k_BT}-1}$$

Nov. 2012

 $\bar{J} = \frac{\sum_{N=0}^{\infty} J_N P(J_N)}{\sum_{N=0}^{\infty} P(J_N)}$ ©C. DiMarzio (Based on *Optics for Engineers*, CRC Press) slides12–43

Planck's Result (1)

• Previous Page

$$\frac{h\nu}{e^{h\nu/k_BT}-1}$$

 $\bullet~\times$ Mode Density

$$N_{\nu}\bar{J} = \frac{8\pi\nu^{2}\ell^{3}}{c^{3}} \frac{h\nu}{e^{h\nu/k_{B}T} - 1}$$

- Solid Curve (Previous Page)
- Energy Per Volume

$$\frac{d\bar{w}}{d\nu} = \frac{N_{\nu}\bar{J}}{\ell^3} = \frac{8\pi\nu^2}{c^3} \frac{h\nu}{e^{h\nu/k_BT} - 1}$$

• 1. Radiance Independent of Direction 2. Emssion Balanced by Absorption

 $\bar{M}(T)_{emitted} = \epsilon_a \bar{E}(T)_{incident}$

• 3. Balance at Every λ

• 4. Light Moves at
$$c$$

$$w_{\lambda} = \frac{1}{c} \int_{sphere} Ld\Omega = \frac{4\pi l}{c}$$

• E from L

$$E_{\lambda} = \int \int L_{\lambda} \cos \theta \sin \theta d\theta d\zeta =$$

 πL_{λ}

Planck's Result (2)

• *E* from *w*:
$$E_{\lambda} = 4cw_{\lambda}$$

- Wall Balance & $\epsilon_a = 1$: $\overline{M}(T)_{bb} = E(\overline{T})_{incident}$
- Planck's Law

$$M_{\nu(bb)}(\lambda,T) = h\nu c \frac{2\pi\nu^2}{c^3} \frac{1}{e^{h\nu/k_BT} - 1} = \frac{2\pi h\nu^3}{c^2} \frac{1}{e^{h\nu/k_BT} - 1}$$

• Emissivity

$$M_{\nu}(\lambda,T) = \epsilon M_{\nu(bb)}(\lambda,T)$$

• Detailed Balance

$$\epsilon\left(\lambda\right) = \epsilon_a\left(\lambda\right)$$

The Planck Equation

• Fractional Linewidth

$$|d\nu/\nu| = |d\lambda/\lambda|$$

$$M_{\lambda} = \frac{dM}{d\lambda} = \frac{d\nu}{d\lambda}\frac{dM}{d\nu} = \frac{\nu}{\lambda}\frac{dM}{d\nu} = \frac{c}{\lambda^2}\frac{dM}{d\nu}$$

• Planck Law vs. Wavelength

$$M_{\lambda}(\lambda,T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{h\nu/k_B T} - 1}$$

Useful Blackbody Equations

• Stefan-Boltzmann Constant

$$\sigma_e = 5.67032 \times 10^{-12} \text{W/cm}^2/\text{K}^4 = 5.67032 \times 10^{-8} \text{W/m}^2/\text{K}^4$$

Some Examples: Thermal Equilibrium

- Earth Temperature
 - Heating
 - $* 1 kw/m^2$
 - * Half of Surface
 - Cooling
 - * Radiation

$$M\left(T\right) = \sigma_e T^4$$

- Result

$$T \approx 306 \mathrm{K}$$

- Body Temperature
 - Cooling (310K)

$$M(T) = \sigma_e T^4 = 524 \mathrm{W/m^2}$$

- Heating (Room=295K)

$$M(T) = \sigma_e T^4 = 429 \mathrm{W/m^2}$$

 $\Delta MA \approx 100 \mathrm{W}$

pprox 2000kCal/day

(Many Approximations)

Because $d(T^4) = 4T^3 dT$, small changes in temperature have big effects on heating or cooling.

Temperature and Color

• Radiant Exitance

$$M_{(R)} = \int_0^\infty M_{(R)\lambda} d\lambda$$

• Luminous Exitance

10¹⁰,

 10^{0}

10

Nov. 20**1**2

olar Disl

Lunar Disk

Min. Vis.

2000

M, Radiance, W/m²/sr

$$M_{(V)} = \int_0^\infty M_{(V)\lambda} d\lambda$$

$$M_{(V)} = 683 \text{Im}/\text{W} \times$$

$$\int_0^\infty \bar{y} M_{(R)\lambda} d\lambda$$

Solar Dis

Lunar Disk

Min. Vis.

M, Luminance, L/m²/s

(00

Tristimulus Values

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \int_0^\infty \begin{pmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{pmatrix} M_{(R)\lambda} d\lambda$$

• Integrands for 2000 3000, 3500K

Chromaticity Coordinates of Blackbody

• Chromaticity

Solar Spectrum

- Exo-Atmospheric
 - 6000K, 1480W/m²

 $E_{\lambda}(\lambda) = 1560 \mathrm{W/m^2} \times$

 $f_{\lambda}(\lambda,6000\mathrm{K})$

Sea Level

$$-5000$$
K, 1000 W/m²

 $E_{\lambda}(\lambda) = 1250 \mathrm{W/m^2} \times$

 $f_{\lambda}(\lambda, 5000 \text{K})$

Constants are higher than total irradiance to account for absorption in certain regions of the spectrum.

Outdoor Radiance

• Radiant Exitance, M of Object Surface Illuminated with E $M_{\lambda}(\lambda) = R(\lambda) E_{\lambda}(\lambda)$

Thermal Illumination

• Thermal Sources (e.g. Tungsten)

$$M_{(R)} = \int_0^\infty M_{(R)\lambda} d\lambda \qquad M_{(V)} = 683 \text{Im}/\text{W} \int_0^\infty \bar{y} M_{(R)\lambda} d\lambda$$

• Luminous Efficiency

$$M_{(V)}/M_{(R)} = 683 \text{Im}/\text{W} \frac{\int_0^\infty \bar{y} M_{(R)\lambda} d\lambda}{\int_0^\infty M_{(R)\lambda} d\lambda}$$

Illumination

Thanks to Dr. Joseph F. Hetherington

IR Thermal Imaging

• Infrared Imaging

$$\int_{\lambda_{1}}^{\lambda_{2}} \rho(\lambda) \epsilon(\lambda) M_{\lambda}(\lambda, T) d\lambda$$

- ρ is Responsivity
- $-\epsilon$ is Emissivity
- Maximize Sensitivity

$$\frac{\partial M_{\lambda}\left(\lambda,T\right)}{\partial T}$$

- Work in Atmospheric Pass Bands
- Shorter Wavelength for Higher Temperatures
- Hard to Calibrate (Emissivity, etc.)
- Reflectance and Emission

Nov. 2012 ©C. DiMarzio (Based on *Optics for Engineers*, CRC Press)

slides12–55

Polar Bears

- Thermal Equilibrium
 - Heating by Sun
 - * High Temperature
 - * High Radiance
 - * Small Solid Angle
 - Cooling to
 Surroundings
 - * Body Temperature
 - * Low Radiance
 - * $\Omega = 2\pi$
 - Extra Heat from
 Metabolism
- Short–Pass Filter
 - Pass Visible

 $E_{incident} = 50 W/m^2$, $200 W/m^2$ $600 W/m^2$, top to bottom

Heating (—), Cooling (- -), Net $(\cdot \cdot)$

Wavelength Filtering

- Bare Bear: No Filter
- 800nm Short Pass
- 2.5nm Short Pass Like
 Glass
- Best Bear is a Dynamic Filter

• Net Cooling for Two Best

- Dynamic Filter Follows Zero Crossing of Net M_{λ}
- Perfect: No Cooling (Impossible: Nothing Out Means Nothing In)