Optics for Engineers Chapter 2

Charles A. DiMarzio
Northeastern University

June 2012

Outline of Geometric Optics

- Chapter 2
- Snell's Law from Fermat's Principle
- Mirrors and Refractive Surfaces
- Multiple Surfaces: Simple Lenses: The Thin Lens
- Image Location, Orientation, Magnification
- Chapter 3: Matrix Optics: Principal Planes
- Chapter 4: Stops Limit Light Gathering and FOV
- Chapter 5: Aberrations Limit Resolution
- Later: Wave Optics: Diffraction-Limited Resolution in Ch. 8

"High-School Optics"

"The AP Version"

Concepts for Refraction

- Plane of Incidence Contains Incident (and Exiting) Ray and Normal (and is the plane of the 2-D drawing)
- Angle of Incidence Is Defined Relative to Normal

Snell's Law

Variational Approach from Minimal Path, $A B$ $n d s=n^{\prime} d s^{\prime}$

$$
n \sin \theta=n^{\prime} \sin \theta^{\prime}
$$

$$
\text { Index }=n^{\prime}
$$

Snell's Law: Examples

Material to Air Total Internal Reflection

Reflection and Refraction

Reflection:

Total Internal Reflection

- Critical Angle (No Solution for θ^{\prime})

$$
n \sin \theta_{c}=1
$$

- For $\theta<\theta_{c}$ Reflection and Refraction
- For $\theta>\theta_{c} 100 \%$ Reflection

Snell's Window

Carol Grant

Imaging Sign Conventions

- Lens
$-s>0$ to Left
$-s^{\prime}>0$ to Right
$-f>0$ for
Converging
- Mirror
$-s>0$ to Left
$-s^{\prime}>0$ to Left
$-f>0$ for
Concave

Imaging Terms

We will discuss these in detail later.
The important issues now are the definitions.

Quantity	Definition	Equation	Notes
Object distance	s		Positive to the left
Image distance	s^{\prime}	$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$	Positive to the right for inter- face or lens. Positive to the left for mirror.
Magnification	$m=\frac{x^{\prime}}{x}$	$m=-\frac{x^{\prime}}{x}$	
Angular magnification	$m_{\alpha}=\frac{\partial \alpha^{\prime}}{\partial \alpha}$	$\left\|m_{\alpha}\right\|=\frac{1}{\|m\|}$	
Axial Magnification	$m_{z}=\frac{\partial s^{\prime}}{\partial s}$	$\left\|m_{z}\right\|=\|m\|^{2}$	

Reflection at a Plane Mirror (1)

- Narcissus
- ". . . the looking glasses of the women..." Exodus 38:8

Image Location
Similar Triangles
$s^{\prime}=-s \quad$ (Planar reflector)
Virtual Image as Shown

- Question: Could we have a virtual object? How?

Reflection at a Plane Mirror (2)

Magnification (Transverse)
More Similar Triangles
$x^{\prime}=x \quad m=1$
$m=\frac{x^{\prime}}{x}=\frac{-s^{\prime}}{s}=1$
(Planar reflector)

Upright $(m>0) \&$ Virtual (Dotted Lines)
Angular Magnification

$$
m_{\alpha}=\frac{d \alpha^{\prime}}{d \alpha}=-1
$$

(Planar reflector)

Reflection at a Plane Mirror (3)

Axial Magnification

$$
m_{z}=\frac{d s^{\prime}}{d s}=\frac{s^{\prime}}{s}=-1 \quad(\text { Planar reflector })
$$

Summary

$$
s=-s^{\prime} \quad m=1 \quad m_{z}=-1
$$

Upright, Virtual, Perverted*, but Not Distorted**
*Right-Handed Coordinate System Imaged to Left-Handed **Distorted Means $m_{z} \neq m$.

Misconception: Mirror Does Not Reverse Left and Right Left is Left, Right is Right, but Front is Back

Imaging Equations

Surface	s^{\prime}	m	m_{α}	m_{z}	Image**	O*	D*	P*
Planar Mirror***	$s^{\prime}=-s$	1	-1	-1	Virtual	Upright	No	Yes
Concave Mirror $s>f$	$\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}$	$-s^{\prime} / s$	$-m^{2}$	$-1 / m$	Real	Inverted	Yes	No
Convex Mirror	$\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}$	$-s^{\prime} / s$	$-m^{2}$	$-1 / m$	Virtual	Upright	Yes	Yes
Planar Refractor	$\frac{s}{n}=\frac{s^{\prime}}{n^{\prime}}$	1	$\frac{n}{n^{\prime}}$	$\frac{n^{\prime}}{n}$	Virtual	Upright	Yes	No
Curved Refractor $s>f$	$\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n}{r}$	$-\frac{n s^{\prime}}{n^{\prime} s}$	-1	$-\frac{n}{n^{\prime}} m^{2}$	Real	Inverted	Yes	Yes

* "○" mean Orientation, "D" means Distortion, and "P" means Perversion of coordinates.
** The Image is Defined as Real or Virtual for a Real Object
*** Complete Analysis in green text

The Retroreflector

Curved (Spherical) Mirror (1)

All Rays from the Object Go Through the Image (No Aberrations). Work with the Easy Ones.

A. Vertex Ray

C. Ray Intersection

B. Radial Ray

D. Similar Triangles

$$
\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{2}{r}
$$

Magnification

$$
m=\frac{x^{\prime}}{x}=-\frac{s^{\prime}}{s}
$$

$$
\begin{align*}
& \frac{x}{s}=\frac{-x^{\prime}}{s^{\prime}} \\
& \text { Image Location } \tag{C}
\end{align*}
$$

Curved (Spherical) Mirror (2)

- Focal Length Defined in General

$$
\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}
$$

- Specific Result for Spherical Mirror

$$
f=\frac{r}{2} \quad \text { (Spherical reflector) }
$$

- Physical Signficance

$$
s^{\prime} \rightarrow f \quad s \rightarrow \infty \quad \text { or } \quad s \rightarrow f \quad s^{\prime} \rightarrow \infty .
$$

Curved (Spherical) Mirror (3)

- Angular Magnification

$$
m_{\alpha}=\frac{s}{s^{\prime}} \quad\left|m_{\alpha}\right|=|1 / m| \quad \text { (Spherical reflector) }
$$

- Axial Magnification

$$
\begin{gathered}
\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{2}{r} \\
-\frac{d s}{s^{2}}-\frac{d s^{\prime}}{\left(s^{\prime}\right)^{2}}=0 \\
m_{z}=\frac{d s^{\prime}}{d s}=-\left(\frac{s^{\prime}}{s}\right)^{2} \quad m_{z}=-m^{2} \quad\left|m_{z}\right|=|m|^{2}
\end{gathered}
$$

Curved (Spherical) Mirror (4)

- Imaging Equation

$$
\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f} \quad f=\frac{r}{2}
$$

- Magnification

$$
m=-\frac{s^{\prime}}{s} \quad m_{\alpha}=\frac{1}{m} \quad m_{z}=-m^{2}
$$

- Summary: The Image in this Case is...
- Real
- Inverted
- Distorted (Unless $s=s^{\prime}$)
- Handedness-Preserved
- Question: Can a Concave Mirror Ever Produce a Virtual Image of a Real Object? (Hint: What if $s^{\prime}=0$?)

Large Reflective Optics

"Every Material that Transmits $10 \mu \mathrm{~m}$ Light is Expensive." Not Completely True, but Close.

The Fishtank Problem (1)

- Fishtank Setup
- Object Inside
- Viewer Outside
- Virtual Image

- Geometry

$$
\tan \theta=\frac{x}{s} \quad \tan \theta^{\prime}=\frac{x^{\prime}}{s^{\prime}}=\frac{x}{s^{\prime}}
$$

- Snell's Law (Small Angles)

$$
n \sin \theta \approx n \frac{x}{s} \quad n^{\prime} \sin \theta^{\prime} \approx n^{\prime} \frac{x}{s^{\prime}}
$$

- Refraction at a planar Interface
- Fishtank from Outside

$$
n=1.33 \quad n^{\prime}=1 \quad s^{\prime}=\frac{1}{1.33} s
$$

The Fishtank Problem (2)

- Fishtank Setup
- Object Inside
- Viewer Outside
- Virtual Image

- Fishtank Paradox
- Physical Thickness $=z$
- Geometric Thickness

$$
\ell_{g}=\frac{z}{n}
$$

- Optical Pathlength

$$
O P L=z n
$$

- Magnifications

$$
\begin{gathered}
m=\frac{x^{\prime}}{x}=1 \quad m_{\alpha}=\frac{n}{n^{\prime}} \\
m_{z}=\frac{d s^{\prime}}{d s}=\frac{n^{\prime}}{n}
\end{gathered}
$$

- Virtual, Upright, Distorted

Practical Example

A. Planar Interface

B. Focusing in Air

C. Focusing in Skin

Focusing Depth Decreases, but OPL Increases. e.g. Focus to $100 \mu \mathrm{~m}$ and image $75 \mu \mathrm{~m}$. Time Gate at $133 \mu \mathrm{~m}$ (Optical Coherence Tomography) Together, measure index and depth?

Refraction: Curved Interface (1)

$$
\begin{aligned}
& \theta=\alpha+\gamma \text { from } \triangle S, P, R, \\
& \text { and }
\end{aligned}
$$

$$
\gamma=\theta^{\prime}+\beta \text { from } \triangle S^{\prime}, P, R
$$

$$
\tan \alpha=\frac{p}{s+\delta} \quad \tan \beta=\frac{p}{s^{\prime}-\delta} \quad \tan \gamma=\frac{p}{r-\delta}
$$

For Small Angles tan $?=\sin ?=?$ and $\delta \rightarrow 0$

$$
\begin{array}{rlrl}
\alpha & =\frac{p}{s} & \beta=\frac{p}{s^{\prime}} & \gamma \\
& =\frac{p}{r} \\
\theta & =\frac{p}{s}+\frac{p}{r} & & \theta^{\prime}=\frac{p}{r}-\frac{p}{s^{\prime}}
\end{array}
$$

Refraction: Curved Interface (2)

- Previous Page...

$$
\theta=\frac{p}{s}+\frac{p}{r} \quad \theta^{\prime}=\frac{p}{r}-\frac{p}{s^{\prime}}
$$

- Snell's Law (Small Angles sin ? =?)

$$
\begin{aligned}
n \theta & =n^{\prime} \theta^{\prime} \\
\frac{n p}{s}+\frac{n p}{r} & =\frac{n^{\prime} p}{r}-\frac{n^{\prime} p}{s^{\prime}}
\end{aligned}
$$

$$
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n}{r} \quad \text { (Refraction at a curved surface) }
$$

Refraction: Curved Interface (3)

- Focal Lengths (More Complicated Now)
- Back Focal Length (Refraction at a curved surface)

$$
s \rightarrow \infty \quad B F L=f^{\prime}=s^{\prime} \frac{n^{\prime} r}{n^{\prime}-n}
$$

- Front Focal Length

$$
s^{\prime} \rightarrow \infty \quad F F L=f=s=\frac{n r}{n^{\prime}-n}
$$

- Ratio (Calculated for this Example, but Much More General)

$$
\frac{f^{\prime}}{f}=\frac{n^{\prime}}{n}
$$

Refracting Power

- Definition

$$
P=\frac{f}{n}=\frac{f^{\prime}}{n^{\prime}}
$$

- Units

$$
\text { Diopter }=m^{-1}
$$

- Refraction at a Curved Interface

$$
P=\frac{n^{\prime}-n}{r}
$$

Q: What combinations of n, n^{\prime}, and r yield positive (or negative) refracting power?

Eyeglass Prescription

- In Hundreths of Diopters
- Near Values Add to Far
- Left Eye (Oculus Sinister) Far:
- 0.50 diopter 4° from Horizontal
- - 0.50 diopter 96°
- Left Eye Near (Add 1.75):
- 2.25 diopter 4°
- - 1.25 diopter 96°
- Right Eye (Oculus Dexter) Far:
-0.25 diopter -8°
- -0.75 diopter 82°
- Right Eye Near (Add 1.75):
- 2.00 diopter -8°
- -1.00 diopter 82°

Magnifications

Snell's Law at the Vertex

$$
m=-\frac{n s^{\prime}}{n^{\prime} s}
$$

$$
m_{\alpha}=\frac{-d \beta}{d \alpha}=-\frac{s^{\prime}}{s}=-\frac{n}{n^{\prime}} \frac{1}{m}
$$

$$
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n}{r} \quad-\frac{n d s}{s^{2}}-\frac{n^{\prime} d s^{\prime}}{\left(s^{\prime}\right)^{2}}=0
$$

$$
\begin{aligned}
& \frac{d s^{\prime}}{d s}=-\frac{n}{n^{\prime}}\left(\frac{s^{\prime}}{s^{2}}\right)^{2} \\
& m_{z}=-\frac{n}{n^{\prime}} m^{2} \\
& \text { CRC Press) }
\end{aligned}
$$

Imaging Equations

Surface	s^{\prime}	m	m_{α}	m_{z}	Image**	O*	D*	P*
Planar Mirror	$s^{\prime}=-s$	1	-1	-1	Virtual	Upright	No	Yes
Concave Mirror $s>f$	$\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}$	$-s^{\prime} / s$	$-m^{2}$	$-1 / m$	Real	Inverted	Yes	No
Convex Mirror	$\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}$	$-s^{\prime} / s$	$-m^{2}$	$-1 / m$	Virtual	Upright	Yes	Yes
Planar Refractor	$\frac{s}{n}=\frac{s^{\prime}}{n^{\prime}}$	1	$\frac{n}{n^{\prime}}$	$\frac{n^{\prime}}{n}$	Virtual	Upright	Yes	No
Curved Refractor $s>f$	$\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n}{r}$	$-\frac{n s^{\prime}}{n^{\prime} s}$	-1	$-\frac{n}{n^{\prime}} m^{2}$	Real	Inverted	Yes	Yes

The Simple Lens

First Surface Object and Image

Second Surface Image

Second Surface Object

Complete Lens

First Surface Solution

Note Subscript 1

Second Surface Object

Virtual Object in this Case (Often but not Always)

Second Surface Solution

Complete Simple Lens (1)

Complete Simple Lens (2)

$$
\frac{n_{2}^{\prime}}{s_{2}^{\prime}}=\frac{n_{2}^{\prime}-n_{1}^{\prime}}{r_{2}}-n_{1}^{\prime} \frac{n_{1}^{\prime}-n_{1}-r_{1} \frac{n_{1}}{s_{1}}}{d\left(n_{1}^{\prime}-n_{1}\right)-n_{1}^{\prime} r_{1}-d n_{1}^{\prime} r_{1} \frac{n_{1}}{s_{1}}}
$$

That's Ugly! Let's Define Some New Notation:

$$
\begin{gathered}
w=s_{1} \quad w^{\prime}=s_{2}^{\prime} \\
n=n_{1} \\
\frac{n^{\prime}}{w^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}-n_{\ell} \frac{n_{\ell}-n-r_{1} \frac{n}{w}}{d\left(n_{\ell}-n\right)-n_{\ell} r_{1}-d n_{\ell} r_{1} \frac{n}{w}}
\end{gathered}
$$

Complete Simple Lens (3)

$$
\frac{n^{\prime}}{w^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}-n_{\ell} \frac{n_{\ell}-n-r_{1} \frac{n}{w}}{d\left(n_{\ell}-n\right)-n_{\ell} r_{1}-d n_{\ell} r_{1} \frac{n}{w}}
$$

That's Still Ugly. Set $n=n^{\prime}=1$. Not General, but Useful.

$$
\frac{1}{w^{\prime}}=\frac{1-n_{\ell}}{r_{2}}-n_{\ell} \frac{n_{\ell}-1-r_{1} \frac{1}{w}}{d\left(n_{\ell}-1\right)-n_{\ell} r_{1}-d n_{\ell} \frac{r_{1}}{w}}
$$

Or Even Simpler, Set $d=0$.

$$
\frac{n}{w}+\frac{n^{\prime}}{w^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}+\frac{n_{\ell}-n}{r_{1}}
$$

The Thin Lens (1)

$$
\frac{n}{w}+\frac{n^{\prime}}{w^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}+\frac{n_{\ell}-n}{r_{1}}
$$

Now The s vs. w Distinction Doesn't Matter.

$$
\begin{gathered}
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}+\frac{n_{\ell}-n}{r_{1}} \\
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=P_{1}+P_{2}=P
\end{gathered}
$$

Back and Front Focal Lengths

$$
\begin{gathered}
B F L=f^{\prime}=\frac{n^{\prime}}{P_{1}+P_{2}} \quad F F L=f=\frac{n}{P_{1}+P_{2}} \\
\text { where } \quad P_{1}=\frac{n_{\ell}-n}{r_{1}} \quad P_{2}=\frac{n^{\prime}-n_{\ell}}{r_{2}}
\end{gathered}
$$

The Thin Lens (2)

$$
B F L=f^{\prime}=\frac{n^{\prime}}{P_{1}+P_{2}} \quad F F L=f=\frac{n}{P_{1}+P_{2}}
$$

Focal-Length Relationship (Generally True)

$$
\frac{f^{\prime}}{f}=\frac{n^{\prime}}{n}
$$

Specifically

$$
f=f^{\prime} \quad \text { if } \quad n=n^{\prime}
$$

And In Air (Probably the Most-Used Equation in Optics)

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

The Thin Lens (3)

- The Lensmaker's Equation

$$
\frac{1}{f}=\frac{1}{f^{\prime}}=P_{1}+P_{2}=\left(n_{\ell}-1\right)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

- Be Careful About Signs (Biconvex Means $r_{1}>0$ and $r_{2}<0$)

$$
P_{1}=\frac{n_{\ell}-1}{r_{1}} \quad P_{2}=\frac{n_{\ell}-1}{-r_{2}}
$$

- Powers Add for Thin Lenses

The Thin Lens Magnification

For $n=n^{\prime}$ and $d=0$

$$
\frac{x^{\prime}}{x}=\frac{-s^{\prime}}{s}
$$

$$
\begin{equation*}
m=\frac{-s^{\prime}}{s} \tag{LensinAir}
\end{equation*}
$$

$$
\begin{equation*}
m=\frac{-n s^{\prime}}{n^{\prime} s} \tag{General}
\end{equation*}
$$

Axial Magnification

$$
m_{z}=\frac{d s^{\prime}}{d s}=\frac{n}{n^{\prime}}\left(\frac{s^{\prime}}{s}\right)^{2}=\frac{n^{\prime}}{n} m^{2}
$$

Thin Lens in Air: Summary

- Making The Lens (We Still Have Some Choices)

$$
\frac{1}{f}=\frac{1}{f^{\prime}}=P_{1}+P_{2}=\left(n_{\ell}-1\right)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

- Using the Lens

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad m=-\frac{s^{\prime}}{s}
$$

Eyeglass Prescription Revisited

Ophthalmology						
Boston, MA 02215M M IMARZ IO,CHARLESM Sch						- Adding Powers - Convex Front
		Time_			$30 / 12$	
Sign_-----------						- Concave Back
						- Cylinder
FOR OISTANCE OD	SPHESICAL	CYLINDRICAL	${ }^{\text {AxIS }}$	PRISM	BA	- Many Options
Arar od	+75					
	$+175$					

Prisms (1)

$$
\begin{gathered}
\theta_{1}^{\prime}=\frac{\theta_{1}}{n} \\
\left(90^{\circ}-\theta_{2}\right)+\left(90^{\circ}-\theta_{1}^{\prime}\right)+\alpha=180^{\circ} \\
\theta_{2}+\theta_{1}^{\prime}=\alpha .
\end{gathered}
$$

Applying Snell's law,

$$
\sin \theta_{2}^{\prime}=n \sin \theta_{2}=n \sin \alpha-\theta_{1}^{\prime}
$$

$$
\sin \theta_{2}^{\prime}=n\left(\cos \theta_{1}^{\prime} \sin \alpha-n \sin \theta_{1}^{\prime} \cos \alpha\right)
$$

$$
\sin \theta_{2}^{\prime}=\sqrt{n^{2}-\sin ^{2} \theta_{1}} \sin \alpha-\sin \theta_{1}^{\prime} \cos \alpha
$$

$$
\delta=\theta_{1}+\theta_{2}^{\prime}-\alpha
$$

Prisms (2)

- Deviation

$$
\delta=\theta_{1}+\theta_{2}^{\prime}-\alpha
$$

- Minimum Deviation

$$
\begin{aligned}
& \delta_{\min }=2 \sin ^{-1}\left(n \sin \frac{\alpha}{2}\right)-\alpha \\
& \text { at } \quad \theta_{1}=\sin ^{-1}\left(n \sin \frac{\alpha}{2}\right)
\end{aligned}
$$

- Small Prism Angles

$$
\begin{aligned}
& \delta_{\min } \approx(n-1) \alpha \\
& \text { at } \quad \theta_{1}=\frac{n \alpha}{2}
\end{aligned}
$$

"Unfolding" Reflective Systems

Top Shows Actual System. Bottom Shows it Unfolded for Analysis

