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Outline of Geometric Optics

• Chapter 2

– Snell’s Law from Fermat’s Principle

– Mirrors and Refractive Surfaces

– Multiple Surfaces: Simple Lenses: The Thin Lens

– Image Location, Orientation, Magnification

• Chapter 3: Matrix Optics: Principal Planes

• Chapter 4: Stops Limit Light Gathering and FOV

• Chapter 5: Aberrations Limit Resolution

• Later: Wave Optics: Diffraction–Limited Resolution in Ch. 8
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“High–School Optics”
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“The AP Version”

Principal Planes: Ch. 3

Stops: Ch. 4
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Concepts for Refraction

• Plane of Incidence Contains Incident (and Exiting) Ray and

Normal (and is the plane of the 2–D drawing)

• Angle of Incidence Is Defined Relative to Normal
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Snell’s Law

Variational Approach from Minimal Path, AB

nds = n′ds′

n sin θ = n′ sin θ′.
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Snell’s Law: Examples
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Reflection and Refraction

Reflection:

θr = θ.

Refraction
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Total Internal Reflection

• Critical Angle (No Solution for θ′)

n sin θc = 1

• For θ < θc Reflection and Refraction

• For θ > θc 100% Reflection
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Snell’s Window

Carol Grant
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Imaging Sign Conventions

• Lens

– s > 0 to Left

– s′ > 0 to Right

– f > 0 for

Converging

• Mirror

– s > 0 to Left

– s′ > 0 to Left

– f > 0 for

Concave

Upper Case for points, Lower for lengths — x, x′ > 0 Upright
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Imaging Terms

We will discuss these in detail later.

The important issues now are the definitions.

Quantity Definition Equation Notes

Object distance s Positive to the

left

Image distance s′ 1
s + 1

s′ =
1
f Positive to the

right for inter-

face or lens.

Positive to the

left for mirror.

Magnification m = x′
x m = −x′

x

Angular magnification mα = ∂α′
∂α |mα| = 1

|m|
Axial Magnification mz = ∂s′

∂s |mz| = |m|2
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Reflection at a Plane Mirror (1)

• Narcissus

• “. . . the looking glasses of the women...” Exodus 38:8

Image Location

Similar Triangles

s′ = −s (Planar reflector)

Virtual Image as Shown

• Question: Could we have a virtual object? How?
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Reflection at a Plane Mirror (2)

Magnification (Transverse)

More Similar Triangles

x′ = x m = 1

m =
x′

x
=

−s′

s
= 1

(Planar reflector)

Upright (m > 0) & Virtual (Dotted Lines)

Angular Magnification

mα =
dα′

dα
= −1 (Planar reflector)
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Reflection at a Plane Mirror (3)

Axial Magnification

mz =
ds′

ds
=

s′

s
= −1 (Planar reflector)

Summary

s = −s′ m = 1 mz = −1

Upright, Virtual, Perverted∗, but Not Distorted∗∗

*Right–Handed Coordinate System Imaged to Left–Handed
**Distorted Means mz 6= m.

Misconception: Mirror Does Not Reverse Left and Right
Left is Left, Right is Right, but Front is Back
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Imaging Equations

Surface s′ m mα mz Image∗∗ O* D* P*

Planar Mirror∗∗∗ s′ = −s 1 −1 −1 Virtual Upright No Yes

Concave Mirror

s > f 1
s′
+ 1

s
= 1

f
−s′/s −m2 −1/m Real Inverted Yes No

Convex Mirror 1
s′
+ 1

s
= 1

f
−s′/s −m2 −1/m Virtual Upright Yes Yes

Planar Refractor s
n
= s′

n′ 1 n
n′

n′

n
Virtual Upright Yes No

Curved Refractor

s > f n
s
+ n′

s′
= n′−n

r
−ns′

n′s
−1 − n

n′m
2 Real Inverted Yes Yes

* “O” mean Orientation, “D” means Distortion, and “P” means Perversion of coordinates.
** The Image is Defined as Real or Virtual for a Real Object
*** Complete Analysis in green text
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The Retroreflector
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Curved (Spherical) Mirror (1)

All Rays from the Object Go Through the Image (No Aberrations).

Work with the Easy Ones.

A. Vertex Ray B. Radial Ray

C. Ray Intersection D. Similar Triangles

x

s− r
=

−x′

r − s′
(D)

x

s
=

−x′

s′
(C)

Image Location

1

s′
+

1

s
=

2

r
Magnification

m =
x′

x
= −

s′

s
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Curved (Spherical) Mirror (2)

• Focal Length Defined in General

1

s′
+

1

s
=

1

f

• Specific Result for Spherical Mirror

f =
r

2
(Spherical reflector)

• Physical Signficance

s′ → f s → ∞ or s → f s′ → ∞.
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Curved (Spherical) Mirror (3)

• Angular Magnification

mα =
s

s′
|mα| = |1/m| (Spherical reflector)

• Axial Magnification

1

s′
+

1

s
=

2

r

−
ds

s2
−

ds′

(s′)2
= 0

mz =
ds′

ds
= −

(
s′

s

)2
mz = −m2 |mz| = |m|2

June 2012 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides1–19



Curved (Spherical) Mirror (4)

• Imaging Equation

1

s′
+

1

s
=

1

f
f =

r

2

• Magnification

m = −
s′

s
mα =

1

m
mz = −m2

• Summary: The Image in this Case is. . .

– Real

– Inverted

– Distorted (Unless s = s′)

– Handedness–Preserved

• Question: Can a Concave Mirror Ever Produce a Virtual
Image of a Real Object? (Hint: What if s′ = 0?)
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Large Reflective Optics

“Every Material that Transmits 10µm Light is Expensive.”

Not Completely True, but Close.
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The Fishtank Problem (1)

• Fishtank Setup

– Object Inside

– Viewer Outside

– Virtual Image

• Geometry

tan θ =
x

s
tan θ′ =

x′

s′
=

x

s′

• Snell’s Law (Small Angles)

n sin θ ≈ n
x

s
n′ sin θ′ ≈ n′

x

s′

• Refraction at a planar Interface

n

s
=

n′

s′

• Fishtank from Outside

n = 1.33 n′ = 1 s′ =
1

1.33
s
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The Fishtank Problem (2)

• Fishtank Setup

– Object Inside

– Viewer Outside

– Virtual Image

• Fishtank Paradox

– Physical Thickness = z

– Geometric Thickness

`g =
z

n
– Optical Pathlength

OPL = zn

• Magnifications

m =
x′

x
= 1 mα =

n

n′

mz =
ds′

ds
=

n′

n
• Virtual, Upright, Distorted
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Practical Example

A. Planar Interface

B. Focusing in Air

C. Focusing in Skin

Focusing Depth Decreases, but OPL Increases. e.g. Focus to

100µm and image 75µm. Time Gate at 133µm (Optical Coher-

ence Tomography) Together, measure index and depth?
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Refraction: Curved Interface (1)

θ = α+ γ from 4 S, P,R,

and

γ = θ′+β from 4 S′, P,R

tanα =
p

s+ δ
tanβ =

p

s′ − δ
tan γ =

p

r − δ

For Small Angles tan ? = sin ? =? and δ → 0

α =
p

s
β =

p

s′
γ =

p

r

θ =
p

s
+

p

r
θ′ =

p

r
−

p

s′
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Refraction: Curved Interface (2)

• Previous Page. . .

θ =
p

s
+

p

r
θ′ =

p

r
−

p

s′

• Snell’s Law (Small Angles sin ? =?)

nθ = n′θ′

np

s
+

np

r
=

n′p

r
−

n′p

s′

n

s
+

n′

s′
=

n′ − n

r
(Refraction at a curved surface)
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Refraction: Curved Interface (3)

• Focal Lengths (More Complicated Now)

– Back Focal Length (Refraction at a curved surface)

s → ∞ BFL = f ′ = s′
n′r

n′ − n

– Front Focal Length

s′ → ∞ FFL = f = s =
nr

n′ − n

• Ratio (Calculated for this Example, but Much More General)

f ′

f
=

n′

n
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Refracting Power

• Definition

P =
f

n
=

f ′

n′

• Units

Diopter = m−1

• Refraction at a Curved Interface

P =
n′ − n

r

Q: What combinations of n, n′, and r yield positive (or negative)

refracting power?
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Eyeglass Prescription

• In Hundreths of Diopters

• Near Values Add to Far

• Left Eye (Oculus Sinister)

Far:

– 0.50 diopter 4◦ from

Horizontal

– −0.50 diopter 96◦

• Left Eye Near (Add 1.75):

– 2.25 diopter 4◦

– −1.25 diopter 96◦

• Right Eye (Oculus Dexter)

Far:

– 0.25 diopter −8◦

– −0.75 diopter 82◦

• Right Eye Near (Add 1.75):

– 2.00 diopter −8◦

– −1.00 diopter 82◦
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Magnifications

Snell’s Law at the Vertex

m = −
ns′

n′s

mα =
−dβ

dα
= −

s′

s
= −

n

n′
1

m

n

s
+

n′

s′
=

n′ − n

r
−

n ds

s2
−

n′ ds′

(s′)2
= 0

ds′

ds
= −

n

n′

(
s′

s2

)2

mz = −
n

n′
m2
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Imaging Equations

Surface s′ m mα mz Image** O* D* P*

Planar Mirror s′ = −s 1 −1 −1 Virtual Upright No Yes

Concave Mirror

s > f 1
s′
+ 1

s
= 1

f
−s′/s −m2 −1/m Real Inverted Yes No

Convex Mirror 1
s′
+ 1

s
= 1

f
−s′/s −m2 −1/m Virtual Upright Yes Yes

Planar Refractor s
n
= s′

n′ 1 n
n′

n′

n
Virtual Upright Yes No

Curved Refractor

s > f n
s
+ n′

s′
= n′−n

r
−ns′

n′s
−1 − n

n′m
2 Real Inverted Yes Yes

* “O” mean Orientation, “D” means Distortion, and “P” means Perversion of coordinates.
** The Image is Defined as Real or Virtual for a Real Object
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The Simple Lens

First Surface Object and Image Second Surface Object

Second Surface Image Complete Lens
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First Surface Solution

n1
s1

+
n′1
s′1

=
n′1 − n1

r1

Note Subscript 1
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Second Surface Object

s2 = −
(
s′1 − d

)
n2 = n′1

Virtual Object in this Case (Often but not Always)
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Second Surface Solution

n2
s2

+
n′2
s′2

=
n′2 − n2

r2

n′1
d− s′1

+
n′2
s′2

=
n′2 − n′1

r2
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Complete Simple Lens (1)

n′2
s′2

=
n′2 − n′1

r2
− n′1

n′1 − n1 − r1
n1
s1

d
(
n′1 − n1

)
− n′1r1 − dn′1r1

n1
s1
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Complete Simple Lens (2)

n′2
s′2

=
n′2 − n′1

r2
− n′1

n′1 − n1 − r1
n1
s1

d
(
n′1 − n1

)
− n′1r1 − dn′1r1

n1
s1

That’s Ugly! Let’s Define Some New Notation:

w = s1 w′ = s′2

n = n1 n′ = n′2 n` = n′1 = n2

n′

w′ =
n′ − n`

r2
− n`

n` − n− r1
n
w

d (n` − n)− n`r1 − dn`r1
n
w
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Complete Simple Lens (3)

n′

w′ =
n′ − n`

r2
− n`

n` − n− r1
n
w

d (n` − n)− n`r1 − dn`r1
n
w

That’s Still Ugly. Set n = n′ = 1. Not General, but Useful.

1

w′ =
1− n`
r2

− n`
n` − 1− r1

1
w

d (n` − 1)− n`r1 − dn`
r1
w

Or Even Simpler, Set d = 0.

n

w
+

n′

w′ =
n′ − n`

r2
+

n` − n

r1
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The Thin Lens (1)

n

w
+

n′

w′ =
n′ − n`

r2
+

n` − n

r1

Now The s vs. w Distinction Doesn’t Matter.

n

s
+

n′

s′
=

n′ − n`
r2

+
n` − n

r1

n

s
+

n′

s′
= P1 + P2 = P

Back and Front Focal Lengths

BFL = f ′ =
n′

P1 + P2
FFL = f =

n

P1 + P2

where P1 =
n` − n

r1
P2 =

n′ − n`
r2
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The Thin Lens (2)

BFL = f ′ =
n′

P1 + P2
FFL = f =

n

P1 + P2

Focal–Length Relationship (Generally True)

f ′

f
=

n′

n

Specifically

f = f ′ if n = n′

And In Air (Probably the Most–Used Equation in Optics)

1

s
+

1

s′
=

1

f
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The Thin Lens (3)

• The Lensmaker’s Equation

1

f
=

1

f ′
= P1 + P2 = (n` − 1)

(
1

r1
−

1

r2

)

• Be Careful About Signs (Biconvex Means r1 > 0 and r2 < 0)

P1 =
n` − 1

r1
P2 =

n` − 1

−r2

• Powers Add for Thin Lenses
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The Thin Lens Magnification

For n = n′ and d = 0

x′

x
=

−s′

s

m =
−s′

s
(Lens in Air)

m =
−ns′

n′s
(General)

Axial Magnification

mz =
ds′

ds
=

n

n′

(
s′

s

)2
=

n′

n
m2
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Thin Lens in Air: Summary

• Making The Lens (We Still Have Some Choices)

1

f
=

1

f ′
= P1 + P2 = (n` − 1)

(
1

r1
−

1

r2

)

• Using the Lens

1

s
+

1

s′
=

1

f
m = −

s′

s
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Eyeglass Prescription Revisited

• Adding Powers

• Convex Front

• Concave Back

• Cylinder

• Many Options
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Prisms (1)

θ′1 =
θ1
n

(
90◦ − θ2

)
+
(
90◦ − θ′1

)
+ α = 180◦

θ2 + θ′1 = α.

Applying Snell’s law,

sin θ′2 = n sin θ2 = n sinα− θ′1

sin θ′2 = n
(
cos θ′1 sinα− n sin θ′1 cosα

)
sin θ′2 =

√
n2 − sin2 θ1 sinα− sin θ′1 cosα

δ = θ1 + θ′2 − α
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Prisms (2)

0 10 20 30 40 50 60
15
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θ
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δ,
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α = 30◦ and n = 1.5

• Deviation

δ = θ1 + θ′2 − α

• Minimum Deviation

δmin = 2sin−1
(
n sin

α

2

)
− α

at θ1 = sin−1
(
n sin

α

2

)
• Small Prism Angles

δmin ≈ (n− 1)α

at θ1 =
nα

2
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“Unfolding” Reflective Systems

Top Shows Actual System. Bottom Shows it Unfolded for
Analysis
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