Optics for Engineers Chapter 2

Charles A. DiMarzio Northeastern University

June 2012

Outline of Geometric Optics

- Chapter 2
 - Snell's Law from Fermat's Principle
 - Mirrors and Refractive Surfaces
 - Multiple Surfaces: Simple Lenses: The Thin Lens
 - Image Location, Orientation, Magnification
- Chapter 3: Matrix Optics: Principal Planes
- Chapter 4: Stops Limit Light Gathering and FOV
- Chapter 5: Aberrations Limit Resolution
- Later: Wave Optics: Diffraction–Limited Resolution in Ch. 8

"High-School Optics"

"The AP Version"

Concepts for Refraction

- Plane of Incidence Contains Incident (and Exiting) Ray and Normal (and is the plane of the 2–D drawing)
- Angle of Incidence Is Defined Relative to Normal

Snell's Law

Snell's Law: Examples

June 2012

slides1–6

Reflection and Refraction

Reflection:

$$\theta_r = \theta.$$

Refraction

Total Internal Reflection

• Critical Angle (No Solution for θ')

 $n\sin\theta_c = 1$

- For $\theta < \theta_c$ Reflection and Refraction
- For $\theta > \theta_c$ 100% Reflection

Snell's Window

Carol Grant

Imaging Sign Conventions

Upper Case for points, Lower for lengths -x, x' > 0 Upright June 2012 C. DiMarzio (Based on *Optics for Engineers*, CRC, Press) 0 Slides1-10

Imaging Terms

We will discuss these in detail later.

The important issues now are the definitions.

Quantity	Definition	Equation	Notes
Object distance	S		Positive to the
			left
Image distance	s'	$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$	Positive to the
			right for inter-
			face or lens.
			Positive to the
			left for mirror.
Magnification	$m = \frac{x'}{x}$	$m = -\frac{x'}{x}$	
Angular magnification	$m_{\alpha} = \frac{\partial \alpha'}{\partial \alpha}$	$ m_{\alpha} = \frac{1}{ m }$	
Axial Magnification	$m_z = \frac{\partial s'}{\partial s}$	$ m_z = m ^2$	

Reflection at a Plane Mirror (1)

- Narcissus
- "... the looking glasses of the women..." Exodus 38:8

Image Location Similar Triangles s' = -s (Planar reflector) Virtual Image as Shown Hirror P θ s' = -s' - f'

• Question: Could we have a virtual object? How?

Reflection at a Plane Mirror (2)

Magnification (Transverse) More Similar Triangles x' = x m = 1 $m = \frac{x'}{x} = \frac{-s'}{s} = 1$ (Planar reflector)

Upright (m > 0) & Virtual (Dotted Lines)

Angular Magnification

$$m_{\alpha} = \frac{d\alpha'}{d\alpha} = -1$$
 (Planar reflector)

Reflection at a Plane Mirror (3)

Axial Magnification

$$m_z = \frac{ds'}{ds} = \frac{s'}{s} = -1$$
 (Planar reflector)

Summary

$$s = -s'$$
 $m = 1$ $m_z = -1$

Upright, Virtual, Perverted^{*}, but Not Distorted^{**} *Right-Handed Coordinate System Imaged to Left-Handed **Distorted Means $m_z \neq m$.

Misconception: Mirror Does Not Reverse Left and Right Left is Left, Right is Right, but Front is Back

Imaging Equations

Surface	<i>s'</i>	m	m_{lpha}	m_z	Image**	O*	D*	P*
Planar Mirror***	s' = -s	1	-1	-1	Virtual	Upright	No	Yes
Concave Mirror								
s > f	$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$	-s'/s	$-m^{2}$	-1/m	Real	Inverted	Yes	No
Convex Mirror	$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$	-s'/s	$-m^{2}$	-1/m	Virtual	Upright	Yes	Yes
Planar Refractor	$\frac{s}{n} = \frac{s'}{n'}$	1	$\frac{n}{n'}$	$\frac{n'}{n}$	Virtual	Upright	Yes	No
Curved Refractor								
s > f	$\frac{n}{s} + \frac{n'}{s'} = \frac{n'-n}{r}$	$-\frac{ns'}{n's}$	-1	$-\frac{n}{n'}m^2$	Real	Inverted	Yes	Yes

* "O" mean Orientation, "D" means Distortion, and "P" means Perversion of coordinates.
 ** The Image is Defined as Real or Virtual for a Real Object
 *** Complete Analysis in green text

The Retroreflector

June 2012

©C. DiMarzio (Based on *Optics for Engineers*, CRC Press)

slides1–16

Curved (Spherical) Mirror (1)

All Rays from the Object Go Through the Image (No Aberrations). Work with the Easy Ones.

Curved (Spherical) Mirror (2)

• Focal Length Defined in General

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$$

• Specific Result for Spherical Mirror

$$f = \frac{r}{2}$$
 (Spherical reflector)

• Physical Signficance

$$s' \to f \qquad s \to \infty \qquad \text{Or} \qquad s \to f \qquad s' \to \infty.$$

Curved (Spherical) Mirror (3)

• Angular Magnification

$$m_{\alpha} = \frac{s}{s'}$$
 $|m_{\alpha}| = |1/m|$ (Spherical reflector)

• Axial Magnification

$$\frac{1}{s'} + \frac{1}{s} = \frac{2}{r}$$

$$-\frac{ds}{s^2} - \frac{ds'}{\left(s'\right)^2} = 0$$

$$m_z = \frac{ds'}{ds} = -\left(\frac{s'}{s}\right)^2$$
 $m_z = -m^2$ $|m_z| = |m|^2$

Curved (Spherical) Mirror (4)

• Imaging Equation

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f} \qquad f = \frac{r}{2}$$

• Magnification

$$m = -\frac{s'}{s}$$
 $m_{\alpha} = \frac{1}{m}$ $m_z = -m^2$

- Summary: The Image in this Case is...
 - Real
 - Inverted
 - Distorted (Unless s = s')
 - Handedness–Preserved
- Question: Can a Concave Mirror Ever Produce a Virtual Image of a Real Object? (Hint: What if s' = 0?)

Large Reflective Optics

"Every Material that Transmits $10\mu m$ Light is Expensive." Not Completely True, but Close.

The Fishtank Problem (1)

The Fishtank Problem (2)

- Fishtank Setup - Object Inside – Viewer Outside · Virtual Image Index=*n*′ X 5' Index=*n*
- Fishtank Paradox
 - Physical Thickness = z
 - Geometric Thickness

$$\ell_g = \frac{z}{n}$$

- Optical Pathlength

$$OPL = zn$$

• Magnifications

$$m = \frac{x'}{x} = 1 \qquad m_{\alpha} = \frac{n}{n'}$$
$$m_z = \frac{ds'}{ds} = \frac{n'}{n}$$

• Virtual, Upright, Distorted

Practical Example

Focusing Depth Decreases, but OPL Increases. *e.g.* Focus to $100\mu m$ and image $75\mu m$. Time Gate at $133\mu m$ (Optical Coherence Tomography) Together, measure index and depth?

Refraction: Curved Interface (1)

 $\theta = \alpha + \gamma \text{ from } \triangle S, P, R,$ and

 $\gamma = \theta' + \beta \text{ from } \bigtriangleup S', P, R$

$$\tan \alpha = \frac{p}{s+\delta} \qquad \qquad \tan \beta = \frac{p}{s'-\delta} \qquad \qquad \tan \gamma = \frac{p}{r-\delta}$$

For Small Angles tan ? = sin ? =? and $\delta \rightarrow 0$

$$\alpha = \frac{p}{s} \qquad \beta = \frac{p}{s'} \qquad \gamma = \frac{p}{r}$$
$$\theta = \frac{p}{s} + \frac{p}{r} \qquad \theta' = \frac{p}{r} - \frac{p}{s'}$$

June 2012 (C)C. [

Refraction: Curved Interface (2)

• Previous Page...

$$\theta = \frac{p}{s} + \frac{p}{r} \qquad \qquad \theta' = \frac{p}{r} - \frac{p}{s'}$$

• Snell's Law (Small Angles sin? =?)

$$n\theta = n'\theta'$$

$$\frac{np}{s} + \frac{np}{r} = \frac{n'p}{r} - \frac{n'p}{s'}$$

Refraction: Curved Interface (3)

- Focal Lengths (More Complicated Now)
 - Back Focal Length (Refraction at a curved surface)

$$s \to \infty$$
 $BFL = f' = s' \frac{n'r}{n'-n}$

- Front Focal Length

$$s' \to \infty$$
 $FFL = f = s = \frac{nr}{n' - n}$

• Ratio (Calculated for this Example, but Much More General)

$$\frac{f'}{f} = \frac{n'}{n}$$

Refracting Power

• Definition

$$P = \frac{f}{n} = \frac{f'}{n'}$$

• Units

$$Diopter = m^{-1}$$

• Refraction at a Curved Interface

$$P = \frac{n' - n}{r}$$

Q: What combinations of n, n', and r yield positive (or negative) refracting power?

Eyeglass Prescription

	Op	hthalmolo	ogy		
an Revolutio		Ø	В	oston, MA	A 02215
D IMARZ I	CHARLES, CHARLES	B Bch			
		04/30	/12		. 1
	A COLORED DE LA COLORED DE	Time	la	te: <u>4</u>	30/12
Sign					
		-			
k -					
k -					
bx			AXIS	PRISM	BASE
FOR DISTANCE OD	SPHERICAL +OSO	CYLINDRICAL - 10D	AXIS 96	PRISM	BASE
TOR	SPHERICAL	CYLINDRICAL -100 -100	01	PRISM	BASE
FOR DISTANCE OD	SPHERICAL	CYLINDRICAL -100 -100	96	PRISM	BASE

- In Hundreths of Diopters
- Near Values Add to Far

- Left Eye (Oculus Sinister) Far:
 - 0.50 diopter 4° from
 Horizontal
 - -0.50 diopter 96°
- Left Eye Near (Add 1.75):
 - 2.25 diopter 4°
 - -1.25 diopter 96°
- Right Eye (Oculus Dexter) Far:
 - 0.25 diopter -8°
 - -0.75 diopter 82°
- Right Eye Near (Add 1.75):
 - 2.00 diopter -8°
 - -1.00 diopter 82°

Magnifications

Imaging Equations

Surface	s'	m	m_{lpha}	m_z	Image**	O*	D*	P*
Planar Mirror	s' = -s	1	-1	-1	Virtual	Upright	No	Yes
Concave Mirror								
s > f	$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$	-s'/s	$-m^{2}$	-1/m	Real	Inverted	Yes	No
Convex Mirror	$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$	-s'/s	$-m^{2}$	-1/m	Virtual	Upright	Yes	Yes
Planar Refractor	$\frac{s}{n} = \frac{s'}{n'}$	1	$\frac{n}{n'}$	$\frac{n'}{n}$	Virtual	Upright	Yes	No
Curved Refractor								
s > f	$\frac{n}{s} + \frac{n'}{s'} = \frac{n'-n}{r}$	$-\frac{ns'}{n's}$	-1	$-\frac{n}{n'}m^2$	Real	Inverted	Yes	Yes

* "O" mean Orientation, "D" means Distortion, and "P" means Perversion of coordinates.
** The Image is Defined as Real or Virtual for a Real Object

The Simple Lens

First Surface Object and Image

Second Surface Image

Second Surface Object

First Surface Solution

Note Subscript 1

Second Surface Object

Virtual Object in this Case (Often but not Always)

Second Surface Solution

June 2012

Complete Simple Lens (1)

June 2012

Complete Simple Lens (2)

$$\frac{n_2'}{s_2'} = \frac{n_2' - n_1'}{r_2} - n_1' \frac{n_1' - n_1 - r_1 \frac{n_1}{s_1}}{d\left(n_1' - n_1\right) - n_1' r_1 - dn_1' r_1 \frac{n_1}{s_1}}$$

That's Ugly! Let's Define Some New Notation:

$$w = s_1 \qquad w' = s'_2$$

$$n = n_1$$
 $n' = n'_2$ $n_\ell = n'_1 = n_2$

$$\frac{n'}{w'} = \frac{n' - n_{\ell}}{r_2} - n_{\ell} \frac{n_{\ell} - n - r_1 \frac{n}{w}}{d(n_{\ell} - n) - n_{\ell} r_1 - dn_{\ell} r_1 \frac{n}{w}}$$

June 2012

Complete Simple Lens (3)

$$\frac{n'}{w'} = \frac{n' - n_{\ell}}{r_2} - n_{\ell} \frac{n_{\ell} - n - r_1 \frac{n}{w}}{d(n_{\ell} - n) - n_{\ell} r_1 - dn_{\ell} r_1 \frac{n}{w}}$$

That's Still Ugly. Set n = n' = 1. Not General, but Useful.

$$\frac{1}{w'} = \frac{1 - n_{\ell}}{r_2} - n_{\ell} \frac{n_{\ell} - 1 - r_1 \frac{1}{w}}{d(n_{\ell} - 1) - n_{\ell} r_1 - dn_{\ell} \frac{r_1}{w}}$$

Or Even Simpler, Set d = 0.

$$\frac{n}{w} + \frac{n'}{w'} = \frac{n' - n_{\ell}}{r_2} + \frac{n_{\ell} - n}{r_1}$$

June 2012

The Thin Lens (1)

$$\frac{n}{w} + \frac{n'}{w'} = \frac{n' - n_{\ell}}{r_2} + \frac{n_{\ell} - n_{\ell}}{r_1}$$

Now The *s vs. w* Distinction Doesn't Matter.

$$\frac{n}{s} + \frac{n'}{s'} = \frac{n' - n_{\ell}}{r_2} + \frac{n_{\ell} - n}{r_1}$$

$$\frac{n}{s} + \frac{n'}{s'} = P_1 + P_2 = P$$

Back and Front Focal Lengths

$$BFL = f' = \frac{n'}{P_1 + P_2} \qquad FFL = f = \frac{n}{P_1 + P_2}$$

where $P_1 = \frac{n_{\ell} - n}{r_1} \qquad P_2 = \frac{n' - n_{\ell}}{r_2}$

The Thin Lens (2)

$$BFL = f' = \frac{n'}{P_1 + P_2}$$
 $FFL = f = \frac{n}{P_1 + P_2}$

Focal-Length Relationship (Generally True)

$$\frac{f'}{f} = \frac{n'}{n}$$

Specifically

$$f = f'$$
 if $n = n'$

And In Air (Probably the Most–Used Equation in Optics)

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

The Thin Lens (3)

• The Lensmaker's Equation

$$\frac{1}{f} = \frac{1}{f'} = P_1 + P_2 = (n_\ell - 1) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

• Be Careful About Signs (Biconvex Means $r_1 > 0$ and $r_2 < 0$)

$$P_1 = \frac{n_\ell - 1}{r_1} \qquad P_2 = \frac{n_\ell - 1}{-r_2}$$

• Powers Add for Thin Lenses

The Thin Lens Magnification

$$m = \frac{-s'}{s}$$
 (Lens in Air)

$$m = \frac{-ns'}{n's}$$
 (General)

Axial Magnification

$$m_z = \frac{ds'}{ds} = \frac{n}{n'} \left(\frac{s'}{s}\right)^2 = \frac{n'}{n} m^2$$

Thin Lens in Air: Summary

• Making The Lens (We Still Have Some Choices)

$$\frac{1}{f} = \frac{1}{f'} = P_1 + P_2 = (n_\ell - 1) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

• Using the Lens

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \qquad \qquad m = -\frac{s'}{s}$$

Eyeglass Prescription Revisited

		hthalmolo			
an Breaklin	-	Ø	Bo	ston, MA	02218
D IMARZ I	CHARLES	3 Sch			
Constant of the local division of the		04/30			. 1
	and the second second	Time)ate	e: 41	30/12
Live					C
.Sign		-			
Sign		-	-		
Sign		-	-		
tx	SPHERICAL		AXIS	PRISM	BASE
FOR DISTANCE OD	SPHERICAL +050	- Cylindrical - 10D	AXIS 96	PRISM	BASE
FOR	SPHERICAL +OSO to25	- IOD - IOD		PRISM	BASE
OR IISTANCE OD	SPHERICAL +OSO +OSO +ORS	- - 100 - 100	96	PRISM	BASE
FOR DISTANCE OD OS	SPHERICAL +OSO +ORS +ORS +ORS +ORS	- CYLINDRICAL -10D -10D	96	PRISM	BASE

- Adding Powers
- Convex Front
- Concave Back
- Cylinder
- Many Options

Prisms (1)

$$\theta'_{1} = \frac{\theta_{1}}{n}$$

$$(90^{\circ} - \theta_{2}) + (90^{\circ} - \theta'_{1}) + \alpha = 180^{\circ}$$

$$\theta_{2} + \theta'_{1} = \alpha.$$
Applying Snell's law,
$$\sin \theta'_{2} = n \sin \theta_{2} = n \sin \alpha - \theta'_{1}$$

$$\sin \theta_2' = n \left(\cos \theta_1' \sin \alpha - n \sin \theta_1' \cos \alpha \right)$$

 $\sin\theta_2' = \sqrt{n^2 - \sin^2\theta_1} \sin\alpha - \sin\theta_1' \cos\alpha$

$$\delta = \theta_1 + \theta_2' - \alpha$$

Prisms (2)

• Deviation

$$\delta = \theta_1 + \theta_2' - \alpha$$

Minimum Deviation

$$\delta_{min} = 2\sin^{-1}\left(n\sin\frac{\alpha}{2}\right) - \alpha$$

at
$$\theta_1 = \sin^{-1}\left(n\sin\frac{\alpha}{2}\right)$$

• Small Prism Angles

$$\delta_{min} \approx (n-1) \, \alpha$$

at
$$\theta_1 = \frac{n\alpha}{2}$$

"Unfolding" Reflective Systems

Top Shows Actual System. Bottom Shows it Unfolded for Analysis