Optics for Engineers Chapter 3

Charles A. DiMarzio
Northeastern University

July 2012

Compound Lens and Ray Definitions

Ray Definitions

- Ray Information
- Straight Line
- Two Dimensions
- Slope and Intercept
- Mathematical Formulation
- Column Vector
- Two Elements
- Intercept on Top
- Reference to Local z
- Angle on Bottom

$$
\mathbf{V}=\binom{x}{\alpha}
$$

- Some Books Differ

- Arbitrary Operation

$$
\begin{gathered}
\mathcal{M}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \\
\mathbf{V}_{\text {end }}=\mathcal{M}_{\text {start:end }} \mathbf{V}_{\text {start }}
\end{gathered}
$$

- Subscript for Vertex Number

Translation From One Surface to the Next

- Move Away from Source
- z_{1} to z_{2}

$$
\mathbf{V}_{2}=\mathcal{T}_{12} \mathbf{V}_{1}
$$

- Angle Stays Constant

$$
\alpha_{2}=\alpha_{1}
$$

- Height Changes

$$
x_{2}=x_{1}+\alpha_{1} z_{12}
$$

- Matrix Form

$$
\binom{x_{2}}{\alpha_{2}}=\left(\begin{array}{cc}
1 & z_{12} \\
0 & 1
\end{array}\right)\binom{x_{1}}{\alpha_{1}}
$$

$$
\mathcal{T}_{12}=\left(\begin{array}{cc}
1 & z_{12} \\
0 & 1
\end{array}\right)
$$

Refraction at a Surface (1)

- Matrix Form

$$
\mathrm{V}_{1}^{\prime}=\mathcal{R}_{1} \mathrm{~V}_{1}
$$

- Height Does Not Change

$$
\begin{aligned}
& x_{1}^{\prime}=\left(1 \times x_{1}\right)+\left(0 \times \alpha_{1}\right) \\
& \binom{x_{1}^{\prime}}{\alpha_{1}^{\prime}}=\left(\begin{array}{ll}
1 & 0 \\
? & ?
\end{array}\right)\binom{x_{1}}{\alpha_{1}}
\end{aligned}
$$

- Angle Changes (Ch. 2)

$$
\begin{gathered}
\theta=\gamma+\alpha \quad \theta^{\prime}=\gamma-\beta=\gamma+\alpha^{\prime} \\
\tan \alpha=\frac{p}{s+\delta} \quad \tan \beta=\frac{p}{s^{\prime}-\delta} \\
\tan \gamma=\frac{p}{r-\delta}
\end{gathered}
$$

Refraction at a Surface (2)

- Height Does Not Change

$$
\binom{x_{1}^{\prime}}{\alpha_{1}^{\prime}}=\left(\begin{array}{ll}
1 & 0 \\
? & ?
\end{array}\right)\binom{x_{1}}{\alpha_{1}}
$$

- Angle (See Prev. Page)

$$
n \theta=n^{\prime} \theta^{\prime}
$$

$$
\begin{aligned}
& n(\gamma+\alpha)=n^{\prime}\left(\gamma+\alpha^{\prime}\right) \\
& n \frac{x}{r}+n \alpha=n^{\prime} \frac{x}{r}+n^{\prime} \alpha^{\prime}
\end{aligned}
$$

$$
\mathcal{R}=\left(\begin{array}{cc}
1 & 0 \\
\frac{n-n^{\prime}}{n^{\prime} r} & \frac{n}{n^{\prime}}
\end{array}\right)
$$

$$
\alpha^{\prime}=\frac{n-n^{\prime}}{n^{\prime} r} x+\frac{n}{n^{\prime}} \alpha
$$

$$
\mathcal{R}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)
$$

Cascading Matrices

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathcal{T}_{01} \mathrm{~V}_{0} \quad \mathrm{~V}_{1}{ }^{\prime}=\mathcal{R}_{1} \mathrm{~V}_{1} \quad \mathrm{~V}_{2}=\mathcal{T}_{12} \mathrm{~V}_{1}{ }^{\prime} \quad \text { etc. } \\
& \mathrm{V}_{\text {end }}=\mathcal{M}_{0: \text { end }} \mathrm{V}_{0} \quad \mathcal{M}_{0: \text { end }}=\mathcal{T}_{\text {end-1:end }} \ldots \mathcal{T}_{12} \mathcal{R}_{1} \mathcal{T}_{01}
\end{aligned}
$$

Multiply from Right to Left as Light Moves from Left to Right.

The Simple Lens (1)

- First Surface

$$
\mathrm{V}_{1}^{\prime}=\mathcal{R}_{1} \mathrm{~V}_{1}
$$

- Translation

$$
\mathrm{V}_{2}=\mathcal{T}_{12} \mathrm{~V}_{1}^{\prime}
$$

- Second Surface

$$
\mathbf{V}_{2}^{\prime}=\mathcal{R}_{2} \mathbf{V}_{2}
$$

- Result

$$
\mathrm{V}_{2}^{\prime}=\mathcal{L} \mathrm{V}_{1}
$$

$$
\mathcal{L}=\mathcal{R}_{2} \mathcal{T}_{12} \mathcal{R}_{1}
$$

The Simple Lens (2)

- From Previous Page $\mathcal{L}=\mathcal{R}_{2} \mathcal{T}_{12} \mathcal{R}_{1}$

$$
\mathcal{L}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P_{2}}{n_{2}^{\prime}} & \frac{n_{1}^{\prime}}{n_{2}^{\prime}}
\end{array}\right)\left(\begin{array}{cc}
1 & z_{12} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{P_{1}}{n_{1}^{\prime}} & \frac{n_{1}}{n_{1}^{\prime}}
\end{array}\right) \quad\left(n_{2}=n_{1}^{\prime}\right)
$$

- Strange but Useful Grouping

$$
\mathcal{L}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P_{t}}{n_{2}^{\prime}} & \frac{n_{1}}{n_{2}^{\prime}}
\end{array}\right)+\frac{z_{12}}{n_{1}^{\prime}}\left(\begin{array}{cc}
-P_{1} & n_{1} \\
\frac{P_{1} P_{2}}{n_{2}^{\prime}} & -P_{2} \frac{n_{1}^{1}}{n_{2}^{\prime}}
\end{array}\right) \quad\left(P_{t}=P_{1}+P_{2}\right)
$$

- Initial: $n_{1}=n$, Final: $n_{2}^{\prime}=n^{\prime}$, Lens: $n_{1}^{\prime}=n_{\ell}$

$$
\mathcal{L}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P_{t}}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)+\frac{z_{12}}{n_{\ell}}\left(\begin{array}{cc}
-P_{1} & n \\
\frac{P_{1} P_{2}}{n^{\prime}} & -P_{2} \frac{n}{n^{\prime}}
\end{array}\right)
$$

- n_{ℓ} implict in P_{1} and P_{2}, and thus P_{t}

The Thin Lens (1)

- The Simple Lens (Previous Page)

$$
\mathcal{L}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P_{t}}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)+\frac{z_{12}}{n_{\ell}}\left(\begin{array}{cc}
-P_{1} & n \\
\frac{P_{1} P_{2}}{n^{\prime}} & -P_{2} \frac{n}{n^{\prime}}
\end{array}\right)
$$

- Geometric Thickness, z_{12} / n_{ℓ}, Multiples Second Term
- Set $z_{12} \rightarrow 0$

$$
\mathcal{L}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right) \quad \text { (Thin Lens) }
$$

$$
P=P_{t}=P_{1}+P_{2} \quad \text { Correction Term Vanishes }
$$

The Thin Lens (2)

- Thin Lens in terms of Focal Lengths

$$
\mathcal{L}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{n}{n^{\prime} f} & \frac{n}{n^{\prime}}
\end{array}\right)
$$

- Front Focal Length: $f=F F L$, Back: $f^{\prime}=B F L$
- Special but Common Case: Thin Lens in Air

$$
\begin{aligned}
& \mathcal{L}=\left(\begin{array}{cc}
1 & 0 \\
-P & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right) \quad \text { (Thin Lens in Air) } \\
& f=f^{\prime}=\frac{1}{P} \quad F F L=B F L \quad \text { Always True if } n^{\prime}=n
\end{aligned}
$$

General Problems and the ABCD Matrix

- General Equation

$$
\mathbf{V}_{\text {end }}=\mathcal{M}_{\text {start:end }} \mathbf{V}_{\text {start }} \quad\binom{x_{\text {end }}}{\alpha_{\text {end }}}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\binom{x_{\text {start }}}{\alpha_{\text {start }}}
$$

- Determinant Condition (Not Completely Obvious)

$$
\operatorname{det} \mathcal{M}=\frac{n}{n^{\prime}} \quad\left(\operatorname{det} \mathcal{M}=m_{11} m_{22}-m_{12} m_{21}\right)
$$

- Abbe Sine Invariant (or Helmholz or Lagrange Invariant)

$$
n^{\prime} x^{\prime} d \alpha^{\prime}=n x d \alpha
$$

Abbe Sine Invariant

- Equation

$$
n^{\prime} x^{\prime} d \alpha^{\prime}=n x d \alpha
$$

- Alternative Derivations
- Geometric Optics
- Energy Conservation (C. 12)
- Lens Example
- Height Decreases by s^{\prime} / s
- Angle Increases by s / s^{\prime}

- Example: IR Detector
- Diameter

$$
D^{\prime}=100 \mu \mathrm{~m}
$$

- Collection Cone $F O V_{1 / 2}^{\prime}=30^{\circ}$
- Telescope Front Lens
- Diameter $D=20 \mathrm{~cm}$
- Max. Field of View

$$
\begin{gathered}
F O V_{1 / 2}= \\
\frac{100 \times 10^{-6} \mathrm{~m} \times 30^{\circ}}{20 \times 10^{-2} \mathrm{~m}}= \\
0.0150^{\circ}
\end{gathered}
$$

Principal Planes Concept (1)

- Arbitrary Lens
- Thin Lens

$$
\mathcal{L}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)
$$

- Simple Equation
- Easy Visualization ("High-School Optics")
- Good "First Try"
- Vertex to Vertex

$$
\mathcal{M}_{V V^{\prime}}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

- Possible Simplification

$$
\begin{gathered}
\mathcal{M}_{H H^{\prime}}=\mathcal{T}_{V^{\prime} H^{\prime}} \mathcal{M}_{V V} \mathcal{T}_{H V} \\
\mathcal{M}_{H H^{\prime}}=\mathcal{L}
\end{gathered}
$$

- Will It Work?

Principal Planes Concept (2)

Convert a Hard Problem to a Simple one

$$
\mathcal{M}_{H H^{\prime}}=\mathcal{T}_{V^{\prime} H^{\prime}} \mathcal{M}_{V V} \mathcal{T}_{H V} \quad \mathcal{M}_{H H^{\prime}}=\mathcal{L}
$$

Useful if a Solution Can Be Found
Very Useful if h and h^{\prime} Are Not Too Large

Finding the Principal Planes

$$
\begin{gathered}
\mathcal{L}=\mathcal{M}_{H H^{\prime}}=\mathcal{T}_{V^{\prime} H^{\prime}} \mathcal{M}_{V V} \mathcal{T}_{H V} \\
\left(\begin{array}{cc}
1 & 0 \\
-\frac{P}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
1 & h^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\left(\begin{array}{cc}
1 & h \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cc}
1 & 0 \\
-\frac{P}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)=\left(\right. \\
\hline \hline
\end{gathered}
$$

Three Unknowns: Solution if Determinant Condition Satisfied

$$
\begin{array}{||c|c||}
\hline \hline h=\frac{\frac{n}{n^{\prime}}-m_{22}}{m_{21}} & \text { Determinant Condition? Yes! } \\
\hline P=-m_{21} n^{\prime} & h^{\prime}=\frac{1-m_{11}}{m_{21}} \\
\hline \hline
\end{array}
$$

No Assumptions Were Made About M: This Always Works.

Principal Planes

- Principal Planes are Conjugates of Each Other ($m_{12}=0$)

$$
\binom{x_{H^{\prime}}}{\alpha_{H^{\prime}}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)\binom{x_{H}}{\alpha_{H}}
$$

- Unit Magnification Between Them

$$
x_{H^{\prime}}=x_{H}
$$

Note: Principal Planes May Not Be Accessible

Imaging (We Know The Answer)

- Matrix from Object to Image

$$
\mathcal{M}_{S S^{\prime}}=\mathcal{M}_{H^{\prime} S^{\prime}} \mathcal{M}_{H H^{\prime}} \mathcal{M}_{S H}=\mathcal{T}_{s^{\prime}} \mathcal{M}_{H H^{\prime}} \mathcal{T}_{s}
$$

- Conjugate Planes

$$
x^{\prime}=(? \times x)+(0 \times \alpha) \quad \mathcal{M}_{S S^{\prime}}=\left(\begin{array}{cc}
m_{11} & 0 \\
m_{21} & m_{22}
\end{array}\right)
$$

Imaging Equation for Compound Lens

$$
\mathcal{M}_{S S^{\prime}}=\left(\begin{array}{cc}
1 & s^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{P}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)\left(\begin{array}{cc}
1 & s \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1-\frac{s^{\prime} P}{n^{\prime}} & s-\frac{s s^{\prime} P}{n^{\prime}}+\frac{s^{\prime} n}{n^{\prime}} \\
-\frac{P^{\prime}}{n^{\prime}} & -\frac{s P}{n^{\prime}}+\frac{n}{n^{\prime}}
\end{array}\right)
$$

- Conjugate Plane Rule: $m_{12}=0$

$$
s-\frac{s s^{\prime} P}{n^{\prime}}+\frac{s^{\prime} n}{n^{\prime}}=0
$$

$$
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=P
$$

- Measure s and s^{\prime} from h and h^{\prime} respectively.

Compound Lens Matrix Results

Magnifications ($m m_{\alpha}=n^{\prime} / n$)

$$
m=1-\frac{s^{\prime} P}{n^{\prime}}=1-\frac{s^{\prime}}{n^{\prime}}\left(\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}\right)=-\frac{n s^{\prime}}{n^{\prime} s}
$$

$$
m_{\alpha}=-\frac{s}{n^{\prime}}\left(\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}\right)+\frac{n}{n^{\prime}}=-\frac{s}{s^{\prime}}
$$

Imaging Matrix

$$
\mathcal{M}_{S S^{\prime}}=\left(\begin{array}{cc}
m & 0 \\
-\frac{P}{n^{\prime}} & \frac{n^{\prime} 1}{n} \frac{1}{m}
\end{array}\right)
$$

Thick Lens

- Thick-Lens Equation

$$
\mathcal{L}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{P_{t}}{n^{\prime}} & \frac{n}{n^{\prime}}
\end{array}\right)+\frac{z_{12}}{n_{\ell}}\left(\begin{array}{cc}
-P_{1} & n \\
\frac{P_{1} P_{2}}{n^{\prime}} & -P_{2} \frac{n}{n^{\prime}}
\end{array}\right)
$$

- Power: $P=-m_{21} n^{\prime}$

$$
P=P_{1}+P_{2}-\frac{z_{12}}{n_{\ell}} P_{1} P_{2} \quad f=\frac{n}{P} \quad f^{\prime}=\frac{n^{\prime}}{P}
$$

- Principal Planes

$$
h=-\frac{n^{\prime}}{n_{\ell}} \frac{P_{2}}{P} z_{12} \quad h^{\prime}=-\frac{n}{n_{\ell}} \frac{P_{1}}{P} z_{12}
$$

Thick Lens in Air: The Thirds Rule for Principal Planes

- Principal Planes and Focal Length

$$
f=f^{\prime}=\frac{1}{P} \quad h=-\frac{1}{n_{\ell}} \frac{P_{2}}{P} z_{12} \quad h^{\prime}=-\frac{1}{n_{\ell}} \frac{P_{1}}{P} z_{12}
$$

- Principal-Plane Spacing

$$
\begin{gathered}
z_{H H^{\prime}}=z_{12}+h+h^{\prime}=z_{12}\left(1-\frac{P_{2}+P_{1}}{n_{\ell} P}\right) \\
P \approx P_{1}+P_{2} \quad z_{H H^{\prime}}=z_{12}+h+h^{\prime} \approx z_{12}\left(1-\frac{1}{n_{\ell}}\right)
\end{gathered}
$$

$$
\text { Glass } \quad n_{\ell} \approx 1.5 \quad z_{H H^{\prime}}=\frac{z_{12}}{3}
$$

Special Cases

$$
\begin{gathered}
h=-\frac{n^{\prime}}{n_{\ell}} \frac{P_{2}}{P} z_{12} \quad h^{\prime}=-\frac{n}{n_{\ell}} \frac{P_{1}}{P} z_{12} \\
h, h^{\prime} \text { Negative if } P, P_{1}, P_{2} \text { Have Same Signs (Often True) } \\
h=0 \quad \text { if } \quad P_{2}=0 \quad \text { Convex-Plano or Concave-Plano } \\
h^{\prime}=0 \quad \text { if } \quad P_{1}=0 \quad \text { Plano-Convex or Plano-Concave } \\
h^{\prime}=h \quad \text { if } \quad P_{2}=P_{1} \quad \text { Biconvex or Biconcave in Air }
\end{gathered}
$$

Example: Biconvex Lens in Air

$P_{1}+P_{2}=10$ diopters, or $f=10 \mathrm{~cm}$
Solid=Vertices, Dashed=Principal Planes, Dash-Dot=Focal Planes

"Bending" the Lens

$P_{1}+P_{2}=10$ diopters, or $f=10 \mathrm{~cm}$
Solid=Vertices, Dashed=Principal Planes, Dash-Dot=Focal Planes Note "Meniscus" Lenses in Germanium

A. Glass

B. Germanium

Example: Compound Lens Matrix (Two Thin Lenses)

$$
\begin{gathered}
\mathcal{M}_{V_{1}, V_{2}^{\prime}}=\mathcal{L}_{V_{2}, V_{2}^{\prime}} \mathcal{T}_{V_{1}^{\prime}, V_{2}} \mathcal{L}_{V_{1}, V_{1}^{\prime}} \quad \text { (Thin Lenses) } \\
\mathcal{M}_{V_{1}, V_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f_{2}} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & z_{12} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f_{1}} & 1
\end{array}\right) \\
\mathcal{M}_{V_{1}, V_{2}^{\prime}}=\left(\begin{array}{cc}
1-\frac{z_{12}}{f_{1}} & z_{12} \\
-\frac{1}{f_{2}}+\frac{z_{12}}{f_{1} f_{2}}-\frac{1}{f_{1}} & 1-\frac{z_{12}}{f_{2}}
\end{array}\right)
\end{gathered}
$$

Compound Lens Results

- Focal Length (Powers add for small separation)

$$
\frac{1}{f}=\frac{1}{f_{2}}+\frac{1}{f_{1}}-\frac{z_{12}}{f_{1} f_{2}}
$$

- Principal Planes

$$
\begin{gathered}
h=\frac{\frac{z_{12}}{f_{2}}}{-\frac{1}{f_{2}}+\frac{z_{12}}{f_{1} f_{2}}-\frac{1}{f_{1}}}=\frac{z_{12} f_{1}}{z_{12}-f_{1}-f_{2}} \\
h^{\prime}=\frac{\frac{z_{12}}{f_{1}}}{-\frac{1}{f_{2}}+\frac{z_{12}}{f_{1} f_{2}}-\frac{1}{f_{1}}}=\frac{z_{12} f_{2}}{z_{12}-f_{1}-f_{2}} \\
h \rightarrow 0 \quad \text { and } \quad h^{\prime} \rightarrow 0 \quad \text { if } \quad z_{12} \rightarrow 0
\end{gathered}
$$

Special Case: Afocal

$$
\begin{gathered}
z_{12}=f_{1}+f_{2} \\
\frac{1}{f}=\frac{f_{1}}{f_{1} f_{2}}+\frac{f_{2}}{f_{1} f_{2}}-\frac{z_{12}}{f_{1} f_{2}}=0 .
\end{gathered}
$$

$$
m_{21}=0, \quad \frac{1}{f}=0, \quad \text { or } \quad f \rightarrow \infty
$$

(Afocal)

$$
h \rightarrow \infty \quad h^{\prime} \rightarrow \infty
$$

Principal Planes are not Very Useful Here.

Example: 2X Magnifier (1)

- We Know How to Do This
- Object at Front Focus of First Lens
- Intermediate Image at Infinity
- Final Image at Back Focus of Second Lens
- But Let's Use Matrix Optics for the Exercise

Example: 2X Magnifier (2)

Lens Vendor Data: Glass=BK7 ($n=1.515$ at $\lambda=633 \mathrm{~nm}$

Parameter	Label	Value	
First Lens Focal Length	f_{1}	100	mm
First Lens Front Radius (LA1509 Reversed)	r_{1}	Infinite	
First Lens Thickness	$z_{v 1, v 1^{\prime}}$	3.6	mm
First Lens Back Radius	r_{1}^{\prime}	51.5	mm
First Lens "Back" Focal Length	$f_{1}+h_{1}$	97.6	mm
Lens Spacing	$z_{v 1^{\prime}, v 2}$	20	mm
Second Lens Focal Length	f_{2}	200	mm
Second Lens Front Radius (LA1708)	r_{2}	103.0	mm
Second Lens Thickness	$z_{v 2, v 2^{\prime}}$	2.8	mm
Second Lens Back Radius	r_{2}^{\prime}	Infinite	
Second Lens Back Focal Length	$f_{2}^{\prime}+h_{2}^{\prime}$	198.2	mm

Example: 2X Magnifier (Thin-Lens Approximation)

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{100 \mathrm{~mm}}+\frac{1}{200 \mathrm{~mm}}-\frac{20 \mathrm{~mm}}{100 \mathrm{~mm} \times 200 \mathrm{~mm}} \quad f=71.43 \mathrm{~mm} \\
h=\frac{20 \mathrm{~mm} \times 100 \mathrm{~mm}}{20 \mathrm{~mm}-100 \mathrm{~mm}-200 \mathrm{~mm}}=-7.14 \mathrm{~mm} \\
h^{\prime}=\frac{20 \mathrm{~mm} \times 200 \mathrm{~mm}}{20 \mathrm{~mm}-100 \mathrm{~mm}-200 \mathrm{~mm}}=-14.28 \mathrm{~mm} \\
m--\frac{s^{\prime}}{s}=-2 \quad s^{\prime}=2 s, \quad \text { and } \quad \frac{1}{f}=\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{s}+\frac{1}{2 s} \\
s=3 f / 2=107.1 \mathrm{~mm} \quad s^{\prime}=3 f=214.3 \mathrm{~mm}
\end{gathered}
$$

Lens Thickness Effects

- Start with Equations for Thin Lenses
- Use Principal Planes in Place of Vertices

$$
\mathcal{M}_{H_{1}, H_{2}^{\prime}}=\mathcal{L}_{H_{2}, H_{2}^{\prime}} \mathcal{T}_{H_{1}^{\prime}, H_{2}} \mathcal{L}_{H_{1}, H_{1}^{\prime}}
$$

- Same Equation as Thin Lens but Different Meaning

$$
\mathcal{M}_{H_{1}, H_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f_{2}} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & z_{12} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f_{1}} & 1
\end{array}\right)
$$

- f_{1} from H_{1} and f_{1}^{\prime} from H_{1}^{\prime}
- f_{2} from H_{2} and f_{2}^{\prime} from H_{2}^{\prime}
- z_{12} from H_{1}^{\prime} to H_{2}

2X Magnifier, Revisited (1)

- Principal Planes

$$
\begin{aligned}
h & =\frac{20 \mathrm{~mm} \times 100 \mathrm{~mm}}{20 \mathrm{~mm}-100 \mathrm{~mm}-200 \mathrm{~mm}}=-7.14 \mathrm{~mm} \\
h^{\prime} & =\frac{20 \mathrm{~mm} \times 200 \mathrm{~mm}}{20 \mathrm{~mm}-100 \mathrm{~mm}-200 \mathrm{~mm}}=-14.28 \mathrm{~mm} \quad H_{1} \text { to } H \\
& H_{2}^{\prime} \text { to } H^{\prime}
\end{aligned}
$$

- Spacing (See Next Page)

$$
0.713 \mathrm{~mm}
$$

- Object and Image Distances

$$
s=\frac{3 f}{2}=107.1 \mathrm{~mm} \quad s^{\prime}=3 f=214.3 \mathrm{~mm}
$$

2X Magnifier, Revisited (2)

A Suggestion: Global Coordinates

- Notation: zH1
- First Letter: z
- The Remaining Characters: Plane Name (eg. H1)
- Need to Set One Plane as $z=0$
- Example from the Magnifier
$-z=0$ at First Vertex
$-z H 1=-h_{1}$
$-z H=z H 1-h=-h_{1}-h$
- (Text Error: Not $\left.z_{H}=z H 1-h=h_{1}-h\right)$
- etc.

Telescopes (1)

- Afocal Condition

$$
\frac{1}{f}=\frac{1}{f_{2}}+\frac{1}{f_{1}}-\frac{z_{12}}{f_{1} f_{2}}=0 \quad \text { if } \quad z_{12}=f_{1}+f_{2}
$$

- Vertex Matrix

$$
\mathcal{M}_{V_{1}, V_{2}^{\prime}}=\left(\begin{array}{cc}
1-\frac{f_{1}+f_{2}}{f_{1}} & f_{1}+f_{2} \\
-\frac{1}{f_{2}}+\frac{f_{1}+f_{2}}{f_{1} f_{2}}-\frac{1}{f_{1}} & 1-\frac{f_{1}+f_{2}}{f_{2}}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{f_{2}}{f_{1}} & f_{1}+f_{2} \\
0 & -\frac{f_{1}}{f_{2}}
\end{array}\right)
$$

- Imaging Matrix

$$
\mathcal{M}_{S S^{\prime}}=\left(\begin{array}{cc}
1 & s^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-\frac{f_{2}}{f_{1}} & f_{1}+f_{2} \\
0 & -\frac{f_{1}}{f_{2}}
\end{array}\right)\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
? & 0 \\
? & ?
\end{array}\right)
$$

Telescopes (2)

$$
\begin{gathered}
\mathcal{M}_{S S^{\prime}}=\left(\begin{array}{cc}
-\frac{f_{2}}{f_{1}} & -s \frac{f_{2}}{f_{1}}+f_{1}+f_{2}-s^{\prime \frac{f_{1}}{f_{2}}} \\
0 & -\frac{f_{1}}{f_{2}}
\end{array}\right)=\left(\begin{array}{cc}
? & 0 \\
? & ?
\end{array}\right) \\
-s \frac{f_{2}}{f_{1}}+f_{1}+f_{2}-s^{\prime} \frac{f_{1}}{f_{2}}=0
\end{gathered}
$$

$$
m=-f_{2} / f_{1},
$$

(Afocal)

$$
\begin{aligned}
& m s+f_{1}+f_{2}+s^{\prime} / m=0 \\
& s^{\prime}=-m^{2} s-f_{1} m(1+m)
\end{aligned}
$$

$$
\mathcal{M}_{S S^{\prime}}=\left(\begin{array}{cc}
m & 0 \\
0 & \frac{1}{m}
\end{array}\right)
$$

$$
s^{\prime} \approx-m^{2} s \quad s \rightarrow \infty
$$

Astronomical Telescope

- Magnification: Image is smaller $(\ll 1) m=\frac{f_{2}}{f_{1}}$
- But a Lot Closer: $\left(m_{z}=-m^{2}\right)$
- Angular Magnification is Large ($m_{\alpha}=1 / m$)

