Optics for Engineers Chapter 5

Charles A. DiMarzio
Northeastern University

Sept. 2012

The Story So Far

- Small-Angle Approximation

$$
\sin \theta=\theta=\tan \theta \quad \text { and } \quad \cos \theta=1
$$

- Perfect Imaging
- Lens Equation (Image Location)
- Magnification (Image Size)
- Matrix Optics and Other Bookkeeping Tricks
- Point Images as Point, or ...
- Image Position, X^{\prime}, Independent of Pupil Position, X_{1}

Using Snell's Law Exactly

- Example: Single Convex Air-to-Glass Interface
- Rays Do Not Intersect at a Single Point (or at all in 3D)
- Large "Shot Pattern" at "Paraxial" Focus
- "Best" Focus Translated

Complete Ray Trace

z, Axial Position
Expanded View Near Image

Looking Ahead: Diffraction

- Diffraction Theory (Ch. 8) Predicts a Minimum Spot Size
- Rooted in Fundamental Physics
$-\approx \frac{\lambda}{D_{\text {pupil }}} z$
- Ray Tracing Result Below this Limit is "Good Enough"
- Characterized as "Diffraction-Limited"
- Larger Ray-Tracing Result Indicates Degraded Imaging
- Can Characterize Roughly by " $X D L$ "

Ray Tracing: Overview

- Setup: Launch a Fan of Rays (eg. Fill FOV and Pupil)
- Loop On Rays
- Loop On Elements
* Translation (Straight-Line Propagation)
* Refraction or Reflection (Interfaces)
- Close (End the Ray Calculation)
- Report (eg. Spot Size vs. Field Position)

Ray Tracing: Translation (1)

- Parametric Eq. for Ray

$$
\mathbf{x}=\mathbf{x}_{0}+\ell \hat{\mathbf{v}} \quad\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+\ell\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)
$$

- Surface Eq. (Eg. Sphere)

$$
\left(\mathbf{x}-\mathbf{x}_{c}\right) \cdot\left(\mathbf{x}-\mathbf{x}_{c}\right)=r^{2} \quad x^{2}+y^{2}+\left(z-z_{c}\right)^{2}=r^{2}
$$

- Combine to Find Intersection

$$
\begin{gathered}
\hat{\mathbf{v}} \cdot \hat{\mathbf{v}} \ell^{2}+2\left(\mathbf{x}_{0}-\mathbf{x}_{c}\right) \cdot \hat{\mathbf{v}} \ell+\left(\mathbf{x}_{0}-\mathbf{x}_{c}\right) \cdot\left(\mathbf{x}_{0}-\mathbf{x}_{c}\right)-r^{2}=0 \\
u^{2} \ell^{2}+v^{2} \ell^{2}+w^{2} \ell^{2}+2 x_{0} u \ell+2 y_{0} v \ell+2\left(z_{0}-z_{c}\right) w \ell+ \\
x_{0}^{2}+y_{0}^{2}+\left(z_{0}-z_{c}\right)^{2}-r^{2}=0
\end{gathered}
$$

Ray Tracing: Translation (2)

- Solution (Quadratic in ℓ

$$
\begin{gathered}
a_{q} \ell^{2}+b_{q} \ell+c_{q}=0, \\
a_{q}=\hat{\mathbf{v}} \cdot \hat{\mathbf{v}}=1 \quad b_{q}=2\left(\mathbf{x}_{0}-\mathbf{x}_{c}\right) \cdot \hat{\mathbf{v}} \\
c_{q}=\left(\mathbf{x}_{0}-\mathbf{x}_{c}\right) \cdot\left(\mathbf{x}_{0}-\mathbf{x}_{c}\right)-r^{2}
\end{gathered}
$$

- Zero to Two Real Solutions

$$
\ell=\frac{-b_{q} \pm \sqrt{b_{q}^{2}-4 a_{q} c_{q}}}{2 a_{q}}
$$

- Pick the "Right" One and Find Intersection

$$
\mathrm{x}_{A}=\mathrm{x}_{0}+\ell \hat{\mathrm{v}}
$$

Ray Tracing: Refraction

- Find the Normal in Order to Apply Snell's Law

$$
\hat{\mathbf{n}}=\frac{\mathbf{x}-\mathbf{x}_{c}}{\sqrt{\left(\mathrm{x}-\mathrm{x}_{c}\right) \cdot\left(\mathrm{x}-\mathrm{x}_{c}\right)}}
$$

- New Origin from Translation Calculation

$$
X_{A}
$$

- Compute the New Direction (Snell's Law in Vector Notation)

$$
\hat{\mathbf{v}}^{\prime}=\frac{n}{n^{\prime}} \hat{\mathbf{v}}+\left[\sqrt{1-\left(\frac{n}{n^{\prime}}\right)^{2}\left[1-(\hat{\mathbf{v}} \cdot \hat{\mathbf{n}})^{2}\right]}-\frac{n}{n^{\prime}} \hat{\mathbf{v}} \cdot \hat{\mathbf{n}}\right] \hat{\mathbf{n}}
$$

Ray Tracing: Close

- After Iterating Translation and Refraction as Needed...
- Answer Some Question
- "Where is Intersection with Paraxial Focal Plane?" ...

$$
\begin{gathered}
\mathbf{x}_{B} \cdot \widehat{z}=z_{\text {close }} \\
\left(\mathbf{x}_{A}+\ell \hat{\mathbf{v}}_{1}\right) \cdot \widehat{z}=z_{\text {close }}
\end{gathered}
$$

- or Any of a Collection of More Complicated Questions

Ray Tracing: Report (and More)

- Spot-Diagram (eg. vs. Field Position or Depth)
- Through-Focus Spot-Diagrams
- RMS or Maximum Spot Size (eg. XDL)
- Optical Path Length (eg. vs. Field Position)
- Many More
- Advanced Ideas (Many Commercial Programs)
- Optimization (eg. Vary Radii of Curvature and Distances)
- Use Vendor's Stock Lenses
- Use Vendor's Existing Tools
- Commercial Optical Designers

Ellipsoidal Mirror (1)

- Path:
$-S$ to Surface to S^{\prime}
- Fermat's Principle:
- Minimal Time
- Imaging:
- All Paths Minimal

$$
\sqrt{(z-s)^{2}+x^{2}+y^{2}}+\sqrt{\left(z-s^{\prime}\right)^{2}+x^{2}+y^{2}}=s+s^{\prime}
$$

Ellipsoidal Mirror (2)

- Vertex at Origin

$$
\begin{gathered}
\left(\frac{z-a}{a}\right)^{2}+\left(\frac{x}{b}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1 \\
a=\frac{s+s^{\prime}}{2} \\
b^{2}=\left(\frac{s+s^{\prime}}{2}\right)^{2}-\left(\frac{s-s^{\prime}}{2}\right)^{2}=s s^{\prime} \\
\frac{1}{f}=\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{s^{\prime}+s}{s^{\prime} s}=\frac{2 a}{b^{2}} \\
f=\frac{b^{2}}{2 a}
\end{gathered}
$$

- Spherical Mirror $\left(s=s^{\prime}\right)$

$$
z^{2}+x^{2}+y^{2}=r^{2}
$$

$$
r=s=2 f
$$

- Parabolic Mirror

$$
z=\frac{x^{2}}{4 s^{\prime}}+\frac{y^{2}}{4 s^{\prime}} \quad(s \rightarrow \infty)
$$

$$
z=\frac{x^{2}}{4 f}+\frac{y^{2}}{4 f}
$$

Ellipsoidal Mirror (3)

- Ellipse

$$
\begin{gathered}
\left(\frac{z-a}{a}\right)^{2}+\left(\frac{x}{b}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1 \\
f=\frac{b^{2}}{2 a}
\end{gathered}
$$

- Best-Fit Sphere

- Ellipse Perfect for One Point Object
- Sphere or Parabola May be Best Overall

Mirror Aberrations: Definitions

- Match Second Derivatives at Origin (or See Previous Slide)
- Perfect Ellipsoid Defined by z, and Δ Represents OPL Error

$$
\begin{array}{rc}
z_{\text {sphere }}=z+\Delta_{\text {sphere }} / 2 & z_{\text {para }}=z+\Delta_{\text {para }} / 2 \\
(z-a)^{2}=a^{2}-\left(\frac{a}{b}\right)^{2}\left(x^{2}+y^{2}\right) & \text { (Ellipsoid) } \\
\left(z+\frac{\Delta_{\text {sphere }}}{2}-r\right)^{2}=r^{2}-x^{2}-y^{2} & \text { (Sphere) } \\
z+\frac{\Delta_{\text {para }}}{2}=\frac{x}{4 f} & \text { (Paraboloid) }
\end{array}
$$

Mirror Aberrations: OPL Errors

Errors for $s=25$ and $s^{\prime}=5$ Relative to Ellipsoid

Log Scale Errors vary with $|x|^{4}$

Summary of Mirror Aberrations

- An ellipsoidal mirror is ideal to image one point to another.
- For any other pair of points, aberrations will exist.
- A paraboloidal mirror is ideal to image a point at its focus to infinity.
- Spherical and paraboloidal mirrors may be good approximations to ellipsoidal ones for certain situations and the aberrations can be computed as surface errors.
- Aberrations are fundamental to optical systems. Although it is possible to correct them perfectly for one object point, in an image with non-zero pupil and field of view, there will always be some aberration.
- Aberrations generally increase with increasing field of view and increasing numerical aperture.

Seidel Aberrations and OPL

- Small-Angle Approximation

$$
\sin \theta \approx \theta
$$

- Next-Best Approximation (Third Order)

$$
\sin \theta \approx \theta+\frac{\theta^{3}}{3!}
$$

- Wavefront Aberrations: $\Delta=$ Error in OPL (eg. Tilt)

$$
\frac{d \Delta_{t i l t}}{d x_{1}}=a_{1} \approx \delta \theta
$$

- Approach: Δ vs. Field Position and Pupil Position

General Expression for Error

- Pupil Definitions, ρ, ϕ

$$
x_{1}=\rho d_{p} / 2 \cos \phi
$$

$$
y_{1}=\rho d_{p} / 2 \sin \phi
$$

$$
\Delta=\begin{array}{ll}
a_{0} & + \\
b_{0} x^{2} & +b_{1} \rho^{2} \\
& c_{0} x^{4}+ \\
& c_{1} \rho^{4} \\
& c_{3} x^{2} \rho^{2}
\end{array}
$$

- Field Point: $(x, 0)$
- Defines Coordinates
- Expand Δ in ρ, ϕ, x
- Even Orders to 4th
-

$+b_{2} \rho x \cos \phi$
$+$
$+$
c_{2}
c_{4}

$\begin{array}{ll}c_{4} x^{3} \rho \cos \phi & + \\ c_{5} x \rho^{3} \cos ^{3} \phi & +\end{array}$

The Easy Terms

- Constant Term (The Very Easy One)
- "Piston" (Just a Phase Change)
a_{0}
- Quadratic Term
- Defocus

$$
b_{1} \rho^{2}
$$

* Can be Corrected
* Does not Affect Image Quality
- That's the End of the Easy Ones

Spherical Aberration

- First Quartic Term

$$
\Delta_{s a}=c_{1} \rho^{4} \quad(\text { Spherical Aberration })
$$

- Analysis
$-\rho^{2}$ is Focus
$-c_{1} \rho^{2} \rho^{2}$ Means Focus Varies With ρ^{2}
- Different Focus for Different Parts of Pupil: Blur
- Blur Occurs Even for $x=0$

Distortion

- Quartic Terms

$$
\left.\Delta_{d}=c_{4} x^{3} \rho \cos \phi \quad \text { (Distortion }\right)
$$

- Analysis
- $\rho \cos \phi$ Is Wavefront Tilt
- $c_{4} x^{3} \rho \cos \phi$ Means Tilt Varies with x^{3}
- Tilt Increases $\left(C_{4}>0\right)$ or Decreases $\left(C_{4}<0\right)$ as x^{3}
- No Error at $x=0$

Coma

- Quartic Terms

$$
\Delta_{c}=c_{5} x \rho^{3} \cos ^{3} \phi
$$

$$
x
$$

- Analysis
$-\rho \cos \phi$ Is Wavefront Tilt
$-c_{5} x \rho^{2} \cos ^{2} \phi \rho \cos \phi$ Means Tilt Varies
* Linearly with x (No Error at $x=0$)
* Quadratically with $\rho \cos \phi \quad$ (Symmetric in Pupil)
- Comet-Like Image of a Point

Field Curvature and Astigmatism

- Quartic Terms

$$
\Delta_{f c a}=c_{2} x^{2} \rho^{2} \cos ^{2} \phi+c_{3} x^{2} \rho^{2}
$$

(Field Curvature and Astigmatism)

- Analysis
$-\rho^{2}$ is Focus
$-c_{3} x^{2} \rho^{2}$ Means Focus Varies with $c_{3} x^{2}$ (Field Curvature)
$-c_{2} x^{2} \cos ^{2} \phi \rho^{2}$ Means Focus Varies with $c_{2} x^{2} \cos ^{2} \phi$
(Astigmatism in $\cos ^{2} \phi$)
- No Effect at $x=0$
- Astigmatism Increases with x^{2}

Astigmatism Examples (Ray Tracing)

$z=8.0$

$$
z=9.2
$$

y

$z=8.3$

-1.48	
-1.5	8
-1.52	
$-\mathbf{0 . 0 2 0 0 . 0 2}$	
y	

$z=9.5$ (tan image)

$z=10.1$

$z=8.6$ (sag image)

$$
\begin{array}{r}
-1.52 \\
-1.54 \\
-1.56 \\
-\mathbf{0 . 0 2 0 0 . 0 2} \\
y
\end{array}
$$

$$
z=9.8
$$

Summary

"Deliberate Astigmatism"

- Setup
- Cylindrical Lens
- (With Spherical?)
- Ellipsoidal Lens
- Result
- Astigmatism On Axis
- Different Paraxial Foci
- Some Applications
- Eyes and Eyeglasses
- CD Player Focusing

FOR	SPHENICAL	CYLINDRICAL	AXIS	PRISM	BASE
DISTANCE OD	+050	-100	96		
OS	to25	-100	82		
NEAR OD	$+175$				
OS	+175				

Seidel Aberrations Summary

	x^{0}	x^{1}	x^{2}	x^{3}
ρ^{1}	Tilt			Distortion
ρ^{2}	Focus		F.C. \& Astig.	
ρ^{3}		Coma		
ρ^{4}	Spherical			

Expressions for aberrations. Aberrations are characterized according to their dependence on x and ρ.

On Axis the Only Aberration is Spherical

Spherical Aberration in a Thin Lens: Coddington Factors

- Given s and s^{\prime} What is the Best Thin Lens?

$$
\frac{1}{f}=\frac{1}{s}+\frac{1}{s^{\prime}} \quad \frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

- Two Unknowns, r_{1} and r_{2}
- Definition: Coddington Position Factor

$$
p=\frac{s^{\prime}-s}{s^{\prime}+s}
$$

- Coddington Shape Factor

$$
q=\frac{r_{2}-r_{1}}{r_{2}+r_{1}}
$$

Spherical Aberration in a Thin Lens: Computing Aberration

- Equations for Surface Radii

$$
\begin{gathered}
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \\
r_{1}=2 f \frac{q}{q+1}(n-1) \quad r_{2}=-2 f \frac{q}{q-1}(n-1)
\end{gathered}
$$

- Longitudinal Aberration a Function of Height in Pupil

$$
L_{s}=\frac{1}{s^{\prime}\left(x_{1}\right)}-\frac{1}{s^{\prime}(0)}=
$$

$$
\frac{x_{1}^{2}}{8 f^{3}} \frac{1}{n(n-1)}\left(\frac{n+2}{n-1} q^{2}+4(n+1) p q+(3 n+2)(n-1) p^{2}+\frac{n^{3}}{n-1}\right)
$$

Spherical Aberration in a Thin Lens: Aberration Distances

- Focal Change in Diopters

$$
\frac{1}{s^{\prime}\left(x_{1}\right)}-\frac{1}{s^{\prime}(0)}=\frac{s^{\prime}(0)-s^{\prime}\left(x_{1}\right)}{s^{\prime}\left(x_{1}\right) s^{\prime}(0)} \approx \frac{s^{\prime}(0)-s^{\prime}\left(x_{1}\right)}{s^{\prime}(0)^{2}}
$$

- Displacement of Focal Position

$$
\Delta s^{\prime}\left(x_{1}\right) \approx\left[s^{\prime}(0)\right]^{2} L_{s}\left(x_{1}\right)
$$

- Transverse Displacement

$$
\Delta x\left(x_{1}\right)=x_{1} \frac{\Delta s^{\prime}\left(x_{1}\right)}{s^{\prime}(0)}
$$

Spherical Aberration in a Thin Lens: Minimizing Aberration

- Set Derivative to Zero

$$
\frac{d L_{s}}{d q}=0
$$

- Solve for Best q

$$
q_{o p t}=-\frac{2\left(n^{2}-1\right) p}{n+2}
$$

- Transverse Aberration: Varies with $N A^{3}$

$$
\Delta x\left(x_{1}\right)=\frac{x_{1}^{3} s^{\prime}(0)}{8 f^{3}}\left[\frac{-n p^{2}}{n+2}+\left(\frac{n}{n-1}\right)\right]
$$

Spherical Aberration Examples

Minimum May be Good Enough (or not)

$\Delta X \propto x_{1}^{3}$
D.L. $\propto 1 / x_{1}$

Spherical Aberration in a Thin Lens: Designing the Lens

Guideline: Share the Bending

A. Correct Orientation

z, Axial Position
B. Reversed

Chromatic Aberration

- Focal Length Depends on Index of Refraction
- Index of Refraction Depends on Wavelength
- See Glass Map in Ch. 1
- Different Colors Have Different Focal Lengths
- Important for White Light Spectrum or a Portion of It
- Important for Multi-Wavelength Systems
(eg. Fluorescence, $\lambda_{\text {excitation }} \neq \lambda_{\text {emission }}$)
- Important for Short Pulses ($\delta f=1 / \delta t$): Remember

$$
\frac{\delta \lambda}{\lambda}=\frac{\delta f}{f}=\frac{1}{f \delta t}=\frac{1}{\text { Cycles per Pulse }}
$$

- Correction is Possible
- Reflective Optics Eliminate Chromatic Aberration

Lens Design Ideas

When One Doesn't Work...
or "Let George Do It"

> Use Two (or more)
and Share the Bending
(The More the Better)
(Use Commercial Lenses)

or Try an Aspheric

