Optics for Engineers Chapter 5

Charles A. DiMarzio Northeastern University

Sept. 2012

The Story So Far

• Small–Angle Approximation

$$\sin \theta = \theta = \tan \theta$$
 and $\cos \theta = 1$

- Perfect Imaging
 - Lens Equation (Image Location)
 - Magnification (Image Size)
 - Matrix Optics and Other Bookkeeping Tricks
 - Point Images as Point, or ...
 - Image Position, X', Independent of Pupil Position, X_1

Using Snell's Law Exactly

- Example: Single Convex Air-to-Glass Interface
- Rays Do Not Intersect at a Single Point (or at all in 3D)
- Large "Shot Pattern" at "Paraxial" Focus
- "Best" Focus Translated

Looking Ahead: Diffraction

- Diffraction Theory (Ch. 8) Predicts a Minimum Spot Size
 - Rooted in Fundamental Physics

$$-pprox rac{\lambda}{D_{pupil}}z$$

- Ray Tracing Result Below this Limit is "Good Enough"
 - Characterized as "Diffraction-Limited"
- Larger Ray–Tracing Result Indicates Degraded Imaging
 - Can Characterize Roughly by "XDL"

Ray Tracing: Overview

- Setup: Launch a Fan of Rays (eg. Fill FOV and Pupil)
- Loop On Rays
 - Loop On Elements
 - * Translation (Straight–Line Propagation)
 - * Refraction or Reflection (Interfaces)
 - Close (End the Ray Calculation)
- Report (eg. Spot Size vs. Field Position)

Ray Tracing: Translation (1)

• Parametric Eq. for Ray

$$\mathbf{x} = \mathbf{x}_0 + \ell \hat{\mathbf{v}} \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \ell \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

• Surface Eq. (Eg. Sphere)

$$(\mathbf{x} - \mathbf{x}_c) \cdot (\mathbf{x} - \mathbf{x}_c) = r^2$$
 $x^2 + y^2 + (z - z_c)^2 = r^2$

• Combine to Find Intersection

$$\hat{\mathbf{v}} \cdot \hat{\mathbf{v}}\ell^2 + 2(\mathbf{x}_0 - \mathbf{x}_c) \cdot \hat{\mathbf{v}}\ell + (\mathbf{x}_0 - \mathbf{x}_c) \cdot (\mathbf{x}_0 - \mathbf{x}_c) - r^2 = 0$$
$$u^2\ell^2 + v^2\ell^2 + w^2\ell^2 + 2x_0u\ell + 2y_0v\ell + 2(z_0 - z_c)w\ell + x_0^2 + y_0^2 + (z_0 - z_c)^2 - r^2 = 0$$

Ray Tracing: Translation (2)

 \bullet Solution (Quadratic in ℓ

$$a_q\ell^2 + b_q\ell + c_q = 0,$$

$$a_q = \hat{\mathbf{v}} \cdot \hat{\mathbf{v}} = 1 \qquad b_q = 2 \left(\mathbf{x}_0 - \mathbf{x}_c \right) \cdot \hat{\mathbf{v}}$$
$$c_q = \left(\mathbf{x}_0 - \mathbf{x}_c \right) \cdot \left(\mathbf{x}_0 - \mathbf{x}_c \right) - r^2$$

• Zero to Two Real Solutions

$$\ell = \frac{-b_q \pm \sqrt{b_q^2 - 4a_q c_q}}{2a_q}$$

• Pick the "Right" One and Find Intersection

$$\mathbf{x}_A = \mathbf{x}_0 + \ell \hat{\mathbf{v}}$$

Ray Tracing: Refraction

• Find the Normal in Order to Apply Snell's Law

$$\hat{\mathbf{n}} = rac{\mathbf{x} - \mathbf{x}_c}{\sqrt{(\mathbf{x} - \mathbf{x}_c) \cdot (\mathbf{x} - \mathbf{x}_c)}}$$

• New Origin from Translation Calculation

X_A

• Compute the New Direction (Snell's Law in Vector Notation)

$$\hat{\mathbf{v}}' = \frac{n}{n'}\hat{\mathbf{v}} + \left[\sqrt{1 - \left(\frac{n}{n'}\right)^2 \left[1 - (\hat{\mathbf{v}} \cdot \hat{\mathbf{n}})^2\right]} - \frac{n}{n'}\hat{\mathbf{v}} \cdot \hat{\mathbf{n}}\right]\hat{\mathbf{n}}$$

Ray Tracing: Close

- After Iterating Translation and Refraction as Needed...
- Answer Some Question
 - "Where is Intersection with Paraxial Focal Plane?" ...

$$\mathbf{x}_B \cdot \hat{z} = z_{close}$$

$$(\mathbf{x}_A + \ell \hat{\mathbf{v}}_1) \cdot \hat{z} = z_{close}$$

- or Any of a Collection of More Complicated Questions

Ray Tracing: Report (and More)

- Spot-Diagram (*eg. vs.* Field Position or Depth)
- Through–Focus Spot–Diagrams
- RMS or Maximum Spot Size (eg. XDL)
- Optical Path Length (*eg. vs.* Field Position)
- Many More
- Advanced Ideas (Many Commercial Programs)
 - Optimization (eg. Vary Radii of Curvature and Distances)
 - Use Vendor's Stock Lenses
 - Use Vendor's Existing Tools
- Commercial Optical Designers

Ellipsoidal Mirror (1)

1111 10 • Path: S+b -S to Surface to S' 0 X • Fermat's Principle: |s-s'|S' - Minimal Time -10• Imaging: 10 **30** 20 0 All Paths Minimal Ζ $\sqrt{(z-s)^2 + x^2 + y^2} + \sqrt{(z-s')^2 + x^2 + y^2} = s + s'$

Ellipsoidal Mirror (2)

Ellipsoidal Mirror (3)

• Ellipse

$$\left(\frac{z-a}{a}\right)^2 + \left(\frac{x}{b}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$
$$f = \frac{b^2}{2a}$$

• Best-Fit Sphere

- Ellipse Perfect for One Point Object
- Sphere or Parabola
 May be Best Overall

Mirror Aberrations: Definitions

- Match Second Derivatives at Origin (or See Previous Slide)
- Perfect Ellipsoid Defined by z, and Δ Represents OPL Error

$$z_{sphere} = z + \Delta_{sphere}/2 \qquad z_{para} = z + \Delta_{para}/2$$

$$(z - a)^2 = a^2 - \left(\frac{a}{b}\right)^2 \left(x^2 + y^2\right) \qquad \text{(Ellipsoid)}$$

$$\left(z + \frac{\Delta_{sphere}}{2} - r\right)^2 = r^2 - x^2 - y^2 \qquad \text{(Sphere)}$$

$$z + \frac{\Delta_{para}}{2} = \frac{x}{4f} \qquad \text{(Paraboloid)}$$

Mirror Aberrations: OPL Errors

Summary of Mirror Aberrations

- An ellipsoidal mirror is ideal to image one point to another.
- For any other pair of points, aberrations will exist.
- A paraboloidal mirror is ideal to image a point at its focus to infinity.
- Spherical and paraboloidal mirrors may be good approximations to ellipsoidal ones for certain situations and the aberrations can be computed as surface errors.
- Aberrations are fundamental to optical systems. Although it is possible to correct them perfectly for one object point, in an image with non-zero pupil and field of view, there will always be some aberration.
- Aberrations generally increase with increasing field of view and increasing numerical aperture.

Seidel Aberrations and OPL

• Small-Angle Approximation

$\sin\theta\approx\theta$

• Next-Best Approximation (Third Order)

$$\sin\theta\approx\theta+\frac{\theta^3}{3!}$$

• Wavefront Aberrations: $\Delta = \text{Error in OPL}(eg. \text{Tilt})$

$$\frac{d\Delta_{tilt}}{dx_1} = a_1 \approx \delta\theta$$

• Approach: Δ vs. Field Position and Pupil Position

General Expression for Error

The Easy Terms

• Constant Term (The Very Easy One)

"Piston" (Just a Phase Change)

 a_0

- Quadratic Term
 - Defocus

$b_1 \rho^2$

- * Can be Corrected
- * Does not Affect Image Quality
- That's the End of the Easy Ones

Spherical Aberration

• First Quartic Term

$$\Delta_{sa} = c_1 \rho^4 \qquad (Spherical Aberration)$$

- Analysis
 - ρ^2 is Focus
 - $c_1 \rho^2 \rho^2$ Means Focus Varies With ρ^2
 - Different Focus for Different Parts of Pupil: Blur
 - Blur Occurs Even for x = 0

Distortion

• Quartic Terms

$$\Delta_d = c_4 x^3 \rho \cos \phi \qquad \text{(Distortion)}$$

- Analysis
 - $\rho \cos \phi$ Is Wavefront Tilt
 - $-c_4 x^3 \rho \cos \phi$ Means Tilt Varies with x^3
 - Tilt Increases $(C_4 > 0)$ or Decreases $(C_4 < 0)$ as x^3
 - No Error at x = 0

Coma

- Analysis
 - $-\rho\cos\phi$ Is Wavefront Tilt
 - $c_5 x \rho^2 \cos^2 \phi \rho \cos \phi$ Means Tilt Varies
 - \ast Linearly with x
 - (No Error at x = 0)
 - * Quadratically with $\rho \cos \phi$ (Symmetric in Pupil)
 - Comet–Like Image of a Point

Field Curvature and Astigmatism

• Quartic Terms

$$\Delta_{fca} = c_2 x^2 \rho^2 \cos^2 \phi + c_3 x^2 \rho^2$$

(Field Curvature and Astigmatism)

- Analysis
 - $-\rho^2$ is Focus
 - $c_3 x^2 \rho^2$ Means Focus Varies with $c_3 x^2$ (Field Curvature)
 - $c_2 x^2 \cos^2 \phi \rho^2$ Means Focus Varies with $c_2 x^2 \cos^2 \phi$
 - (Astigmatism in $\cos^2 \phi$)
 - No Effect at x = 0
 - Astigmatism Increases with x^2

Astigmatism Examples (Ray Tracing)

"Deliberate Astigmatism"

- Setup
 - Cylindrical Lens
 - (With Spherical?)
 - Ellipsoidal Lens
- Result
 - Astigmatism On Axis
 - Different Paraxial Foci
- Some Applications
 - Eyes and Eyeglasses
 - CD Player Focusing

	Op	hthalmolo	bgy		
an Breeder	1	Bo	Boston, MA 02215		
D IMARZ IC	CHARLES, CHARLES	B Bch			
Contraction of the local division of the loc		04/30	/12		- 1
	Same and Same	Time)ate	e: <u>4</u>)	30/12
L Deserve		And and a second second	1000 C		-
Sign		-			
Sign		_	-		
k Sign		-			
FOR	SPHERICAL	CYLINDRICAL	AXIS	PRISM	BASE
tx —	SPHERICAL +OSO	CYLINDRICAL - 100	AXIS 96	PRISM	BASE
TOR	SPHERICAL +OSO +OSO		01	PRISM	BASE
EOR DISTANCE OD	SPHERICAL +OSO +ORS +ORS	-100	96	PRISM	BASE

Seidel Aberrations Summary

	x^0	x^1	x ²	x ³
ρ^1	Tilt			Distortion
ρ^2	Focus		F. C. & Astig.	
ρ^3		Coma		
ρ^4	Spherical			

Expressions for aberrations. Aberrations are characterized according to their dependence on x and ρ .

On Axis the Only Aberration is Spherical

Spherical Aberration in a Thin Lens: Coddington Factors

• Given s and s' What is the Best Thin Lens?

$$\frac{1}{f} = \frac{1}{s} + \frac{1}{s'}$$
 $\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$

- Two Unknowns, r_1 and r_2
- Definition: Coddington Position Factor

$$p = \frac{s' - s}{s' + s}$$

• Coddington Shape Factor

$$q = \frac{r_2 - r_1}{r_2 + r_1}$$

Spherical Aberration in a Thin Lens: Computing Aberration

• Equations for Surface Radii

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

$$r_1 = 2f \frac{q}{q+1} (n-1)$$
 $r_2 = -2f \frac{q}{q-1} (n-1)$

• Longitudinal Aberration a Function of Height in Pupil

$$L_s = \frac{1}{s'(x_1)} - \frac{1}{s'(0)} =$$

$$\frac{x_1^2}{8f^3} \frac{1}{n(n-1)} \left(\frac{n+2}{n-1}q^2 + 4(n+1)pq + (3n+2)(n-1)p^2 + \frac{n^3}{n-1} \right)$$

Spherical Aberration in a Thin Lens: Aberration Distances

• Focal Change in Diopters

$$\frac{1}{s'(x_1)} - \frac{1}{s'(0)} = \frac{s'(0) - s'(x_1)}{s'(x_1)s'(0)} \approx \frac{s'(0) - s'(x_1)}{s'(0)^2}$$

• Displacement of Focal Position

$$\Delta s'(x_1) \approx \left[s'(0)\right]^2 L_s(x_1)$$

• Transverse Displacement

$$\Delta x \left(x_1 \right) = x_1 \frac{\Delta s' \left(x_1 \right)}{s'(0)}$$

Spherical Aberration in a Thin Lens: Minimizing Aberration

Set Derivative to Zero

$$\frac{dL_s}{dq} = 0$$

• Solve for Best q

$$q_{opt} = -\frac{2\left(n^2 - 1\right)p}{n+2}$$

• Transverse Aberration: Varies with NA^3

$$\Delta x (x_1) = \frac{x_1^3 s'(0)}{8f^3} \left[\frac{-np^2}{n+2} + \left(\frac{n}{n-1} \right) \right]$$

Spherical Aberration Examples

Spherical Aberration in a Thin Lens: Designing the Lens

Guideline: Share the Bending

Chromatic Aberration

- Focal Length Depends on Index of Refraction
- Index of Refraction Depends on Wavelength
 - See Glass Map in Ch. 1
- Different Colors Have Different Focal Lengths
 - Important for White Light Spectrum or a Portion of It
 - Important for Multi-Wavelength Systems (eg. Fluorescence, $\lambda_{excitation} \neq \lambda_{emission}$)
 - Important for Short Pulses ($\delta f = 1/\delta t$): Remember

$$\frac{\delta\lambda}{\lambda} = \frac{\delta f}{f} = \frac{1}{f\delta t} = \frac{1}{\text{Cycles per Pulse}}$$

- Correction is Possible
- Reflective Optics Eliminate Chromatic Aberration

Lens Design Ideas

