Optics for Engineers Chapter 6

Charles A. DiMarzio
Northeastern University

Sept. 2012

Overview of Polarized Light

- Fundamentals
- Devices (What They Do)
- Physics (How They Do It)
- Interfaces
- Jones Matrices (Bookkeeping)
- Coherency Matrices (Partial Polarization)
- Mueller Matrices
 (More Bookkeeping)

Transverse Waves

- From Ch. 1

$$
\begin{array}{ccc}
\mathbf{k} \times \mathbf{E}=-\omega \mathrm{B} & \text { (1) } \mathrm{B} \perp \mathbf{k} & \text { (2) } \mathrm{B} \perp \mathbf{E} \\
\mathrm{k} \times \mathbf{H}=\omega \mathrm{D} & \text { (1) } \mathrm{D} \perp \mathbf{k} & \text { (1) } \mathrm{D} \perp \mathbf{H} \\
\mathrm{E} \times \mathrm{B}=\mathrm{S} & \text { (2) } \mathrm{S} \perp \mathbf{E} & \text { (2) } \mathrm{S} \perp \mathrm{~B}
\end{array}
$$

- Conclusions
$-\mathbf{H}, \mathrm{D}, \mathrm{k}$ mutually perpendicular (from 1)
- E, B S mutually perpendicular (from 1)
- H || B at Optical Wavelengths
- D || $\mathbf{E}, \mathrm{k}| | \mathrm{S}$ Not Required
- Only Two Numbers Specify Field for Known k

Linear Polarization

- Vertical and Horizontal Basis

$$
\mathbf{E}=\left[E_{v} \widehat{v}+E_{h} \hat{h}\right] e^{j(\omega t-k z)}
$$

- x, y Basis

$$
\begin{aligned}
\mathrm{E} & =\left[E_{x} \widehat{x}+E_{y} \widehat{y}\right] e^{j(\omega t-k z)} \\
\mathbf{H} & =\left[-\frac{E_{y}}{Z} \widehat{x}+\frac{E_{x}}{Z} \widehat{y}\right] e^{j(\omega t-k z)}
\end{aligned}
$$

S,P Basis at an Interface

- P Means E Parallel to Plane of Incidence (More Later)
- S Means E Perpendicular (Senkrecht) to Plane of Incidence

$$
\mathrm{E}=\left[E_{s} \widehat{s}+E_{p} \widehat{p}\right] e^{j(\omega t-k z)}
$$

P Polarization (TM)

S Polarization (TE)

Polarization Labels

Circular Polarization

- Right-Hand Circular

$$
\begin{gathered}
\mathbf{E}_{r}=\frac{E_{0}}{\sqrt{2}}[\widehat{x}+u \hat{y}] e^{j(\omega t-k z)} \\
(\mathbf{E})_{T D}=\frac{E_{0}}{\sqrt{2}} \Re\left[\widehat{x}\left(e^{j(\omega t)}+e^{-j(\omega t)}\right) j \hat{y}\left(e^{j(\omega t)}+e^{j(\omega t)}\right)\right] \\
=\widehat{x} E_{0} \sqrt{2} \cos \omega t+\widehat{y} E_{0} \sqrt{2} \sin \omega t
\end{gathered}
$$

- Viewed from Source, E Rotates Like Right-Hand Screw
- Left-Hand Circular

$$
\mathbf{E}_{\ell}=\left[E_{0} \widehat{x}-j E_{0} \widehat{y}\right] e^{j(\omega t-k z)} .
$$

Superposition

- General Superposition

$$
\begin{gathered}
\mathbf{E}=A_{r} \frac{1}{\sqrt{2}} \mathbf{E}_{r}+A_{\ell} \frac{1}{\sqrt{2}} \mathbf{E}_{\ell} \quad \text { Circular Basis } \\
\mathrm{E}=A_{P} \frac{1}{\sqrt{2}} \mathbf{E}_{P}+A_{S} \frac{1}{\sqrt{2}} \mathbf{E}_{S} \quad \text { P,S Basis }
\end{gathered}
$$

- Example: X Polarization in Circular Basis

$$
\frac{1}{\sqrt{2}} \mathbf{E}_{r}+\frac{1}{\sqrt{2}} \mathbf{E}_{\ell}=E_{x} \widehat{x}
$$

- Q: What is $E_{y} \hat{y}$ in a Circular Basis?

Random Polarization

- Random or Unpolarized Light
- Most Natural Light Is at Least Partially Random...
- But it Is Harder to Describe

$$
\left\langle E_{x}\right\rangle=\left\langle E_{y}\right\rangle=0 \quad\left\langle E_{x} E_{x}^{*}\right\rangle=\left\langle E_{y} E_{y}^{*}\right\rangle=\frac{S}{2} Z \quad\left\langle E_{x} E_{y}^{*}\right\rangle=0
$$

- More on this Later

Polarizing Devices

- Ideal Polarizers

Pass or Block

- Others Transform
- Linear Polarizer
- e.g. Pass x, Block y
- Characterization
* Direction
(x, y, other)
* Insertion Loss
(Pass Direction)
* Extinction (Block Direction)
- The Waveplate (Retarder)
- Change Relative Phase
- Characterization * Axis Direction * Phase Difference * Insertion Loss
- The Rotator
(Circular Retarder)
- Rotate Linear Pol.
- Phase Change E_{r} vs. E_{ℓ}
- Characterization
* Rotation Angle or Phase Shift
* Insertion Loss

Linear Polarizer

- Input Polarization Example (θ Direction)

$$
\mathbf{E}_{i n}=E_{x} \widehat{x}+E_{y} \widehat{y}=E_{o}[\cos (\theta) \widehat{x}+\sin (\theta) \widehat{y}]
$$

- Perfect x Polarizer

$$
\mathbf{E}_{\text {out }}=1 \times E_{x} \widehat{x}+0 \times E_{y} \widehat{y}=E_{o} \cos (\theta) \widehat{x}
$$

- Irradiance

$$
\left|\mathbf{E}_{i n}\right|^{2}=E_{o}^{2} \quad\left|\mathbf{E}_{\text {out }}\right|^{2}=E_{o}^{2} \cos ^{2} \theta
$$

- Transmission (Malus Law for This Case)

$$
T=\frac{\left|\mathbf{E}_{\text {out }}\right|^{2}}{\left|\mathbf{E}_{\text {in }}\right|^{2}} \quad T=\cos ^{2} \theta
$$

Polarizers in "Real Life"

- General Equation

$$
\mathbf{E}_{o u t}=\tau_{x} \times E_{x} \widehat{x}+\tau_{y} \times E_{y} \widehat{y} \quad \tau_{x} \approx 1 \quad \tau_{y} \approx 0
$$

- Insertion Loss

$$
1-\left|\tau_{x}\right|^{2} \quad \text { or in } \mathrm{dB}, \quad 10 \log _{10}\left|\tau_{x}\right|^{2}
$$

- Extinction

$$
\left|\tau_{y}\right|^{2} \quad \text { or in dB, } \quad 10 \log _{10}\left|\tau_{y}\right|^{2}
$$

- Extinction Ratio

$$
\left|\tau_{x}\right|^{2} /\left|\tau_{y}\right|^{2}
$$

- Good Extinction $\approx 10^{-5}$ or 45 dB

The Wave Plate

- Input Polarization Example (θ Direction Again)

$$
\mathrm{E}_{i n}=E_{x} \widehat{x}+E_{y} \widehat{y}=E_{o}[\cos (\theta) \hat{x}+\sin (\theta) \widehat{y}]
$$

- Half-Wave Plate

$$
\begin{gathered}
\tau_{x}=1 \quad \tau_{y}=-1 \\
\mathbf{E}_{h w p}=E_{o}[\cos (\theta) \hat{x}-\sin (\theta) \hat{y}] \quad \angle \mathbf{E}_{\text {out }}=-\theta
\end{gathered}
$$

- Quarter-Wave Plate

$$
\tau_{x}=1 \quad \tau_{y}=j,
$$

$$
\mathbf{E}_{q w p}=E_{o}[\cos (\theta) \hat{x}+j \sin (\theta) \hat{y}]
$$

- Circular Polarization at $\theta=45^{\circ}$ (Q: Left or Right?)
- Other Waveplates Later

Rotator

- General Equation

$$
\binom{E_{x: \text { out }}}{E_{y: \text { out }}}=\left(\begin{array}{cc}
\cos \zeta_{r} & -\sin \zeta_{r} \\
\sin \zeta_{r} & \cos \zeta_{r}
\end{array}\right)\binom{E_{x: \text { in }}}{E_{y: \text { in }}}
$$

Polarization Rotator

Rotation of Coordinates (Later)

Interaction with Materials

- Field $\mathbf{E}=E_{0} \hat{x} e^{j \omega t}$
- Force -eE
- Acceleration

$$
\frac{d^{2} x}{d t^{2}}=-\mathrm{E} e / m-\kappa_{x} x
$$

- Differential Equation

$$
\frac{d^{2} x}{d t^{2}}-\frac{m}{\kappa_{x} e} x=\mathrm{E}
$$

- Polarization

$$
\begin{gathered}
\mathbf{P}(t)=-n_{v} e x(t) \widehat{x} \\
P=\epsilon_{0} \chi E
\end{gathered}
$$

- Displacement

$$
\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P}=\epsilon \mathbf{E}=\epsilon_{0}(1+\chi) \mathbf{E}
$$

- Anisotropic "Springs" (Tensor χ)

$$
\begin{gathered}
\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P}= \\
\varepsilon \mathbf{E}=\epsilon_{0}(1+\chi) \mathbf{E}
\end{gathered}
$$

Dielectric Tensor

- General and Diagonal (Related by Coordinate Transform)

$$
\varepsilon=\left(\begin{array}{ccc}
\epsilon_{x x} & \epsilon_{x y} & \epsilon_{x z} \\
\epsilon_{y x} & \epsilon_{y y} & \epsilon_{y z} \\
\epsilon_{z x} & \epsilon_{z y} & \epsilon_{z z}
\end{array}\right) \quad \varepsilon=\left(\begin{array}{ccc}
\epsilon_{x x} & 0 & 0 \\
0 & \epsilon_{y y} & 0 \\
0 & 0 & \epsilon_{z z}
\end{array}\right)
$$

- In Isotropic Media, D || E; No Coupling Between Orthogonal States
- In Anisotropic Media, Polarization Not || Principal Axes; No Coupling
- Coupling Cases
- Resolve Input into Two Components
- Solve
- Add Results

Light at an Interface: Boundary Conditions

- Boundary Conditions
- See Chapter 1
- Apply to S and P
- Relate E and H
- Incident
- Reflected and Transmitted
- Maxwell's Equations
- Next Page

$$
\begin{align*}
\nabla \cdot \mathbf{D}=\rho=0 & \rightarrow \Delta D_{\text {normal }}=0 \tag{1}\\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \rightarrow \Delta E_{\text {tangential }}=0 \tag{2}\\
\nabla \cdot \mathbf{B}=0 & \rightarrow \Delta B_{\text {normal }}=0 \tag{3}\\
\nabla \times \mathbf{H}=\mathrm{J}+\frac{\partial \mathbf{D}}{\partial t}=\frac{\partial D}{\partial t} & \rightarrow \Delta H_{\text {tangential }}=0 \tag{4}
\end{align*}
$$

Light at an Interface: Field Relationships (S Pol)

$$
\mathbf{E}_{i}=E_{i} \hat{x} e^{-j k n_{1}\left(\sin \theta_{i} y+\cos \theta_{i} z\right)} \quad \text { Incident Wave }
$$

$$
\mathbf{H}_{i}=\frac{E_{i}}{Z_{0} / n_{1}}\left(\sin \theta_{i} \hat{z}-\cos \theta_{i} \hat{y}\right) e^{-j k n_{1}\left(\sin \theta_{i} y+\cos \theta_{i} z\right)}
$$

$$
\mathbf{E}_{r}=E_{r} \widehat{x} e^{-j k n_{1}\left(\sin \theta_{r} y-\cos \theta_{i} z\right)} \quad \text { Reflected Wave }
$$

$$
\mathbf{H}_{r}=\frac{E_{r}}{Z_{0} / n_{1}}\left(\sin \theta_{r} \hat{z}+\cos \theta_{r} \hat{y}\right) e^{-j k n_{1}\left(\sin \theta_{r} y-\cos \theta_{i} z\right)}
$$

$$
\begin{array}{r}
\mathbf{E}_{t}=E_{t} \widehat{x} e^{-j k n_{2}\left(\sin \theta_{t} y+\cos \theta_{t} z\right)} \quad \text { Transmitted Wave } \\
\mathbf{H}_{i}=\frac{E_{t}}{Z_{0} / n_{2}}\left(\sin \theta_{t} \hat{z}-\cos \theta_{t} \hat{y}\right) e^{-j k n_{2}\left(\sin \theta_{t} y+\cos \theta_{t} z\right)}
\end{array}
$$

Snell's Law Again: Where the Light Goes

- Boundary Conditions Must Apply at All y (Along Boundary)
- Pick Electric Fields (or Magnetic)
- Exponents Cannot Vary with y

$$
k n_{1} \sin \theta_{i}=k n_{1} \sin \theta_{r}=k n_{2} \sin \theta_{t}
$$

- Reflection Angle

$$
\theta_{i}=\theta_{r}
$$

- Transmission Angle (Snell's Law)

$$
n_{1} \sin \theta_{i}=n_{2} \sin \theta_{t}
$$

Fresnel Coefficients: How Much Light Goes Each Way (1)

- Magnetic Field Boundary Condtions (S Polarization Only)

$$
\frac{E_{r}}{Z_{0} / n_{1}} \cos \theta_{i}-\frac{E_{i}}{Z_{0} / n_{1}} \cos \theta_{i}=\frac{E_{t}}{Z_{0} / n_{2}} \cos \theta_{t}
$$

- Eliminate θ_{t} (Other Approaches Possible)

$$
\cos \theta_{t}=\sqrt{1-\sin ^{2} \theta_{i}\left(\frac{n_{1}}{n_{2}}\right)^{2}}
$$

$$
E_{i}-E_{r}=E_{t} \frac{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}}
$$

- Electric Field Boundary Conditions (S Polarization Only)

$$
E_{i}+E_{r}=E_{t}
$$

Fresnel Coefficients: How Much Light Goes Each Way (2)

- Boundary Condtions (Previous Page)

$$
E_{i}-E_{r}=E_{t} \frac{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}} \quad E_{i}+E_{r}=E_{t}
$$

- Difference Divided by Sum

$$
\rho_{s}=\frac{E_{r}}{E_{i}}=\frac{\cos \theta_{i}-\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}} \quad \tau_{s}=1+\rho_{s}
$$

- Note that Fields are Not Conserved $(\tau+\rho \neq 1)$

Fresnel Coefficents Summarized

- S Polarization (Just Derived)

$$
\rho_{s}=\frac{E_{r}}{E_{i}}=\frac{\cos \theta_{i}-\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}} \quad \tau_{s}=1+\rho_{s}
$$

- P Polarization (Trust Me)

$$
\rho_{p}=\frac{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}-\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}}{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}-\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}} \quad \tau_{p}=\left(1+\rho_{p}\right) \frac{n_{1}}{n_{2}}
$$

Air To Glass

Brewster's Angle

- $\rho_{p}=0$ Means No Reflection
- 100\% Transmission (Different from $\tau_{p}=1$ Q: Why?

$$
\tan \theta_{B}=\frac{n_{2}}{n_{1}}
$$

- Application: Windows in Laser (Polarized Laser)

- Q: What is the Direction of Polarization?

Critical Angle

- Critical Angle $\left(n_{1}>n_{2}\right)$

- Brewster's Angle

Irradiance and Power

- Irradiance

$$
I=\frac{|\mathbf{E}|^{2}}{Z}, \quad I=\frac{d P}{d A^{\prime}}=\frac{d P}{\cos \theta d A}
$$

- Reflection

$$
\frac{I_{r}}{I_{i}}=R=\rho \rho^{*}
$$

- Transsmision

$$
\frac{I_{t}}{I_{i}}=T=\tau \tau^{*} \frac{Z_{1}}{Z_{2}} \frac{\cos \theta_{t}}{\cos \theta_{i}}=\tau \tau^{*} \frac{n_{2}}{n_{1}} \frac{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}}
$$

- Conservation

$$
T+R=1
$$

Fresnel Reflection at Normal Incidence

- Reflection

$$
R(0)=\left|\frac{\left(n_{2} / n_{1}\right)-1}{\left(n_{2} / n_{1}\right)+1}\right|^{2}
$$

- Special Case (Air to Medium)

$$
R(0)=\left|\frac{n-1}{n+1}\right|^{2}
$$

- Examples

Air-Water:	$n=1.33$	$R(0)=0.02$
Air-Glass:	$n=1.5$	$R(0)=0.04$
Air-Germanium (IR):	$n=4$	$R(0)=0.36$

Air to Water (dB)

Air-Water:

$$
R(0)=0.04
$$

Generally:

$$
\begin{gathered}
R_{S}(0)=R_{p}(0) \\
R\left(90^{\circ}\right)=1
\end{gathered}
$$

Elsewhere

$$
\begin{gathered}
R_{S}(0)>R_{p}(0) \\
R_{p}\left(\theta_{b}\right)=0
\end{gathered}
$$

$R(\theta)$ for n to $n^{\prime}=R\left(\theta^{\prime}\right)$ for n^{\prime} to n

Polished-Floor Reflection

No Polarizer

Horizontal Polarizer

Q: Which is Which?

Vertical Polarizer

Air to Glass (dB)

Air to Germanium (dB)

Total Internal Reflection

- Fresnel Equations

$$
\rho_{s}=\frac{E_{r}}{E_{i}}=\frac{\cos \theta_{i}-\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}} \quad \rho_{p}=\frac{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}-\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}}{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}-\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}}
$$

- Beyond the Critical Angle $\left(\sin \theta>\frac{n_{2}}{n_{1}} \rightarrow \arg \sqrt{\bullet}<0\right)$

$$
\begin{gathered}
\mid \text { Numerator }|=| \text { Denominator } \mid \quad \text { (Both Polarizations) } \\
R=1 \quad T=0 \quad|\rho|=1 \quad \rho=e^{j \phi} \\
\tan \phi_{s}=-2 \frac{\sqrt{\sin ^{2} \theta_{i}-\left(\frac{n_{2}}{n_{1}}\right)^{2}}}{\cos \theta_{i}} \quad \tan \phi_{p}=2 \frac{\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}}{\sqrt{\sin ^{2} \theta_{i}-\left(\frac{n_{2}}{n_{1}}\right)^{2}}}
\end{gathered}
$$

Glass to Air (dB)

Glass to Air (Phase)

Glass to Air (Phase Difference)

Glass to Air

See Fresnel Rhomb Later in this Chapter for Application

Complex Index of Refraction

- Plane Wave

$$
E e^{j(\omega t-n \mathbf{k} \cdot \mathbf{r})}
$$

- Complex Index of Refraction, $n=n_{r}-j n_{i}$

$$
E e^{j\left(\omega t-n_{r} \mathbf{k} \cdot \mathbf{r}+j n_{i} \mathbf{k} \cdot \mathbf{r}\right)}=E e^{j\left(\omega t-n_{r} \mathbf{k} \cdot \mathbf{r}\right)} e^{-n_{i} \mathbf{k} \cdot \mathbf{r}}
$$

- Decaying Wave in the \mathbf{k} direction
- Boundary Conditions at an Interface (Again)
- Transverse k Conserved (Real and Imaginary)
- Input $n_{i} k_{\text {transverse }}=0$ Because $n_{i}=0$
- Output k Must Be in \widehat{z} Direction

$$
E e^{j\left(\omega t-n_{r} \mathbf{k} \cdot \mathbf{r}\right)} e^{-\left(n_{i} k\right) \hat{z} \cdot \mathbf{r}}
$$

Air to Metal (Power on Linear Scale)

Note Pseudo-Brewster Angle (Vertical Axis Begins at 0.1)

Air to Metal (Phase)

Air to Metal

Note Pseudo-Brewster Angle (Large Phase Change)

Devices for Polarization

- Polarizers Block One Polarization
- Reflect it
- Absorb it
- Waveplates Retard Phases of Linear Polarization
- Birefringence
- Total-Internal Reflection
- Rotators Retard Phases of Circular Polarization
- Chiral Molecules (Reciprocal, to Be Defined Later)
- Magneto-Optical Devices (Non-Reciprocal)

Brewster Plates

- At Brewster's Angle $T_{p}=1, T_{s}<T_{p}$

$$
\rho_{s}=\frac{\cos \theta_{i}-\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}}{\cos \theta_{i}+\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}}=\frac{1-\left(\frac{n_{2}}{n_{1}}\right)^{2}}{1+\left(\frac{n_{2}}{n_{1}}\right)^{2}} \quad R_{s}=\rho_{s} \rho_{s}^{*}=\left(\frac{1-\left(\frac{n_{2}}{n_{1}}\right)^{2}}{1+\left(\frac{n_{2}}{n_{1}}\right)^{2}}\right)^{2}
$$

- Transmission: $T_{p b p}^{2}=1$ (Neglecting Absorption)

$$
T_{s b p}^{2}=\left(1-\rho_{s} \rho_{s}^{*}\right)^{2}=\left[1-\left(\frac{1-\left(\frac{n_{2}}{n_{1}}\right)^{2}}{1+\left(\frac{n_{2}}{n_{1}}\right)^{2}}\right)^{2}\right]^{2}=\frac{16\left(\frac{n_{2}}{n_{1}}\right)^{4}}{\left[1+\left(\frac{n_{2}}{n_{1}}\right)^{2}\right]^{4}}
$$

Brewster Plates and Stacks

- Extinction Ratio (Absorption Cancels)

$$
\frac{T_{p b p}}{T_{s b p}}=\frac{\left[1+\left(\frac{n_{2}}{n_{1}}\right)^{2}\right]^{4}}{16\left(\frac{n_{2}}{n_{1}}\right)^{4}}
$$

- Glass in Air $R_{s} \approx 0.15$, Extinction ≈ 1.38 (Terrible)
- Germanium In Air $R_{s} \approx 0.78$, Extinction ≈ 20.4
- Stack of m Plates

$$
\left(T_{p b p} / T_{s b p}\right)^{m}
$$

- 10 Plates: 24.5 for Glass, 400 for Germanium

Tent Polarizers

- Avoid Dogleg Problem
- Multiple Pairs: Tent-in-a-Tent
- Plate Size Proportional to $1 / \tan \theta_{B}$ (Big?)

- Often Used for High Power
- More Practical for Infrared (Using Germanium)

Other Polarizers

- Wire Grid
- Conductive Cylinders
- Pass \perp Axes
- Diffraction Issues (Ch. 8)
- Low Power
- Extinction to 300
- Glan-Thompson
- Prism Polarizer
- Based on Birefringence
- Extinction Ratio to 10^{5}
- Limited Power? (Adhesive)
- Beamspitting Cubes
- Use Both Polarizations
- Fair Performance
- Moderate Power
- Polaroid H-Sheets
- Polyvinyl Alcohol/Iodine
- Similiar to Wire Grid
- Specification
* T\% Total
* HN-50 is Perfect
* HN for "Neutral"
* HR for Infrared
* Good = e.g. HN-42
* Normally Uncoated
- Limited Passband
- Limted Power
- Large Size
- Low Cost

Birefringence

- Two Indices of Refraction
- Different Ray Bending
(Double Image)
- Different Speeds
- Epsilon Tensor
- 3-D Matrix
- Can be Diagonalized
- Two or Three Eigenvalues * Uniaxial

$$
\varepsilon=\left(\begin{array}{ccc}
\epsilon_{x x} & 0 & 0 \\
0 & \epsilon_{y y} & 0 \\
0 & 0 & \epsilon_{y y}
\end{array}\right)
$$

- Ordinary Ray (y Polarized)
- Extraordinary Ray (x)
* Biaxial (All 3 Different)

Wave in Birefringent Crystal

- Before the Crystal $(z<0)$

$$
\mathbf{E}_{i n}=\left(E_{x i} \widehat{x}+E_{y i} \widehat{y}\right) e^{j(\omega t-k z)}
$$

- In the Crystal $(0<z<\ell)$

$$
\mathbf{E}=\tau_{1}\left(E_{x i} \widehat{x} e^{j\left(\omega t-k n_{x x} z\right)}+E_{y i} \widehat{y} e^{j\left(\omega t-k n_{y y} z\right)}\right)
$$

- At the End

$$
\mathbf{E}=\tau_{1}\left(E_{x i} \widehat{x} e^{j\left(\omega t-k n_{x x} \ell\right)}+E_{y i} \widehat{y} e^{j\left(\omega t-k n_{y y} \ell\right)}\right)
$$

- Beyond the Crystal $(\ell<z)$

$$
\mathbf{E}=\tau_{1} \tau_{2}\left(E_{x i} \widehat{x} e^{j\left[\omega t-k n_{x x} \ell-k(z-\ell)\right]}+E_{y i} \widehat{y} e^{j\left[\omega t-k n_{y y} \ell-k(z-\ell)\right]}\right)
$$

After the Birefringent Crystal

- From Previous Page

$$
\mathbf{E}=\tau_{1} \tau_{2}\left(E_{x i} \widehat{x} e^{j\left[\omega t-k n_{x x} \ell-k(z-\ell)\right]}+E_{y i} \hat{y} e^{j\left[\omega t-k n_{y y} \ell-k(z-\ell)\right]}\right)
$$

- Regroup

$$
\mathbf{E}=\tau_{1} \tau_{2}\left(E_{x i} e^{-j k\left(n_{x x}-1\right) \ell} \widehat{x}+E_{y i} e^{-j k\left(n_{y y}-1\right) \ell} \widehat{x}\right) e^{j(\omega t-k z)} \quad(\ell<z)
$$

- Simply

$$
\mathbf{E}_{o u t}=\left(E_{x o} \widehat{x}+E_{y o} \widehat{y}\right) e^{j(\omega t-k z)} \quad(\ell<z)
$$

with

$$
E_{x o}=\tau_{1} \tau_{2} E_{x i} e^{-j k\left(n_{x x}-1\right) \ell} \quad E_{y o}=\tau_{1} \tau_{2} E_{y i} e^{-j k\left(n_{y y}-1\right) \ell}
$$

- Phase Difference between $E_{x o}$ and $E_{y o}$

Phases at Output of Birefringent Crystal

- Previous Equation

$$
\begin{aligned}
& E_{x o}=\tau_{1} \tau_{2} E_{x i} e^{-j k\left(n_{x x}-1\right) \ell} \\
& E_{y o}=\tau_{1} \tau_{2} E_{y i} e^{-j k\left(n_{y y}-1\right) \ell}
\end{aligned}
$$

- Phase Difference

$$
\delta \phi=k \ell\left(n_{y y}-n_{x x}\right)
$$

- Half-Wave Plate

$$
\begin{gathered}
\delta \phi_{h w p}=\pi=k \ell\left(n_{y y}-n_{x x}\right) \\
\delta \phi_{h w p}=n_{y y} \ell-n_{x x} \ell=\frac{\lambda}{2}
\end{gathered}
$$

- Reflects Polarization
- Quarter-Wave Plate

$$
\delta \phi_{q w p}=\frac{\pi}{2}=k \ell\left(n_{y y}-n_{x x}\right)
$$

- Quartz at 589.3nm,

$$
n_{y y}-n_{x x}=1.5534-1.5443
$$

- Thickness $16.24 \mu \mathrm{~m}$
- 5/4-Wave Plate

$$
\frac{d \delta \phi_{q w p}}{d T}=k \ell \frac{d\left(n_{y y}-n_{x x}\right)}{d T}
$$

$$
\frac{d \delta \phi_{5 q w p}}{d T}=5 k \ell \frac{d\left(n_{y y}-n_{x x}\right)}{d T}
$$

- Watch Out for Dispersion

Retardation Dispersion

- Wavelength vs. OPL

$$
\frac{d \delta \phi_{q w p}}{d \lambda}=\frac{2 \pi}{\lambda} \ell\left(n_{y y}-n_{x x}\right) \quad \frac{d \delta \phi_{5 q w p}}{d \lambda}=5 \frac{2 \pi}{\lambda} \ell\left(n_{y y}-n_{x x}\right)
$$

- Example:
* Bandwidth of $\delta \lambda=100 \mathrm{~nm}$ at $\lambda=800 \mathrm{~nm}$
* Phase Dispersion 6° for Zero Order 1/4-Wave Plate
* 30° for $5 / 4-$ Wave Plate
- Birefringence Dispersion

$$
\delta \phi(\lambda)=\frac{2 \pi}{\lambda} \ell\left(n_{y y}(\lambda)-n_{x x}(\lambda)\right)
$$

- Use One Against the Other to Make a Wide-Band QWP

Electrically-Induced Birefringence

- Eletric Field Alters Symmetry
- Birefringence Proportional to DC Voltage

$$
\delta \phi=\pi \frac{V}{V_{\pi}}
$$

- Applications
- Phase Modulation (Field Paralel to One Axis)
- Frequency Modulation (Phase Modulation in Laser Cavity)
- Amplitude Modulation (Field at 45° with Crossed Polarizer at Output)

Fresnel Rhomb

- Phase Difference in TIR
- See Fresnel Equations
- Top Two Curves \rightarrow
- Two Reflections for 90°
- Less Dispersion in Birefringence
- Difficult Alignment (?)

Polarization Rotator

- Reciprocal Rotator (e.g. Sugar in Water)

$$
\delta \zeta=\kappa C \ell
$$

$-\kappa=$ Specific Rotary Power
$-C=$ Concentration
$-\ell=$ Length

- Rotation in Either Direction
- Left (Levulose) $C>0$
- Right (Dextrose) $C<0$
- Same Sign for Reverse

Propagation
(e.g. Reflection)

- Round-Trip Restores Original Polarization
- Non-Reciprocal Rotator (e.g. Fraday Rotator)
- Underlying Physics (DC Magnetic Field)

$$
\mathbf{a}=-\frac{e}{m} \mathbf{v} \times \mathbf{B}
$$

- Result

$$
\delta \zeta=v \mathbf{B} \cdot \bar{z} \ell
$$

- Reverse Propagation

$$
\delta \zeta=v \mathbf{B} \cdot(-\widehat{z}) \ell
$$

- Round-Trip Doubles Rotation
- Application:

Faraday Isolator

Jones Vectors and Matrices

- Jones Vectors, E
- x and y Components for \hat{z} Propagation
- Alternative Basis Sets
- Jones Matrices, \mathcal{J}
- Devices that Change Polarization
- Transformations that Change Coordinates

$$
\mathbf{E}_{1}=\mathcal{J} \mathbf{E}_{0}
$$

- Cascading Matrices (Right to Left)

$$
\mathbf{E}_{m}=\mathcal{J}_{m} \mathcal{J}_{m-1} \ldots \mathcal{J}_{2} \mathcal{J}_{1} \mathbf{E}_{0}
$$

Irradiance and Power

- Common Approach
- Basic Equations

$$
P=I A=\frac{\mathbf{E}^{\dagger} \mathbf{E}}{Z} A
$$

$-\mathbf{E}^{\dagger}$ is Hermitian Adjoint

- Conjugate Transposed

$$
\begin{array}{r}
\mathbf{E}=\binom{E_{x}}{E_{y}} \\
\mathbf{E}^{\dagger}=\left(\begin{array}{ll}
E_{x} & E_{y}
\end{array}\right)
\end{array}
$$

- Power

$$
P=I A=\frac{E_{x}^{*} E_{x}+E_{y}^{*} E_{y}}{Z} A
$$

$$
P_{\text {out }}=T P_{\text {in }}
$$

- Field Amplitudes Lost

Some Basic Jones Matrices: Polarizers

- Diagonal Matrices
- Input

$$
\mathrm{E}_{0}=\binom{E_{x 0}}{E_{y 0}}
$$

- Output

$$
\begin{gathered}
\mathbf{E}_{1}=\left(\begin{array}{cc}
j_{11} & 0 \\
0 & j_{22}
\end{array}\right)\binom{E_{x 0}}{E_{y 0}} \\
E_{x 1}=j_{11} E_{x 0} \\
E_{y 1}=j_{22} E_{y 0}
\end{gathered}
$$

- No Cross-Coupling
- $E_{x} \& E_{y}$ are Eigenvectors
- Perfect \widehat{x} Polarizer

$$
\mathcal{P}_{x}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

- Perfect \hat{y} Polarizer

$$
\mathcal{P}_{y}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

- Later: Arbitrary Polarizer
- Realistic \widehat{x} Polarizer

$$
\mathcal{P}_{x}=\left(\begin{array}{cc}
\tau_{x} & 0 \\
0 & \tau_{y}
\end{array}\right)
$$

Realistic Polarizer Example (1)

- Insertion Loss (Fresnel Reflections $\approx 4 \%$ per Surface)

$$
\tau_{x}=\sqrt{1-0.08}
$$

- Extinction Ratio $=10,000$

$$
\tau_{y}=\tau_{x} / \sqrt{10,000}
$$

- Input Polarization at Angle ζ

$$
\mathbf{E}_{0}=\binom{\cos \zeta}{\sin \zeta} \quad\left|\mathbf{E}_{0}\right|^{2}=1
$$

- Output Field

$$
\mathbf{E}_{1}=\mathcal{P}_{x} \mathbf{E}_{0}=\left(\begin{array}{cc}
\tau_{x} & 0 \\
0 & \tau_{y}
\end{array}\right)\binom{\cos \zeta}{\sin \zeta}
$$

- Output Field

$$
\mathbf{E}_{1}=\left(\begin{array}{cc}
\tau_{x} \cos \zeta & 0 \\
0 & \tau_{y} \sin \zeta
\end{array}\right)
$$

- Transmission

$$
T=\mathbf{E}_{1}^{\dagger} \mathbf{E}_{1}
$$

- Adjoint of Product

$$
(\mathcal{A B})^{\dagger}=\mathcal{B}^{\dagger} \mathcal{A}^{\dagger}
$$

- Output Power

$$
\mathbf{E}_{1}^{\dagger} \mathbf{E}_{1}=\mathbf{E}_{1}^{\dagger} \mathcal{P}_{x}^{\dagger} \mathcal{P}_{x} \mathbf{E}_{1}
$$

Realistic Polarizer Example (2)

- Transmission (Remember ζ is Angle of Input Polarization)

$$
\begin{gathered}
T=\left(\begin{array}{ll}
\cos \zeta & \sin \zeta
\end{array}\right)\left(\begin{array}{cc}
\tau_{x}^{*} & 0 \\
0 & \tau_{y}^{*}
\end{array}\right)\left(\begin{array}{cc}
\tau_{x} & 0 \\
0 & \tau_{y}
\end{array}\right)\binom{\cos \zeta}{\sin \zeta} \\
T=T_{x} \cos ^{2} \zeta+T_{y} \sin ^{2} \zeta
\end{gathered}
$$

- Angle of Output Polarization

$$
\tan \zeta_{\text {out }}=\frac{E_{\text {yout }}}{E_{\text {xout }}}=\frac{\tau_{x} \cos \zeta}{\tau_{y} \sin \zeta}
$$

Jones Matrix for a Waveplate

- Phase Difference, ϕ

$$
\mathcal{W}=\left(\begin{array}{cc}
e^{j \phi / 2} & 0 \\
0 & e^{j \phi / 2}
\end{array}\right)
$$

- An Alternate Notation

$$
\mathcal{W}=\left(\begin{array}{cc}
e^{j \phi} & 0 \\
0 & 1
\end{array}\right)
$$

- Others Possible
- Overall Phase Shift
- Normally Present
- Normally Not Important
- Quarter-Wave Plate

$$
\mathcal{Q}=\left(\begin{array}{cc}
e^{-j \pi / 4} & 0 \\
0 & e^{j \pi / 4}
\end{array}\right)
$$

- or...

$$
\mathcal{Q}=\left(\begin{array}{ll}
1 & 0 \\
0 & j
\end{array}\right)
$$

- Half-Wave Plate

$$
\mathcal{H}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Rotator and Coordinate Rotation

- Rotator (Angle ζ)

$$
\mathcal{R}(\zeta)=\left(\begin{array}{cc}
\cos \zeta & -\sin \zeta \\
\sin \zeta & \cos \zeta
\end{array}\right)
$$

- Coordinate Rotation
- for Devices at

Arbitrary Angles

- to Change Coordinates
by Choice
$-\zeta>0$ Rotates Right
- \widehat{x} to \hat{y}
- \hat{y} to $-\hat{x}$
- Represents a Device
- Actual Rotation of Polarization
- e.g. Sugar/Water or Faraday Rotator

Rotated Device Jones Matrix

- Rotate Coordinates of Input Vector to Eigenvectors of Device
- Original Coordinates \widehat{x}, \hat{y}
- New Coordinates $\hat{x}^{\prime}, \hat{y}^{\prime}$

$$
\mathcal{R}(-\zeta) \mathbf{E}_{1}=\mathcal{R}^{\dagger}(\zeta) \mathbf{E}_{1}
$$

- Operate with the Device in its Own Coordinates $\widehat{x}^{\prime}, \hat{y}^{\prime}$

$$
\mathcal{J}^{\prime} \mathcal{R}^{\dagger}(\zeta) \mathrm{E}_{1}
$$

- Rotate Back to Original Coordinates

$$
\mathbf{E}_{2}=\mathcal{R}(\zeta) \mathcal{J}^{\prime} \mathcal{R}^{\dagger}(\zeta) \mathbf{E}_{1}
$$

- Do it All at Once... $\mathbf{E}_{2}=\mathcal{J} \mathbf{E}_{1} \ldots$ where

$$
\mathcal{J}=\mathcal{R}(\zeta) \mathcal{J}^{\prime} \mathcal{R}^{\dagger}(\zeta)
$$

Coordinate Transform Example (Page 1)

- Input Field

$$
\mathbf{E}_{i n}=\binom{E_{x}}{E_{y}},
$$

- Polarizer (\widehat{x} Polarizer Rotated through ζ)

$$
\mathcal{P}_{\zeta}=\mathcal{R}(\zeta) \mathcal{P}_{x} \mathcal{R}^{\dagger}(\zeta)
$$

- Output Field

$$
\mathbf{E}_{\text {out }}=\mathcal{P}_{\zeta} \mathbf{E}_{\text {in }}=\mathcal{R}(\zeta) \mathcal{P}_{x} \mathcal{R}^{\dagger}(\zeta)\binom{E_{x}}{E_{y}}
$$

- Option 1: Matrix-by-Matrix Multiplication

Coordinate Transform Example (Page 2)

- Option 2: New Matrix for Device

$$
\mathcal{P}_{\zeta}=\left(\begin{array}{cc}
\cos \zeta & -\sin \zeta \\
\sin \zeta & \cos \zeta
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\cos \zeta & \sin \zeta \\
-\sin \zeta & \cos \zeta
\end{array}\right)
$$

- Polarizer Matrix in \hat{x}, \hat{y} Coordinates

$$
\mathcal{P}_{\zeta}=\left(\begin{array}{cc}
\cos ^{2} \zeta & -\cos \zeta \sin \zeta \\
-\cos \zeta \sin \zeta & \sin ^{2} \zeta
\end{array}\right)
$$

- Output (No Matter How We Do the Multiplication)

$$
\left(\begin{array}{cc}
\cos ^{2} \zeta & -\cos \zeta \sin \zeta \\
-\cos \zeta \sin \zeta & \sin ^{2} \zeta
\end{array}\right)\binom{E_{x}}{E_{y}}=\binom{E_{x} \cos ^{2} \zeta-E_{y} \cos \zeta \sin \zeta}{-E_{x} \cos \zeta \sin \zeta+E_{y} \sin ^{2} \zeta}
$$

Q: Compare to Malus' Law, Rotating Input or Rotating Device.

Coordinate Transform Example (Page 3)

- Output (Previous Page)

$$
\left(\begin{array}{cc}
\cos ^{2} \zeta & -\cos \zeta \sin \zeta \\
-\cos \zeta \sin \zeta & \sin ^{2} \zeta
\end{array}\right)\binom{E_{x}}{E_{y}}=\binom{E_{x} \cos ^{2} \zeta-E_{y} \cos \zeta \sin \zeta}{-E_{x} \cos \zeta \sin \zeta+E_{y} \sin ^{2} \zeta}
$$

- Amplitude: $E_{x}=\cos \zeta_{1}, E_{y}=\sin \zeta_{1}$, and Trig Identities
- Output Angle (Always ζ for Perfect Polarizer):

$$
\begin{aligned}
& \tan \zeta_{o u t}=\frac{-E_{x} \cos \zeta \sin \zeta+E_{y} \sin ^{2} \zeta}{E_{x} \cos ^{2} \zeta-E_{y} \cos \zeta \sin \zeta}= \\
& \frac{\sin \zeta}{\cos \zeta} \times \frac{-E_{x} \cos \zeta+E_{y} \sin \zeta}{E_{x} \cos \zeta-E_{y} \sin \zeta}=\frac{\sin \zeta}{\cos \zeta}
\end{aligned}
$$

Rotated Device Couples Polarizations

- Polarizer Matrix in $\hat{x}^{\prime}, \hat{y}^{\prime}$ Coordinates

$$
\mathcal{P}_{x^{\prime}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \mathcal{P}_{x^{\prime}} \mathbf{E}_{y^{\prime}}=0
$$

- Polarizer Matrix in \widehat{x}, \hat{y} Coordinates

$$
\mathcal{P}_{\zeta}=\left(\begin{array}{cc}
\cos ^{2} \zeta & -\cos \zeta \sin \zeta \\
-\cos \zeta \sin \zeta & \sin ^{2} \zeta
\end{array}\right)
$$

- Any Device Matrix is Diagonal in its Eigenvector Coordinates

$$
\mathcal{P}_{x^{\prime}}=\left(\begin{array}{cc}
\tau_{x^{\prime}} & 0 \\
0 & \tau_{y^{\prime}}
\end{array}\right)
$$

Q: What is \mathcal{P}_{x} for this $\mathcal{P}_{x^{\prime}}$?

Three-Polarizer Thought Experiment

- Combined Matrix

$$
\mathcal{P}_{x} \mathcal{P}_{\zeta} \mathcal{P}_{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\cos ^{2} \zeta & -\cos \zeta \sin \zeta \\
-\cos \zeta \sin \zeta & \sin ^{2} \zeta
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

- At Zero Degrees, $T=0$
- At 90 Degrees, $T=0$
- At 45 Degrees, ...
* $T=0.25$ for \hat{y} Input
* $T=0.125$ for Random Input

Coordinate Transforms Gone Wild: Maltese Cross

Side View

Light Ray

Maltese Cross Analysis (1)

- Solution With Fresnel Reflection \& Coordinate Transforms
- Curved Lens Surface as a Polarizer
- Fresnel Reflection with Varying Plane of Incidence
- Natural Coordinate System (Eigenvectors): P,S

$$
\mathcal{F}^{\prime}(\theta, 0)=\left(\begin{array}{cc}
\tau_{p}(\theta) & 0 \\
0 & \tau_{s}(\theta)
\end{array}\right)
$$

- Working Coordinate System: \hat{x}, \hat{y} ($\zeta=0$ when P is in \widehat{x} Direction)

$$
\mathcal{F}(\theta, \zeta) \mathcal{R}(\zeta) \mathcal{F}^{\prime}(\theta, 0) \mathcal{R}^{\dagger}(\zeta)
$$

Maltese Cross Analysis (2)

- Assume Polarizers Are Perfect (Avoids dealing with partial polarization)
- Assume \widehat{x} Polarization out of First Polarizer

$$
\mathbf{E}_{\text {out }}=\mathcal{P}_{y} \mathcal{R}(\zeta) \mathcal{F}^{\prime}(\theta, 0) \mathcal{R}^{\dagger}(\zeta)\binom{1}{0}
$$

- Final Output

$$
\begin{aligned}
\mathbf{E}_{\text {out }}= & \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\binom{\tau_{p}(\theta) \cos ^{2} \zeta-\tau_{s}(\theta) \sin ^{2} \zeta}{\tau_{p}(\theta) \cos \zeta \sin \zeta-\tau_{s}(\theta) \cos \zeta \sin \zeta} \\
= & \left.\begin{array}{c}
0 \\
\tau_{p}(\theta) \cos \zeta \sin \zeta-\tau_{s}(\theta) \cos \zeta \sin \zeta
\end{array}\right)
\end{aligned}
$$

Maltese Cross Analysis (3)

- Output Field (Previous Page)

$$
\mathbf{E}_{\text {out }}=\binom{0}{\tau_{p}(\theta) \cos \zeta \sin \zeta-\tau_{s}(\theta) \cos \zeta \sin \zeta}
$$

- For $\zeta=0 \mathrm{P}$ Matches $\hat{x}(\sin \zeta=0)$
- Input to Lens is P, Output is P (Eigenvector)
- Output of Lens is Blocked by Final Polarizer; $\mathbf{E}_{\text {out }}=0$
- For $\zeta=90^{\circ}$ S Matches $\hat{x}(\cos \zeta=0)$
- Input to Lens is S, Output is S (Eigenvector)
- Output of Lens is Blocked by Final Polarizer; $\mathbf{E}_{\text {out }}=0$
- Otherwise
- Input to Lens is Superposition of P and S
- P is Transmitted More than S
- Output is Different Superpostion of P and S
- Different Angle from Input; Not Completely Blocked

Maltese Cross Analysis (4)

- Output Field (Bottom of Page 2)

$$
\mathbf{E}_{\text {out }}=\binom{0}{\tau_{p}(\theta) \cos \zeta \sin \zeta-\tau_{s}(\theta) \cos \zeta \sin \zeta}
$$

- At the Center (Normal Incidence)
- Degenerate Eigenvalues; $\tau_{p}=\tau_{s}$
- Zero Output

Q: What are the equations if polarizers are parallel (Right Picture)?

Another Transformation: Linear Basis to Circular

- Coordinate Transform
- QWP at 45°

$$
\mathcal{Q}_{45}=\mathcal{R}_{45} \mathcal{Q} \mathcal{R}_{45}^{\dagger}
$$

- Simple Result
$\mathcal{Q}_{45}=\mathcal{R}_{45} \mathcal{Q} \mathcal{R}_{45}^{\dagger}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & j \\ j & 1\end{array}\right)$
- Converts
- \hat{x} to RHC
- \hat{y} to LHC
- Matrix for a Device:

Physical Change of
Polarization

- Coordinate Transform:

Field Doesn't Change,
Numbers Do

$$
\begin{gathered}
\mathrm{E}=\mathcal{Q}_{45}^{\dagger} \mathrm{E}^{\prime} \\
\mathcal{J}=\mathcal{Q}_{45} \mathcal{J}^{\prime} \mathcal{Q}_{45}^{\dagger}
\end{gathered}
$$

- Example in \hat{x}, \hat{y}

$$
\mathbf{E}_{x}=\binom{1}{0}
$$

- in RHC/LHC

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & j \\
j & 1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{j} \\
& \frac{1}{\sqrt{2}}\binom{1}{j}=\frac{1}{\sqrt{2}} \widehat{E}_{r}+\frac{j}{\sqrt{2}} \widehat{E}_{\ell}
\end{aligned}
$$

- Can Minimize Ambiguities in x, y or P, S

Matrix Properties: Unitary Matrices

- Transform Matrices Must not Change Power

$$
\begin{gathered}
\mathbf{E}_{\text {out }}^{\dagger} \mathbf{E}_{\text {out }}=\mathbf{E}_{\text {in }}^{\dagger} \mathcal{J}^{\dagger} \mathcal{J} \mathbf{E}_{\text {in }}=\mathbf{E}_{\text {in }}^{\dagger} \mathbf{E}_{\text {in }} \quad \text { for all } \mathbf{E}_{\text {in }} \\
\mathcal{J}^{\dagger} \mathcal{J}=\mathcal{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

- Lossless Device (e.g. Perfect Waveplate or Rotator)
- Realistic Waveplate or Rotator
- Unitary Matrix Multiplied by Scalar
- Potential Simplification of Complicated Equations
- Also Useful for "Single-Mode" Fiber

Matrix Properties: Eigenvectors

- Eigenvectors Are Natural Polarizations of the Device

$$
\mathbf{E}_{\text {out }}=\text { Eigenvalue } \times \mathbf{E}_{\text {in }}
$$

- Matrix is Diagonal in Coordinates Based on Eigenvectors
- Example: X Polarizer

$$
\begin{gathered}
\mathcal{P}_{x}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { Ideal } \\
\mathcal{P}_{x}=\left(\begin{array}{cc}
\tau_{x} & 0 \\
0 & \tau_{y}
\end{array}\right) \quad \text { Realistic }
\end{gathered}
$$

Rotator Eigenvectors

- Matrix and Eigenvectors

$$
\mathcal{R}(\zeta)=\left(\begin{array}{cc}
\cos \zeta & -\sin \zeta \\
\sin \zeta & \cos \zeta
\end{array}\right) \quad \mathbf{E}_{R H C}=\binom{1}{j} \quad \mathbf{E}_{L H C}=\binom{1}{-j}
$$

- RHC Eigenvalue Solution

$$
\begin{gathered}
\mathcal{R}(\zeta) \mathbf{E}_{R H C}=\tau_{R H C} \mathbf{E}_{R H C} \\
\left(\begin{array}{cc}
\cos \zeta & -\sin \zeta \\
\sin \zeta & \cos \zeta
\end{array}\right)\binom{1}{j}=\binom{\cos \zeta-j \sin \zeta}{\sin \zeta+j \cos \zeta}=\binom{e^{-j \zeta}}{j e^{-j \zeta}}=e^{j \zeta}\binom{1}{j}
\end{gathered}
$$

- Eigenvalues

$$
\tau_{r h c}=e^{j \zeta} \quad \tau_{l h c}=e^{-j \zeta}
$$

Circular Polarizer

- Configuration: QWP, Linear Polarizer at 45 Degrees, QWP
- Jones Matrix

$$
\mathcal{J}=\mathcal{Q}_{90} \mathcal{P}_{45} \mathcal{Q}=\left(\begin{array}{ll}
j & 0 \\
0 & 1
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & j
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
j & 1 \\
-1 & j
\end{array}\right)
$$

- Eigenvectors

$$
\mathbf{E}_{1}=\frac{1}{\sqrt{2}}\binom{1}{i}=\mathbf{E}_{R H C} \quad \mathbf{E}_{2}=\frac{1}{\sqrt{2}}\binom{1}{-i}=\mathbf{E}_{L H C}
$$

- Eigenvalues

$$
\tau_{1}=1 \quad \tau_{2}=0
$$

Non-Orthogonal Eigenvectors

- Polarizers at Zero and 10 Degrees

$$
\mathcal{M}=\mathcal{R}_{10} \mathcal{P} \mathcal{R}_{10}^{\dagger} \mathcal{P}=\left(\begin{array}{cc}
\cos ^{2} \zeta & 0 \\
\cos \zeta \sin \zeta & 0
\end{array}\right)
$$

- Eigenvectors

$$
\binom{0}{1} \quad \text { and } \quad\binom{\cos 10^{\circ}}{\sin 10^{\circ}}
$$

- Eigenvalues

$$
0 \text { and } \cos 10^{\circ}
$$

- \widehat{y} Polarization Blocked by First Polarizer
- \widehat{x} Polarization Passed by First Polarizer and $\cos 10^{\circ}$ Component Transmitted by Second
- Output always at 10°

Jones Matrix Application: Amplitude Modulator

- Input \widehat{x} Polarized
- Electro-Optical Modulator

$$
\mathbf{E}_{\text {out }}=\mathcal{P}_{y} \mathcal{R}_{45} \mathcal{M}(V) \mathcal{R}_{45}^{\dagger}\binom{1}{0}
$$

- Electrically-Induced Birefringence

$$
\mathcal{M}(V)=
$$

$$
\left(\begin{array}{cc}
e^{j \pi V /\left(2 V_{\pi}\right)} & 0 \\
0 & e^{-j \pi V /\left(2 V_{\pi}\right)}
\end{array}\right)
$$

- Output

$$
\mathrm{E}_{\text {out }}=\mathcal{P}_{y} \mathcal{R}_{45} \mathcal{M}(V) \mathcal{R}_{45}^{\dagger}\binom{1}{0}
$$

- At $V=0, T=0$:

$$
\mathbf{E}_{\text {out }}=\mathcal{P}_{y}\binom{1}{0}=\binom{0}{0}
$$

- At $V=V_{\pi}, T=1$:

$$
\mathbf{E}_{\text {out }}=\mathcal{P}_{y}\left(\begin{array}{cc}
j & 0 \\
0 & -j
\end{array}\right)\binom{1}{0}
$$

- At $V=V_{\pi} / 2, T=0.5$
- $\Delta V \rightarrow$ Modulation
- Bias: $\mathcal{P}_{y} \mathcal{R}_{45} \mathcal{Q M}(V) \mathcal{R}_{45}^{\dagger}$

$$
\mathcal{Q} \mathcal{M}(V)=\left(\begin{array}{cc}
e^{j \frac{\delta \phi}{2}} & 0 \\
0 & e^{-j \pi \frac{\delta \phi}{2}}
\end{array}\right)
$$

$$
\delta \phi=\pi V /\left(2 V_{\pi}\right)+\pi / 4
$$

T/R Switch (Optical Circulator)

- Common Aperture
$-T+R=1$
- Round-Trip

$$
(1-R) F_{\text {target }} R
$$

- Optimize (Not Great)

$$
\begin{gathered}
d[(1-R) R] / d R=0 \\
R=\frac{1}{2} \quad R(1-R)=\frac{1}{4}
\end{gathered}
$$

- Polarization Analysis

$$
\mathcal{J}_{t r}=\mathcal{R}_{p b s} \mathcal{Q}_{45} \mathcal{F}_{\text {target }} \mathcal{Q}_{45} \mathcal{T}_{\text {pbs }}
$$

- \widehat{p}-Polarized Source
- $\mathcal{F}_{\text {target }}=f$ (scalar)
(Target Keeps Polarization)

$$
\begin{aligned}
\mathcal{J}_{t r} \hat{\mathbf{x}} & =f \mathcal{R}_{p b s} \mathcal{Q}_{45} \mathcal{Q}_{45} \mathcal{T}_{p b s} \widehat{p} \\
& =f \mathcal{R}_{p b s} \mathcal{H}_{45} \mathcal{T}_{p b s} \hat{p}
\end{aligned}
$$

To Detector

T/R Switch Efficiency

- Round Trip

$$
\begin{gathered}
\mathcal{J}_{t r}=\mathcal{R}_{p b s} \mathcal{Q}_{45} \mathcal{F}_{\text {target }} \mathcal{Q}_{45} \mathcal{T}_{\text {pbs }} \\
f \mathcal{R}_{p b s} \mathcal{H}_{45} \mathcal{T}_{p b s}
\end{gathered}
$$

- Assumptions
- 2\% Insertion Loss (AR-Coated)
- 5\% Leakage of Wrong Polarization

$$
\mathcal{J}_{t r} \hat{p}=f\left(\begin{array}{cc}
\sqrt{0.05} & 0 \\
0 & \sqrt{0.98}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
\sqrt{0.98} & 0 \\
0 & \sqrt{0.05}
\end{array}\right)\binom{1}{0}
$$

$$
=f\binom{0}{0.98} \quad\left(\text { Leakage Only Matters if } \mathcal{F}_{\text {target }} \neq f\right)
$$

To Detector

T/R Switch Narcissus Rejection

- Round Trip (Source to Source)

$$
\begin{aligned}
& \mathcal{J}_{t t}=\mathcal{T}_{\text {pbs }} \mathcal{Q}_{45} \mathcal{F}_{\text {target }} \mathcal{Q}_{45} \mathcal{T}_{\text {pbs }}=f \mathcal{T}_{\text {pbs }} \mathcal{H}_{45} \mathcal{T}_{\text {pbs }} \\
& \mathcal{J}_{t t} \hat{p}=f\left(\begin{array}{cc}
\sqrt{0.98} & 0 \\
0 & \sqrt{0.05}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
\sqrt{0.98} & 0 \\
0 & \sqrt{0.05}
\end{array}\right)\binom{1}{0} \\
& =f\binom{0.05}{0} \quad(\text { Minimizes Laser Instability }) \quad\left(\text { Assumes } \mathcal{F}_{\text {target }}=f\right) \\
& \text { To Detector }
\end{aligned}
$$

Coherency Matrices

- Remember the Inner Product

$$
\mathbf{E}^{\dagger} \mathbf{E}=\left(\begin{array}{cc}
E_{x}^{*} & E_{y}^{*}
\end{array}\right)\binom{E_{x}}{E_{y}}=\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}
$$

- Consider the Outer Product

$$
\mathrm{EE}^{\dagger}=\binom{E_{x}}{E_{y}}\left(\begin{array}{ll}
E_{x}^{*} & E_{y}^{*}
\end{array}\right)=\left(\begin{array}{cc}
E_{x} E_{x}^{*} & E_{x} E_{y}^{*} \\
E_{y} E_{x}^{*} & E_{y} E_{y}^{*}
\end{array}\right)
$$

- Expectation Value (Matrix Describes Field Statistics)

$$
\mathcal{C}=\left\langle\mathbf{E E}^{\dagger}\right\rangle=\left(\begin{array}{cc}
<E_{x} E_{x}^{*}> & <E_{x} E_{y}^{*}> \\
<E_{y} E_{x}^{*}> & <E_{y} E_{y}^{*}>
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
b^{*} & c
\end{array}\right)
$$

$$
\text { Real Powers: } \begin{aligned}
& a=<E_{x} E_{x}^{*}> \\
& c=<E_{y} E_{y}^{*}>
\end{aligned} \quad \text { Correlation: } b=<E_{x} E_{y}^{*}>
$$

Coherency Matrix Examples

- \widehat{x} Polarization

$$
\binom{1}{0} \quad a=1, b=c=0
$$

- 45-Degree Polarization

$$
\frac{1}{\sqrt{2}}\binom{1}{1} \quad a=b=c=1 / 2
$$

- Right-Circular Polarization

$$
\frac{1}{\sqrt{2}}\binom{1}{j} \quad a=b=1 / 2 \text { and } b=j / 2
$$

- Unpolarized (Randomly Polarized) Light

$$
a=c=1 / 2 \quad b=0
$$

Devices and Coherency Matrices

- Jones Matrix Acting on Field

$$
\mathbf{E}_{\text {out }}=\mathcal{J} \mathbf{E}_{\text {in }}
$$

- Adjoint Equation (Same Information)

$$
\mathbf{E}_{\text {out }}^{\dagger}=\mathbf{E}_{\text {in }}^{\dagger} \mathcal{J}^{\dagger}
$$

- Combination

$$
\left\langle\mathbf{E}_{\text {out }} \mathbf{E}_{\text {out }}^{\dagger}\right\rangle=\left\langle\mathcal{J} \mathbf{E}_{\text {in }} \mathbf{E}_{\text {in }}^{\dagger} \mathcal{J}^{\dagger}\right\rangle
$$

- If \mathcal{J} is Constant (Big If)

$$
\mathcal{C}_{\text {out }}=\mathcal{J C} \mathcal{J}^{\dagger}
$$

Coherency Matrix Application

- Sunlight (Nearly Unpolarized) on Water

$$
\mathcal{C}_{\text {out }}=\left(\begin{array}{cc}
\rho_{p} & 0 \\
0 & \rho_{s}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\rho_{p}^{*} & 0 \\
0 & \rho_{s}^{*}
\end{array}\right)=\left(\begin{array}{cc}
R_{p} & 0 \\
0 & R_{s}
\end{array}\right)
$$

$$
R_{s}>R_{p}
$$

Stokes Vectors

- Equation (Different Notations in Different Texts)

$$
\left(\begin{array}{c}
I \\
M \\
C \\
S
\end{array}\right)=\left(\begin{array}{c}
S_{0} \\
S_{1} \\
S_{2} \\
S_{3}
\end{array}\right)=\left(\begin{array}{c}
a+c \\
a-c \\
b-b^{*} \\
\left(b-b^{*}\right) / j
\end{array}\right)
$$

- Meanings (Four Real Numbers)
$-I$ is Total Power (Always Positive)
$-M$ is Preference for \hat{x} over $\hat{y}(-I$ to $+I)$
- C is Preference for 45-Degree over -45-Degree
$-S$ is Preference for RHC over LHC

Example Stokes Vectors

$$
\begin{gathered}
\mathbf{E}_{x}=\left(\begin{array}{c}
1 \\
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{E}_{y}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right) \quad \mathbf{E}_{45}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) \\
\mathbf{E}_{-45}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) \quad \mathbf{E}_{R H C}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad \mathbf{E}_{L H C}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right) \\
\mathbf{E}_{\text {unpolarized }}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad \mathbf{E}_{\text {sun-reflected-from-water }}=\left(\begin{array}{c}
1 \\
R_{s}-R_{p} \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

Degree of Polarization

- Definition

$$
V=\frac{\sqrt{M^{2}+C^{2}+S^{2}}}{I} \leq 1
$$

- Meaning
$-V=1$ Means Complete Polarization
$-V=0$ Means Random Polarization
Q: What is V in terms of a, b, c ?

Mueller (or Müller) Matrices

- 16 Real Numbers
- Compare Jones Matrices
- 4 Complex Numbers
- \widehat{x} Polarizer

$$
\mathcal{P}_{x}=\frac{1}{2}\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- \widehat{y} Polarizer

$$
\mathcal{P}_{y}=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- Polarization Randomizer

$$
\mathcal{P}_{x}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- Recall

$$
\left\langle\mathbf{E}_{\text {out }} \mathbf{E}_{\text {out }}^{\dagger}\right\rangle=\left\langle\mathcal{J} \mathbf{E}_{\text {in }} \mathbf{E}_{\text {in }}^{\dagger} \mathcal{J}^{\dagger}\right\rangle
$$

$$
\mathcal{C}_{\text {out }}=\left\langle\mathcal{J} \mathbf{E}_{\text {in }} \mathbf{E}_{\text {in }}^{\dagger} \mathcal{J}^{\dagger}\right\rangle
$$

- Vary \mathcal{J} to Make

$$
\mathcal{C}_{\text {out }}=\mathcal{I}
$$

- How?

Poncaré Sphere

- Normalized

Stokes
Parameters

$$
\frac{1}{I}\left(\begin{array}{c}
M \\
S \\
C
\end{array}\right)
$$

- Radius V
- Complete Polarization on Surface
- Random at Center

