Chapter 7
 Optics for Engineers

Charles A. DiMarzio
Northeastern University

Sept. 2012

Coherent Superposition

- Output Toward the Right

$$
E=E_{1}+E_{2}
$$

- Similar for Output Toward the Bottom
- Normally Common Source for Coherence

Chapter Overview

- Mach-Zehnder Interferometer
- Alignment
- Balanced Mixing
- Coherent Laser Radar (Lidar)
- Sign Ambiguities
- Quadrature Detection
- Michelson Interferometer
- Fabry-Perot Interferometer
- Laser Longitudinal-Mode Selection
- Laser Stabilization
- Beamsplitters
- Thin-Film Coatings (AR, Max-R, and More)

Measuring the Field Amplitude Is Hard

- Easy for Ocean Wave Height
- Easy for Acoustic Pressure
- Even Easy for Radio Waves
- No Direct Measurement for Light
- Terahertz Frequencies
- Sub-Micrometer Wavelengths
- Use Interferometry
- Mix With Known Reference Wave
- Measure Irradiance
- Variations in Space or Time

Interferometry Equations

- Irradiance

$$
I=\frac{\left(E_{1}^{*}+E_{2}^{*}\right)\left(E_{1}+E_{2}\right)}{Z}
$$

- Expand

$$
I=\frac{E_{1}^{*} E_{1}+E_{2}^{*} E_{2}+E_{1}^{*} E_{2}+E_{1} E_{2}^{*}}{Z}
$$

- First Two Terms are "DC" Terms
- Third and Fourth are "Mixing" Terms
- Complex Conjugate Pair (Real Sum)

$$
I_{\operatorname{mix}}=\frac{E_{1} E_{2}^{*}}{Z} \quad \text { and } \quad I_{m i x}^{*}=\frac{E_{1}^{*} E_{2}}{Z}
$$

Mixing Terms

- Complex Conjugates Add to Real Value

$$
I_{m i x}=\frac{E_{1} E_{2}^{*}}{Z} \quad \text { and } \quad I_{m i x}^{*}=\frac{E_{1}^{*} E_{2}}{Z}
$$

- Magnitude

$$
\left|I_{m i x}\right|=\left|I_{m i x}^{*}\right|=\sqrt{I_{1} I_{2}}
$$

- Total Irradiance

$$
I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \left(\phi_{2}-\phi_{1}\right)
$$

Mach-Zehnder Interferometer

- Add Gas Pressure to Cell; $n \uparrow, \Delta=\triangle O P L \uparrow$

$$
\begin{aligned}
\Delta & =\delta\left(n \ell_{c}\right) \\
\delta \phi_{1}=k \Delta & =2 \pi \frac{\Delta}{\lambda}=2 \pi \frac{\ell_{c}}{\lambda} \delta n
\end{aligned}
$$

Interpreting the Interference

- Phase Change

$$
\delta \phi_{1}=k \Delta=2 \pi \frac{\Delta}{\lambda}=2 \pi \frac{\ell_{c}}{\lambda} \delta n
$$

- Beginning at $\phi_{2}-\phi_{1}=0$

$$
\frac{d I}{d\left(n \ell_{c}\right)}=2 \sqrt{I_{1} I_{2}}\left[-\sin \left(\phi_{2}-\phi_{1}\right)\right] \frac{2 \pi}{\lambda}=0
$$

- Quadrature Point $\phi_{2}-\phi_{1}=\pi / 2$

$$
\frac{d I}{d\left(n \ell_{c}\right)}=\frac{2 \pi}{\lambda} I \quad \delta\left(n \ell_{c}\right)=\frac{\lambda}{2 \pi} \frac{d I}{I}
$$

- Very Sensitive Phase Measurement
- For $\lambda=500 \mathrm{~nm}$ and $\ell_{c}=1 \mathrm{~cm}, d \phi / d n=1.25 \times 10^{5}$
- For $\delta n=10^{-6}, \delta I=1.25 \times 10^{5} \times I \times \delta n=0.125 \times I$. (12\%)
- Potential Problem: Maintaining the Quadrature Point

OPL and Geometric Path

- Straight-Line Layout

- OPL Mismatch (Time Difference: Loss of Coherence: Ch. 10)

$$
\ell=\ell_{c} n
$$

- Geometric-Path Mismatch (Curvature Mismatch: Dense Fringes)

$$
\ell_{\text {geom }}=\frac{\ell_{c}}{n}
$$

Mach-Zehnder and Extended Source

- Distance from Axis at Observer to Point in Source

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

- Change in z Adds Δ to Optical Path: $r \rightarrow \Delta+r$

$$
\Delta=\frac{\ell}{\cos \theta}=\ell \sqrt{\frac{x^{2}+y^{2}+z^{2}}{z^{2}}}
$$

Paraxial Approximation

- For $x \ll z$ and $y \ll z$ Taylor's Series for Square Root

$$
\sqrt{\frac{x^{2}+y^{2}+z^{2}}{z^{2}}} \approx 1+\frac{1}{2} \frac{x^{2}+y^{2}}{z^{2}}
$$

- Simplify

$$
r \approx z+\frac{x^{2}+y^{2}}{2 z}
$$

$$
\phi_{1}=k r=\frac{2 \pi}{\lambda} r \approx \frac{2 \pi z}{\lambda}+2 \pi \frac{x^{2}+y^{2}}{2 \lambda z} \quad \frac{x^{2}+y^{2}}{2 \lambda z} \ll 1
$$

Mach-Zehnder and Extended Source Revisited

- Equation for

Extended Source

$$
\begin{gathered}
\Delta=\frac{\ell}{\cos \theta} \\
=\ell \sqrt{\frac{x^{2}+y^{2}+z^{2}}{z^{2}}}
\end{gathered}
$$

- Paraxial Approximation

$$
\begin{gathered}
\delta \phi=\phi_{2}-\phi_{1} \\
\delta \phi=k \Delta=\frac{2 \pi \Delta}{\lambda}= \\
\frac{2 \pi \ell}{\lambda}\left(1+\frac{1}{2} \frac{x^{2}+y^{2}}{z^{2}}\right)
\end{gathered}
$$

- Irradiance for Each Path Separately

$$
\begin{aligned}
& I_{1}=I_{0} R_{1} T_{2} \\
& I_{2}=I_{0} T_{1} R_{2}
\end{aligned}
$$

- Fields

$$
\begin{aligned}
& E_{1}=E_{0} \rho_{1} \tau_{2} e^{j k n z_{1}} \\
& E_{2}=E_{0} \tau_{1} \rho_{2} e^{j k n z_{2}}
\end{aligned}
$$

- Interference Pattern

$$
\begin{gathered}
I=I_{0}\left(R_{1} T_{2}+T_{1} R_{2}+\ldots\right. \\
\left.2 \sqrt{R_{1} T_{2} T_{1} R_{2}} \cos \delta \phi\right)
\end{gathered}
$$

Fringe Pattern for Mach-Zehnder

$$
I=I_{0}\left(R_{1} T_{2}+T_{1} R_{2}+2 \sqrt{R_{1} T_{2} T_{1} R_{2}} \cos \delta \phi\right)
$$

- Fringe Count

$$
N=\left(\frac{\rho}{z}\right)^{2} \frac{\delta \ell}{\lambda}
$$

- Invert

$$
\ell=\lambda\left(\frac{z}{\rho}\right)^{2} N
$$

- Sensitivity

$$
\frac{d \ell}{\ell}=\frac{d N}{N}
$$

Fringe Amplitude and Contrast

- Total Signal

$$
I=I_{0}\left(R_{1} T_{2}+T_{1} R_{2}+2 \sqrt{R_{1} T_{2} T_{1} R_{2}} \cos \delta \phi\right)
$$

- Fringe Amplitude

$$
\begin{gathered}
I_{m}=I_{\max }-I_{\min } \\
\sqrt{R_{1} T_{1} R_{2} T_{2}} I_{0}=0.25 I_{0} \quad \text { for } R_{1}=R_{2}=0.5
\end{gathered}
$$

- Fringe Contrast Defined

$$
V=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }} \quad(0 \leq V \leq 1) \quad V=2 \frac{\sqrt{R_{1} T_{2} T_{1} R_{2}}}{R_{1} T_{2}+T_{1} R_{2}}
$$

- For $R_{1}=R_{2}=R$ and $\left(T_{1}=T_{2}=T\right)$

$$
I=I_{0} 2 R T(1+\cos \delta \phi)
$$

Mach-Zehnder with Point Source

- Same Path Length Equations as Extended Source
- Same Fringe Pattern

Alignment (1)

- Goal is to Match the Two Point-Source Locations
- Match at Two Points to Make Beams Coaxial
- Small Angular Error Produces Straight Fringes
- Separation

$$
d_{\text {fringe }}=\frac{\lambda}{\delta \theta}
$$

- Example: $\lambda=500 \mathrm{~nm}$ with One Fringe over $d=1 \mathrm{~cm}$

$$
\delta \theta=\frac{\lambda}{d}=\frac{500 \times 10^{-9} \mathrm{~m}}{0.01 \mathrm{~m}}=5 \times 10^{-5} \text { radians }
$$

Alignment (2)

- Starting Point
- Stable Environment (Floating Table?) for Interferometer
- Adjustments in the Right Places (See Drawing, Previous Page)
- Transverse Alignment
- Bring Point Sources Close Together
- Iterate at Two Distances
- Get it Close Enough to Make Fringe Spacing Visible
- Axial Alignment
- OPL Mismatch May Lead to Loss of Coherence (Ch. 10)
- Geometric Mismatch Makes Fringes too Close to See
- Fine Tuning
- Adjust Position and Angle to Achieve Largest Fringes

Balanced Mixing (1)

- Right Output

$$
\begin{aligned}
& E_{1}=E_{0} \rho_{1} \tau_{2} e^{j k n z_{1}} \\
& E_{2}=E_{0} \tau_{1} \rho_{2} e^{j k n z_{2}}
\end{aligned}
$$

- Right Interference Pattern

$$
I=I_{0}\left(R_{1} T_{2}+T_{1} R_{2}+2 \sqrt{R_{1} T_{2} T_{1} R_{2}} \cos \delta \phi\right)
$$

- Down (Alternate) Intereference Pattern

$$
I_{a l t}=I_{0}\left(T_{1} T_{2}+R_{1} R_{2}-2 \sqrt{T_{1} T_{2} R_{1} R_{2}} \cos \delta \phi\right)
$$

- Conservation of Energy Explains the Minus Sign

$$
I_{t o t a l}=I+I_{\text {alt }}=\ldots
$$

$$
I_{0}\left(R_{1} T_{2}+T_{1} R_{2}+T_{1} T_{2}+R_{1} R_{2}\right)=
$$

$$
I_{0}\left[R_{1}\left(1-R_{2}\right)+\left(1-R_{1}\right) R_{2}+\ldots\right.
$$

$$
\left.\left(1-R_{1}\right)\left(1-R_{2}\right)+R_{1} R_{2}\right]=I_{0}
$$

Balanced Mixing (2)

- Subtract Two Outputs

$$
\begin{gathered}
I_{d i f}=I-I_{\text {alt }}=\ldots \\
I_{0}\left[R_{1}\left(T_{2}-R_{2}\right)+T_{1}\left(R_{2}-T_{2}\right)+4 \sqrt{T_{1} T_{2} R_{1} R_{2}} \cos \delta \phi\right]
\end{gathered}
$$

- Lossless Beamsplitters ($T+R=1$)

$$
I_{d i f}=I_{0}\left[\left(1-2 R_{1}\right)\left(1-2 R_{2}\right)-4 \sqrt{\left(1-R_{1}\right)\left(1-R_{2}\right) R_{1} R_{2}} \cos \delta \phi\right]
$$

- One 50/50 Beamsplitter ($R_{1}=50 \%$ or $R_{2}=50 \%$)

$$
I_{d i f}=I_{0} \cos \delta \phi
$$

Balanced Mixing Comparison

- Setup: $P_{0}=1 \mathrm{~mW}, \delta P_{0}=1 \mu \mathrm{~W}$ (Noise), $P=I A$, $\delta \phi$ at Quadrature Point $\pm 1 \mu \mathrm{Rad}, R_{1}=0.01, R_{2}=0.5$
- Right Output Alone

$$
P=P_{0}\left(R_{1} T_{2}+T_{1} R_{2}+2 \sqrt{R_{1} T_{2} T_{1} R_{2}} \cos \delta \phi\right)
$$

- Signal: $2 P_{0} \sqrt{R_{1} T_{2} T_{1} R_{2}}=99 \mathrm{pW}$
- DC: $P_{0}\left(R_{1} T_{2}+T_{1} R_{2}\right)=500 \mu \mathrm{~W}$
- Noise (on DC): $\delta P_{0}\left(R_{1} T_{2}+T_{1} R_{2}\right)=500 \mathrm{nW}$
- Balanced Mixing
$I_{d i f}=I_{0}\left[\left(1-2 R_{1}\right)\left(1-2 R_{2}\right)-4 \sqrt{\left(1-R_{1}\right)\left(1-R_{2}\right) R_{1} R_{2}} \cos \delta \phi\right]$
- Signal: $P_{0} \times 4 \sqrt{\left(1-R_{1}\right)\left(1-R_{2}\right) R_{1} R_{2}}=200 \mathrm{pW}$
- DC: Zero for Perfect Balance (May Need to Adjust Gain)
- Noise (On Mix): $\delta P_{0} \times 4 \sqrt{\left(1-R_{1}\right)\left(1-R_{2}\right) R_{1} R_{2}}=200 \mathrm{fW}$

Coherent Laser Radar (Lidar)

- Similar to Mach-Zehnder (Modified Mach-Zehnder?)
- Common Transmit/Receive Aperture: Use T/R Switch (Ch. 6)
- Transmitter Polarization: P at Beamsplitters
- Receiver Polarization: S: Need HWP in Reference (LO)
- Ideally QWP Between Telescope and Target to Reduce Narcissus (Not Practical)
- BS1 and Recombining Beamsplitter High Reflectivity

Laser Radar Equations

- Reference or Local Oscillator (LO) Power (mW Typ.)

$$
P_{L O}=P_{0} T_{B S 1} T_{R e c o m b}
$$

- Power to Target (W or More Typ.)

$$
P_{t}=P_{0} R_{B S 1} T_{T / R}
$$

- Power to Detector (F Accounts for Target and Geometry)

$$
\begin{gathered}
P_{\text {sig }}=P_{t} F R_{T / R} R_{\text {Recomb }} \quad(\text { fW or More }) \\
F=\frac{\pi D^{2}}{4 z^{2}} \times \rho(\pi) \times 10^{-2 \alpha z / 10}
\end{gathered}
$$

- Mixing Signal: nW or More

Mixing Efficiency

- Mixing Power Detected

$$
P_{\operatorname{mix}}=\int I_{m i x} d A=\int \frac{E_{S i g}\left(x_{d}, y_{d}\right) E_{L O}^{*}\left(x_{d}, y_{d}\right)}{Z} d A
$$

- Mixing Efficiency Defined

$$
P_{m i x}=\eta_{\operatorname{mix}} \sqrt{P_{s i g} P_{L O}}
$$

$$
\eta_{m i x}=\int \frac{E_{s i g}\left(x_{d}, y_{d}\right) E_{L O}^{*}\left(x_{d}, y_{d}\right)}{\sqrt{\int E_{s i g}\left(x_{d}, y_{d}\right) E_{s i g}^{*}\left(x_{d}, y_{d}\right) d A \times \int E_{L O}\left(x_{d}, y_{d}\right) E_{L O}^{*}\left(x_{d}, y_{d}\right) d A}} d A
$$

- Matched LO and Signal: $\eta_{m i x}=1$
- Losses for Different Shape, Random Scatter, etc.

Doppler Velocity

- Target: Dust, Fo, Rain, Snow, Smoke, etc.
- Doppler Equation from Source to Target

$$
\begin{gathered}
2 \pi f_{d}=\mathrm{k} \cdot \mathbf{v} \quad(>0 \text { for Approaching Velocities) } \\
f_{d}=\frac{v_{\text {parallel }}}{\lambda} \quad(\text { Moving Source or Detector })
\end{gathered}
$$

- Doppler Lidar (or Radar) on Round Trip

$$
f_{D R}=2 \frac{v_{\text {parallel }}}{\lambda}
$$

$$
\left(f_{D R}=100 \mathrm{kHz} \text { for } v_{\text {parallel }}=0.54 \mathrm{~m} / \mathrm{s} \text { at } \lambda=10.59 \mu \mathrm{~m}\right)
$$

Ranging Lidar

- Ranging by Focusing (Like a Confocal Microscope)
- In Focus (High Mixing Efficiency)

$$
I_{m i x}=\frac{E_{s i g} E_{L O}^{*}}{Z}
$$

- Out of Focus (Low Mixing Efficiency)

$$
E_{s i g}=\left|E_{s i g}\right| e^{j k \sqrt{x^{2}+y^{2}+s^{\prime 2}}}
$$

- Range Resolution Lmited by Aperture Size
- Limited to Short Range by Diffraction (Ch. 8, 9)
- Ranging by Transit Time (Pulsed Lidar)
- Round-Trip Time $2 R / c$
- Limted to Longer Ranges
- Range Resolution Interacts with Velocity Resolution

Pulsed Laser Radar

- Range Resolution and Velocity Resolution

$$
\delta r=\frac{c \tau}{2} \quad \delta f_{D R} \approx \frac{1}{\tau} \quad \delta v_{\text {parallel }} \approx \frac{\lambda}{2 \tau}
$$

- Hundreds of Meters and m / s Typical at $10.59 \mu \mathrm{~m}$
- Average Power

$$
P_{a v g}=P_{l a s e r} \times \tau \times P R F
$$

- Range Ambiguity May Limit PRF

Ambiguities in Interferometry

- Variations in Amplitude and Phase May Be Confused
- Important for Phase Measurement
- But Lidar Signal Goes through Many Cycles
- Solutions: Phase-Shifting and Quadrature
- Quadrature Point is Hard to Maintain
- Important for Measuring Phase Shifts
- Not Needed for Doppler Lidar
- Solutions: Phase-Shifting and Quadrature
- Cosine is an Even Function
- Particularly Significant for Doppler Lidar
- Sign of Velocity Component is Lost
- Solutions: Offset LO and Quadrature
- Cosine is a Periodic Function
- Important for Absolute Distance Measurement
- Not Important for Velocity Measurement
- Solutions: Multiple Wavelengths, Counting

Frequency Offset

- Shift the Reference Frequency
- Shift by More than Maximum Doppler
- Negative Shift f_{o} In Figures
- Zero Doppler Corresponds to RF Frequency
- Positive or Negative Doppler Shifts Measurable

Negative Doppler Shift, $f_{d}<0$ Positive Doppler Shift, $0<f_{d}$ Right Figure Updated

Quadrature Detection

- Reference Wave Circularly Polarized (sin and cos Components)
- Signal Wave Linearly Polarized at 45° (Equal Components)
- Two Detectors (or Four with Balanced Mixing)

Quadrature Equations (1)

- Jones Vector Sum

$$
\mathbf{E}=\mathbf{E}_{s i g}+\mathbf{E}_{L O}
$$

- Unit Laser Input at 45°

$$
\mathrm{E}_{0}=\binom{1}{1} \times \frac{1}{\sqrt{2}}
$$

- Reference or LO

$$
\begin{gathered}
E_{L O}=\mathcal{R}_{2} \mathcal{Q} \mathcal{T}_{1} \mathrm{E}_{0} \\
\mathcal{Q}=\left(\begin{array}{ll}
1 & 0 \\
0 & j
\end{array}\right)
\end{gathered}
$$

- Signal

$$
E_{\text {sig }}=\mathcal{T}_{2} \mathcal{J}_{\text {sample }} \mathcal{R}_{1} \mathbf{E}_{0}
$$

- At "I" Detector

$$
\begin{gathered}
\mathbf{E}_{I}=\mathcal{P}_{x}\left(\mathbf{E}_{s i g}+\mathbf{E}_{L O}\right) \\
P_{I}=P_{0} \times \ldots
\end{gathered}
$$

$$
\left(\mathbf{E}_{s i g}^{\dagger}+\mathbf{E}_{L O}^{\dagger}\right) \mathcal{P}_{x}^{\dagger} \mathcal{P}_{x}\left(\mathbf{E}_{s i g}+\mathbf{E}_{L O}\right)
$$

- At "Q" Detector

$$
\begin{gathered}
\mathbf{E}_{Q}=\mathcal{P}_{y}\left(\mathbf{E}_{s i g}+\mathbf{E}_{L O}\right) \\
P_{Q}=P_{0} \times \ldots
\end{gathered}
$$

$$
\left(\mathbf{E}_{s i g}^{\dagger}+\mathbf{E}_{L O}^{\dagger}\right) \mathcal{P}_{y}^{\dagger} \mathcal{P}_{y}\left(\mathbf{E}_{s i g}+\mathbf{E}_{L O}\right)
$$

Quadrature Equations (2)

- No Depolarization at Target

$$
\mathcal{J}_{\text {sample }}=A e^{i \phi}
$$

- Beamsplitters

$$
\tau_{1}=\sqrt{T_{1}} \quad \tau_{2}=\sqrt{T_{2}} \quad \rho_{1}=\sqrt{R_{1}} \quad \rho_{2}=\sqrt{R_{2}}
$$

- "I" Detector Power

$$
\begin{gathered}
P_{I}=A^{2} T_{2} R_{1} P_{0} / 2+R_{2} T_{1} P_{0} / 2+\ldots \\
\sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{j \phi} P_{0} / 2+\sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{-j \phi} P_{0} / 2
\end{gathered}
$$

- "Q" Detector Power

$$
\begin{gathered}
P_{Q}=A^{2} T_{2} R_{1} P_{0} / 2+R_{2} T_{1} P_{0} / 2-\ldots \\
j \sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{j \phi} P_{0} / 2+j \sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{-j \phi} P_{0} / 2
\end{gathered}
$$

Quadrature Equations (3)

- Sum Signals From Detector (in Computer)
- 3rd Terms in Previous Eqns. (Complex Mixing Terms) Add
- 4th (Conjugate) Terms Cancel

$$
P_{I}+j P_{Q}=(1+j)\left(A^{2} T_{2} R_{1} P_{0} / 2+R_{2} T_{1} P_{0} / 2\right)+\sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{j \phi} P_{0}
$$

- But We're Stuck with the DC Terms Too
- Need at Least One More Measurement

Quadrature and Balanced Mixing

- Alternate Output Terms

$$
\begin{gathered}
P_{-I}=T_{2} R_{1} P_{0} / 2+R_{2} T_{1} P_{0} / 2-\ldots \\
\sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{j \phi} P_{0} / 2-\sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{-j \phi} P_{0} / 2 \\
P_{-Q}=T_{2} R_{1} P_{0} / 2+R_{2} T_{1} P_{0} / 2+\ldots \\
j \sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{j \phi} P_{0} / 2-j \sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{-j \phi} P_{0} / 2
\end{gathered}
$$

- Complex Signal (DC \& Conjugate Terms Cancel)

$$
P_{I}+j P_{Q}+j^{2} P_{-I}+j^{3} P_{-Q}=2 \sqrt{T_{2} R_{1} R_{2} T_{1}} A e^{j \phi} P_{0}
$$

Periodicity Issues

- One Solution: Use Multiple Wavelengths
- Another Solution: Unwrap the Phase

Phase Unwrapping. The object here is a prism with an index of refraction 0.04 above that of the background medium. The left panel shows the phase (solid line), the phase with noise added to the field (dashed line), and the unwrapped phase (dash-dot). The right panel shows the original prism thickness and the reconstructed value obtained from the unwrapped phase.

Michelson Interferometer

Time Match is Important

Reference Field Amplitude $=1.5$ Energy $=1.5^{2}$

Signal Field

Coherent Sum Energy 2.5^{2}

Amplitude $=1$

$1.5^{2}+1$

Energy $=1^{2}$

Compensator Plate

Below Right: with
Compensator
(Corrects both Time
 and Geometry)

Optical Testing

Synthetic Results Illustrating Fringe Patterns

Perfect Surface 2-Wavelength Bump 0.2-Wavelength Bump (4 Fringes) (0.4 Fringes)

Fabry-Perot

- Resonant Frequencies and Free Spectral Range

$$
f=N f_{0}
$$

- Recirculating Power

$$
\begin{gathered}
P_{\text {recirculating }}=\frac{P_{\text {out }}}{T_{2}}= \\
\frac{P_{\text {out }}}{1-R_{2}}=\frac{P_{0}}{1-R_{2}}
\end{gathered}
$$

- N Round Trips

$$
P_{N}=\left(R_{1} R_{2}\right)^{N}
$$

- 50\% Probability

$$
N=-\log 2 / \log \left(R_{1} R_{2}\right)
$$

$$
\text { e.g. } R_{1}=R_{2}=0.999 \text { : }
$$

$N=346$

- Resolution of a Longer Interferometer

Fabry-Perot Equations

The Infinite Sum, or "Barber's Chair" Approach

Fabry-Perot Infinite-Sum Equations

Definitions ρ_{1} for light incident from the left, and ρ_{1}^{\prime} Plane Waves (Otherwise Include Wavefront Effects)

$$
\begin{gathered}
E_{t}=E_{0}\left[\tau_{1} e^{j k \ell} \tau_{2}+\tau_{1} e^{j k \ell} \rho_{2} e^{j k \ell} \rho_{1}^{\prime} e^{j k \ell} \tau_{2}+\ldots\right] \\
E_{t}=E_{0} \tau_{1} \tau_{2} e^{j k \ell} \sum_{m=0}^{\infty}\left(\rho_{1}^{\prime} \rho_{2} e^{2 j k \ell}\right)^{m} \\
E_{r}=E_{0}\left[\rho_{1}+\tau_{1} e^{j k \ell} \rho_{2} e^{j k \ell} \tau_{1}^{\prime}+\tau_{1} e^{j k \ell} \rho_{2} e^{j k \ell} \rho_{1}^{\prime} e^{j k \ell} \rho_{2} e^{j k \ell} \tau_{1}^{\prime}+\ldots\right] \\
E_{r}=E_{0} \rho_{1}+\tau_{1} \tau_{1}^{\prime} e^{2 j k \ell} \sum_{m=0}^{\infty}\left(\rho_{1}^{\prime} \rho_{2} e^{2 j k \ell}\right)^{m} \\
\text { For } 0<x<1, \quad \sum_{m=0}^{\infty} x^{m}=\frac{1}{1-x}
\end{gathered}
$$

Computing the Sums

$$
E_{t}=E_{0} \tau_{1} \tau_{2} e^{j k \ell} \frac{1}{1-\rho_{1}^{\prime} \rho_{2} e^{2 j k \ell}}
$$

$$
E_{r}=E_{0} \rho_{1}+\tau_{1} \tau_{1}^{\prime} e^{2 j k \ell} \frac{1}{1-\rho_{1}^{\prime} \rho_{2} e^{2 j k \ell}}
$$

$$
\begin{gathered}
T=\left|\frac{E_{t}}{E_{0}}\right|^{2} \quad T=\tau_{1} \tau_{2} \tau_{1}^{*} \tau_{2}^{*} \frac{1}{1-\rho_{1}^{\prime} \rho_{2} e^{2 j k \ell}} \frac{1}{1-\left(\rho^{\prime}\right)_{1}^{*} \rho_{2}^{*} e^{-2 j k \ell}} \\
T=T_{1} T_{2} \frac{1}{1-2 \sqrt{R_{1} R_{2}} \cos (2 k \ell)+R_{1} R_{2}}
\end{gathered}
$$

Including Loss

- Define
- Finesse

$$
\ell=n \ell_{p}
$$

- Replace $R_{1} R_{2}$ by ...

$$
\begin{aligned}
\eta_{r t} & =R_{1} R_{2} e^{-2 \Im n k \ell_{p}} \\
T & =T_{1} T_{2} \frac{1}{1-2 \sqrt{\eta_{r t}}+4 \sqrt{\eta_{r t}} \sin ^{2}(k \ell)+\eta_{r t}}
\end{aligned}
$$

$$
T=\frac{T_{1} T_{2}}{R_{1} R_{2}} \frac{\eta_{r t}}{\eta_{r t}-1} \frac{1}{1+F \sin ^{2}(k \ell)}
$$

Can Include Wavefronts, Alignment, etc.

Linewidth

- Maximum Transmission

$$
T_{\max }=\frac{T_{1} T_{2}}{R_{1} R_{2}} \frac{\eta_{r t}}{\eta_{r t}-1}
$$

- Half of Maximum

$$
F \sin ^{2}(n k \ell)=1 \quad k \ell=\frac{2 \pi}{\lambda} \ell=\frac{2 \pi f}{c} \ell=\arcsin \frac{1}{\sqrt{F}}
$$

- FWHM

$$
\delta f=2 \frac{c}{2 \pi \ell} \arcsin \frac{1}{\sqrt{F}} \quad \frac{\delta f}{F S R}=\frac{2}{\pi} \arcsin \frac{1}{\sqrt{F}}
$$

Linewidth in Wavelength

- Fractional Linewidth

$$
\left|\frac{\delta \lambda}{\lambda}\right|=\left|\frac{\delta f}{f}\right| \quad \frac{\delta \lambda}{\lambda}=\frac{\lambda}{\ell} \frac{\arcsin \frac{1}{\sqrt{F}}}{\pi}
$$

- FWHM

$$
\begin{gathered}
\frac{\delta f}{F S R}=\frac{2}{\pi} \arcsin \frac{1}{\sqrt{F}} \\
\frac{\delta \lambda}{\lambda}=\frac{\delta f}{f}=\frac{2}{\pi} \frac{F S R}{f} \arcsin \frac{1}{\sqrt{F}} \\
\frac{\delta \lambda}{\lambda}=\frac{\delta f}{f}=\frac{2}{\pi} \frac{c}{2 \ell f} \arcsin \frac{1}{\sqrt{F}} \\
\frac{\delta \lambda}{\lambda}=\frac{\lambda}{\pi \ell} \arcsin \frac{1}{\sqrt{F}}
\end{gathered}
$$

Etalon Transmission

Etalon

Dash is gain, Dot-dash is Etalon, Dots at 0.5 every 5th cavity mode

Stabilization Loop

Beamsplitter

Beamsplitter. Ideally we would like one reflected and one transmitted beam. However, there is always some reflection from the second surface. If this reflection adds coherently, undesirable fringes may result.

$R_{1}, \%$	$R_{2}, \%$	$V_{T}, \%$	$V_{R}, \%$
1	10	6.3	58.0
10	1	6.3	52.7
1	90	18.8	21.1
90	1	18.8	2.1

Beamsplitter Fringe Visibility. The goal is to keep the fringe visibility low. High reflectivity (90\%)beamsplitters are better than low (10\%), and beamsplitters with the reflective surface first are better than those with the anti-reflective (1\%) side first.

Beamsplitter

- Reflection from the AR side may produce unwanted effects such as ghost images and interference patterns.
- Coherent sources exacerbate the problem.
- Make stronger beam the reflected one if possible.
- Reflective side toward the source.
- Tilt the second surface?
- Reflected wave will have weaker fringes than the transmitted one.
- Beamsplitter cube: Flat surface problem.
- Aberrations of converging/diverging waves (transmitted direction). Worse for a cube.

Thin Films: Approach

- Normal Incidence
- Wave from Left

$$
\begin{array}{ll}
E_{A}=E_{i}+E_{r} & E_{D}=E_{t} \\
H_{A}=H_{i}-H_{r} & H_{D}=H_{t}
\end{array}
$$

- Electric Field BC

$$
E_{B}=E_{A} \quad E_{C}=E_{D}
$$

- Magnetic Field BC

$$
\begin{array}{rlrl}
H_{B} & =H_{A} & H_{C}=H_{D} \\
\frac{E_{B}}{n Z_{0}}=\frac{E_{A}}{n_{0} Z_{0}} & \frac{E_{c}}{n Z_{0}}=\frac{E_{D}}{n_{t} Z_{0}} \\
\frac{E_{B}}{n} & =\frac{E_{A}}{n_{0}} & \frac{E_{C}}{n}=\frac{E_{D}}{n_{t}}
\end{array}
$$

Thin Films: In the Medium

- Right-Propagating

$$
E_{\text {right }} e^{i n k z} \quad \text { and } \quad H_{\text {right }} e^{i n k z}=\frac{1}{n Z_{0}} E_{\text {right }} e^{i n k z}
$$

- Left-Propagating

$$
E_{l e f t} e^{-i n k z} \quad \text { and } \quad H_{l e f t} e^{-i n k z}=-\frac{1}{n Z_{0}} E_{l e f t} e^{-i n k z}
$$

- Boundaries

$$
E_{B}=E_{l e f t}+E_{r i g h t} \quad E_{c}=E_{l e f t} e^{-j n k \ell}+E_{r i g h t} e^{j n k \ell}
$$

- Result

$$
\begin{aligned}
E_{i}+E_{r} & =E_{t} \cos (n k \ell)-E_{t} \frac{n_{t}}{n} \sin (n k \ell) \\
n_{0} E_{i}-n_{0} E_{r} & =-i n E_{t} \sin (n k \ell)+n_{t} E_{t} \cos (n k \ell)
\end{aligned}
$$

Thin Films: Matrix Equation

- Previous Result

$$
\begin{aligned}
E_{i}+E_{r} & =E_{t} \cos (n k \ell)-E_{t} \frac{n_{t}}{n} \sin (n k \ell) \\
n_{0} E_{i}-n_{0} E_{r} & =-i n E_{t} \sin (n k \ell)+n_{t} E_{t} \cos (n k \ell)
\end{aligned}
$$

- Matrix Equation

$$
\binom{1}{n_{0}} E_{i}+\binom{1}{-n_{0}} E_{r}=\left(\begin{array}{cc}
\cos (n k \ell) & -\frac{i}{n} \sin (n k \ell) \\
-i n \sin (n k \ell) & \cos (n k \ell)
\end{array}\right)\binom{1}{n_{t}} E_{t}
$$

- Characteristic Matrix

$$
\mathcal{M}=\left(\begin{array}{cc}
\cos (n k \ell) & -\frac{i}{n} \sin (n k \ell) \\
-i n \sin (n k \ell) & \cos (n k \ell)
\end{array}\right)
$$

$$
\binom{1}{n_{0}}+\binom{1}{-n_{0}} \rho=\mathcal{M}\binom{1}{n_{t}} \tau
$$

Multiple Layers

$$
\mathcal{M}=\left(\begin{array}{cc}
\cos (n k \ell) & -\frac{i}{n} \sin (n k \ell) \\
-i n \sin (n k \ell) & \cos (n k \ell)
\end{array}\right) \quad\binom{1}{n_{0}}+\binom{1}{-n_{0}} \rho=\mathcal{M}\binom{1}{n_{t}} \tau
$$

$$
\mathcal{M}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

$$
\rho=\frac{A n_{0}+B n_{t} n_{0}-C-D n_{t}}{A n_{0}+B n_{t} n_{0}+C+D n_{t}}
$$

$$
\mathcal{M}=\mathcal{M}_{1} \mathcal{M}_{2} \mathcal{M}_{3} \ldots
$$

$$
\tau=\frac{2 n_{0}}{A n_{0}+B n_{t} n_{0}+C+D n_{t}}
$$

Dielectric Stacks

- High Reflectivity (Often Better than Metal)
- Anti-Reflection "Coatings" or Stacks
- Narrow-Band Filters, Mirrors, etc.
- Bandpass Devices that Are Not Narrow-Band
- Hot Mirror or Cold Mirror
- Long-Pass Dichroic
- Short-Pass Dichroic
- Beamsplitters (Specific Reflectivity, Angle, Polarization, Wavelength Range, etc.)

High-Reflectance Stack (1)

One Pair

Multi-Layer Stack

- One Layer ($\lambda / 4$)

$$
\mathcal{M}_{i}=\left(\begin{array}{cc}
0 & -i / n_{i} \\
i n_{i} & 0
\end{array}\right)
$$

- One Pair

$$
\begin{aligned}
\mathcal{M}_{p}= & \left(\begin{array}{cc}
0 & -i / n_{h} \\
i n_{h} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i / n_{\ell} \\
i n_{\ell} & 0
\end{array}\right)= \\
& \left(\begin{array}{cc}
-n_{\ell} / n_{h} & 0 \\
0 & -n_{h} / n_{\ell}
\end{array}\right)
\end{aligned}
$$

High-Reflectance Stack (2)

- One Pair of $\lambda / 4$ Layers

$$
\mathcal{M}_{p}=\left(\begin{array}{cc}
-n_{\ell} / n_{h} & 0 \\
0 & -n_{h} / n_{\ell}
\end{array}\right)
$$

- Multiple Pairs

$$
\mathcal{M}_{N}=\left(\begin{array}{cc}
\left(-n_{\ell} / n_{h}\right)^{N} & 0 \\
0 & \left(-n_{h} / n_{\ell}\right)^{N}
\end{array}\right)
$$

- Reflectivity

$$
R=\left(\frac{\left(\frac{n_{\ell}}{n_{h}}\right)^{2 N}-\frac{n_{t}}{n_{0}}}{\left(\frac{n_{\ell}}{n_{h}}\right)^{2 N}+\frac{n_{t}}{n_{0}}}\right)^{2}
$$

- Narrow Band $(\lambda / 4)$
- Almost Indep.of n_{t}, n_{0}
- Example
- Zinc Sulfide, $n_{h}=2.3$
- Magnesium Fluoride,

$$
n_{\ell}=1.35
$$

- 8 Layers

$$
N=4 \rightarrow R=0.97
$$

- 30 Layers

$$
\begin{aligned}
& \quad N=15 \rightarrow R=0.999 \\
& - \text { For Lasers, eg. HeNe }
\end{aligned}
$$

- Compare Metal (≈ 0.96 Typical)
- Near-Zero Heating

Anti-Reflection Coating

- Ideal AR Coating
- Quarter-Wave Coating

$$
n_{\text {layer }}=\sqrt{n_{t}}
$$

- Other Issues
- Durability
- Cost
- Safety

- Example
- One Layer
- Magnsium Fluoride

$$
n=1.35
$$

$-R=0.01$ at Design λ
$-R=0.04$ at Extremes

- Looks Pink or Purple

Multi-Layer AR Stacks

