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1 Thin Lens

To better understand the concept of principal planes, we consider the com-
pound lens of two elements shown in Figure 1. Initially, assume that we
have designed this system assuming thin lenses. We can locate the image by
applying the lens equation twice. For the first lens, the object distance is

s1 = 8cm, (1)

the focal length is
f1 = 10cm, (2)

and the image distance after the first lens, s′1 is given by

1

s′1
=

1

f1

− 1

s1

s′1 = −40cm. (3)

This image is virtual, and is to the left of the lens. The magnification is

m1 =
−s′1
s1

= 5, (4)

and the image of an object 1cm high is 5cm high.
Treating this image as an object for the second lens, the object distance

is
s2 = z12 − s′1 = 47cm, (5)

the focal length is
f2 = 5cm, (6)

and the image distance, s′2 is given by

1

s′2
=

1

f2

− 1

s2

s′2 = 5.60cm. (7)

1



−50 −40 −30 −20 −10 0 10 20
−1

0

1

2

3

4

5

6

F1 F1’

F2 F2’

S1

S1’

S2’

Figure 1: COMPOUND LENS. This lens consists of two glass elements, each
represented by a black vertical line, assumed to be biconvex lenses of focal
lengths, f1 = 10cm and f2 = 5cm respectively, separated by 7cm. An object
(magenta line) will be placed 8cm in front of the first lens. Each lens is 6mm
thick, but we will assume thin lenses for the first approximation.

This image is real, and is to the right of the lens. The magnification is

m2 =
−s′2
s2

= −0.119, (8)

and the image of the original object 1cm high is given by

m = m1m2 x′2 = mx1 = −0.595cm, (9)

so the image is smaller and inverted with respect to the original object.
Objects are placed on the drawing using absolute coordinates, in which

we have arbitrarily chosen the first vertex of the first lens as the origin. As
each of the above equations is used, the result is converted to this coordinate
system. On the drawing, capital letters are used to represent points or planes
illustrated by the examples, S1 is the location of the object, H ′

1 is the location
of the back principal plane of the first lens, and V2 is the front vertex of the
second lens. It is convenient in writing computer code to use a variable name
beginning with a lower–case z for the locations. Thus in these examples, the
locations are zS1, zH1prime and zV 2 respectively.
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2 Thick Lens

Next, we choose to refine our design, accounting for lens thickness. Given
that the lenses are biconvex, we will apply the “one–third” rule to locate
the principal planes. As shown in Figure 2, the first principal plane of each
lens is one third the thickness, or 2mm inside the lens from the first vertex.
The second principal plane is an additional 2mm in, and there is, of course,
another 2mm to the second vertex.

To keep the performance the same as in the simpler design of Figure 1,
we want Equations 3 and 7 to have the same numerical values, but for a thick
lens, measurements are made from the principal planes. Thus, the object,
S1 is moved to the right by 2mm and the inner vertices of the two simple
lenses are spaced

zv2 − zv′1 = z12 + h′1 + h2 = z12 − 0.4cm = 6.6cm. (10)

Now, we can simply apply the same equations we used with the thin
lenses, but with the understanding that the results are also with respect to
principal planes. Specifically, the final image distance, s′2 is measured from
the back principal plane of the second lens.

3 Matrix Formulation

The matrix for the compound lens can be found from matrix multiplication;

L1 =
(

1 0
−1/f1 1

)
. (11)

L2 =
(

1 0
−1/f2 1

)
. (12)

T12 =
(

1 z12

0 1

)
. (13)

MH1:H2′ =
(

0.3 7cm
−0.16/cm −0.4

)
=

(
m11 m21

m12 m22

)
. (14)

The focal length is obtained from the lower left element,

f = − 1

m21

= 6.25cm, (15)

and the principal plane distances are

h =
1−m22

m21

= −8.75cm, (16)
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Figure 2: COMPOUND LENS WITH PRINCIPAL PLANES. The principal
planes are located here using the “one–third” rule. The goal is to have the
lens behave the same as the one in Figure 1, so the object and lens have been
moved to make s1 and z12 be numerically the same as in that figure, but with
the measurements taken relative to principal planes.

and

h′ =
1−m11

m21

= −4.38cm. (17)

We could have used the matrix formulation to find the focal length of
the compound lens assuming thin lens elements. The distances h and h′

would be measured from Lens 1 and Lens 2 respectively. However, we will go
directly to the thick lens. Then h is measured from the front principal plane
of the first lens, H1, to locate H and h′ is measured from H ′

2 to H ′. This is
because the matrix (Equation 14) we used to calculate h (Equation 16) and
h′ (Equation 17) was from H1 to H ′

2.
The locations of these principal planes are shown in Figure 3. Note that

the principal planes have crossed over each other. The “back” principal plane
is before the “front” one. The front focal point, F , is quite close to the back
principal plane, and vice versa, but this is just coincidental.

We now find the object distance as the distance from the object to the
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Figure 3: PRINCIPAL PLANES AND FOCAL LENGTHS: The compound
lens can be characterized by its focal length, 6.25cm, and the locations of its
principal planes.

first principal plane as shown in Figure 4,

s = 16.7cm, (18)

using f = 6.25cm. The lens equation yields

1

s′
=

1

f
− 1

s
s′1 = 9.97cm, (19)

which is measured from the back principal plane.

4 Apertures in Object Space

We want to find all the apertures as seen in object space. Viewing the
system from the object, looking through Lens 1, only rays that pass through
a circle corresponding to the lens diameter will arrive at the image. Looking
through Lens 1, we see an image of Lens 2, and only rays that pass through
a circle of this diameter at this location will arrive at the image. Thus
these two circles limit the propagation of light through the compound lens.
Figure 5 shows the image of the second lens seen through the first. The
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Figure 4: IMAGING WITH THE COMPOUND LENS: The lens equation
can be used, provided that distances are measured from the principal planes.
The vertices of the lenses are shown, so that the user can see if they will be
in conflict with any hardware associated with the object or image.

lens equation is applied, thinking of light traveling from right to left in this
case. The object distance is a bit ambiguous; Where exactly are rays cut
off in going through the lens? More detailed information would require a
raytrace. We will chose the “object” to be at the front vertex of the second
lens, s2,1 = zV 2 − zH1′ = 6.8cm, and apply the lens equation.

1

s′2,1

=
1

f1

− 1

s2,1

s′1 = −21.5cm. (20)

Now we need to remember that we are working “backward” in this diagram,
so s′ is positive to the left. Therefore the image is 21.5cm to the right of H1.
The magnification is

m2,1 =
−s′2,1

s2,1

= 3.12, (21)

so the diameter is 3.12cm.
Now, we can consider only the object and the apertures as viewed in

object space, as shown in Figure 6. To locate the entrance pupil, we construct
rays from the base of the object to the boundary of each aperture. We
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Figure 5: THE IMAGE OF LENS 2 SEEN THROUGH LENS 1: All aper-
tures are located in object space to determine the location of the entrance
pupil and entrance window.

note that the image of Lens 2 subtends the smaller angle, so it becomes the
entrance pupil. The tangent of the half–cone angle is the radius divided by
the distance from the object to the image of Lens 2. The numerical aperture
is the sine of this angle, or approximately 0.533. The solid red line in the
figure shows the limiting aperture, and the dotted red line shows the other
one.

The entrance window subtends the smallest angle as measured from the
center of the entrance pupil. In this case, obviously it is Lens 1. The tangent
of this angle is about 0.0233 so the full field of view is 0.0466 radians, as shown
by the cyan line. The cyan line is extended to the object plane to show the
size of the largest object which can be imaged through this compound lens.

It is important to note that one must consider all apertures regardless
of whether they are to the left or the right in object space. Also, if there
are more than two apertures, only two of them play the roles of pupil and
window. The others are irrelevant, and in fact could be made smaller.
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Figure 6: OBJECT–SPACE REPRESENTATION: In object space, we show
the object, Lens 1, and the image of Lens 2 as seen through Lens 1. The
entrance pupil is the aperture which subtends the smallest angle seen from
the object. The entrance window is the one which subtends the smallest
angle seen from the pupil.
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