2. Schematic Entry with Composer

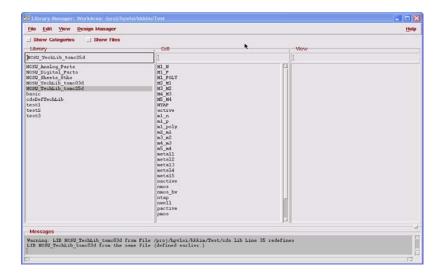
2-1 Creating the Schematic

(1) Creating a library and a schematic cell view

At first a new library that will contain the data for the implemented cell is created. From the menu bar of the Library Manager select

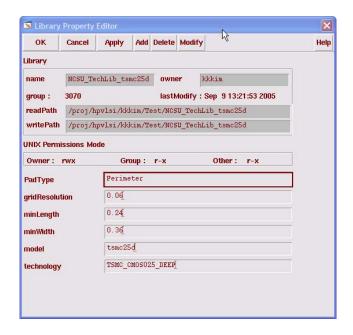
In Library Manager, Click File - New - Library

In the Name filed, enter " NCSU_TechLib_tsmc25d"


In the Technology Library box, select

Compile tech library -> TSMC 0.24u

Press OK.



Then the Library Manager will refresh as follows:

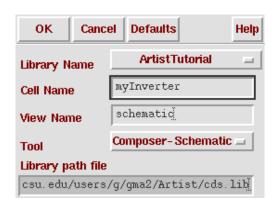
Select NCSU_TechLib_tsmc25d, and In Library Manager, Click Edit - Properties

In the model field, enter tsmc25d, and click OK.

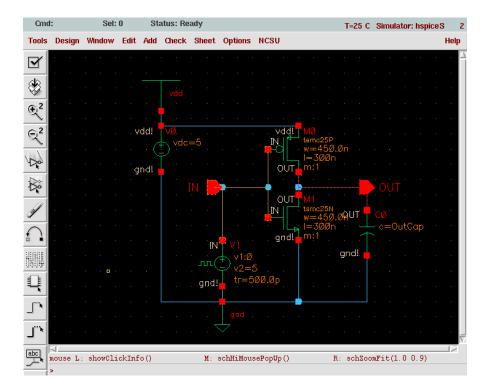
(2) Creating working library and a schematic cell view

In Library Manager, Click File - New - Library

In the Name filed, enter "test"

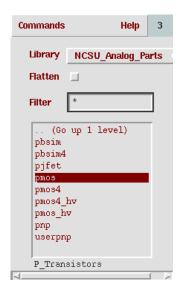

In the Technology Library box, select

Attach to existing tech library -> TSMC 0.24u


Press OK.

In **Library Manager**, select **ArtistTutorial**From the Menu Bar, select **File -> New -> CellView**Fill the Form as follows, then click **OK**

A blank Schematic window will then appear. We need to generate a schematic as shown below:



Drawing the schematic

To generate a schematic like this, you will need to go through the following steps:

From the Schematic Window menu, select Add -> instance (shortcut <i>)

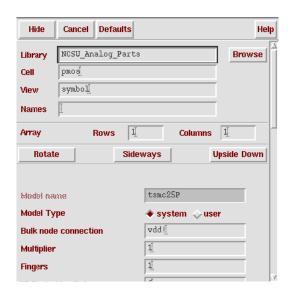
The Component Browser, will then pop up.

In the Library field, select NCSU_Analog_Parts

We will place the following instances in the Schematic Window from the

NCSU_Analog_Parts library as instructed below:

N_Transistor: nmos P_Transistor: pmos Supply_Nets: vdd, gnd Voltage_Sources: vdc,vpulse

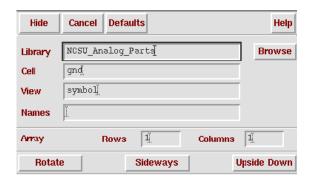

 $R_L_C: cap$

Note: pay attention to the parameters specified in *vdc*, *vpulse*, and *cap*. These parameters are very important in simulation

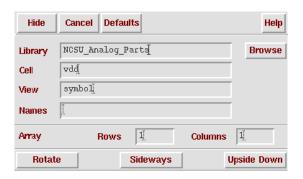
A. Place pmos instance:

In Component Browser, select P_Transistor and then pmos

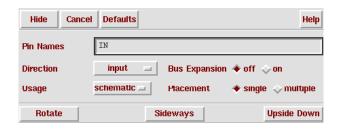
Place it in the **Schematic Window**


B. Place nmos instance:

In **Component Browser**, select **N_Transistor** and then **nmos** Place it in the **Schematic Window**


C. Place gnd instance:

In Component Browser, select Supply_Nets and then gnd Place it in the Schematic Window

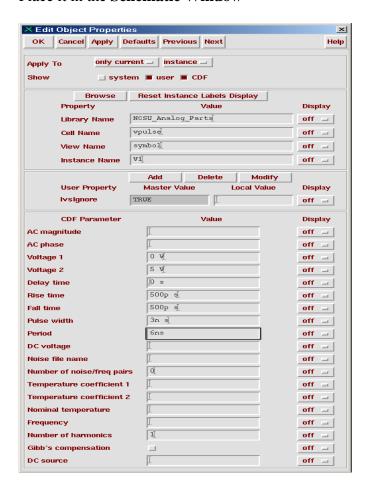

D. Place vdd instance:

In Component Browser, select Supply_Nets and then vdd Place it in the Schematic Window

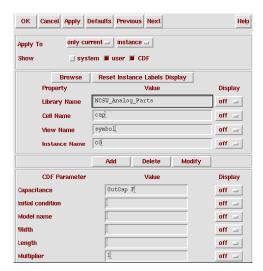
E. Place IN pin:

From the **Schematic Window** menu, select **Add -> Pin...**In the Pin Name field, enter "**IN**"
In the Direction field, select **input**Place it in the **Schematic Window**

G. Place vdc instance

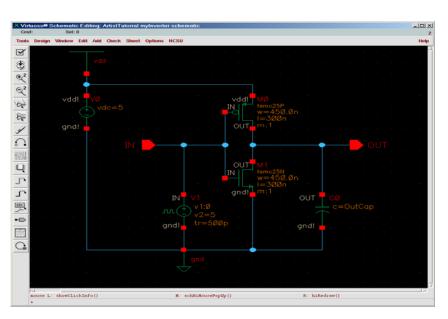

In **Component Browser**, select **Voltage Sources** and then **vdc** In the DC voltage field, enter "2.5 V"

Place it in the Schematic Window


H. Place vpulse instance

In **Component Browser**, select **Voltage_Sources** and then **vpulse** Enter the values as shown in the following form (next page) Place it in the **Schematic Window**

I. Place cap instance


In Component Browser, select R_L_C and then cap
In the Capacitance field, enter "OutCap F"
(This Design Variable will be used in Artist.)
Place it in the Schematic Window

J. Place wires

In the **Schematic Window** menu, select **Add** -> **Wire** (narrow) Place the wire to connect all the instances Select **Design** -> **Check and Save**. CIW will report any errors. 13

Your schematic should look like the one shown below.

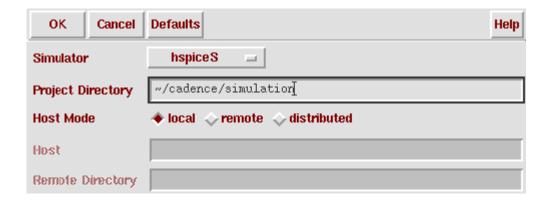
2-2. Schematic Simulation

You are now prepared to simulate your circuit.

From the Schematic Window menu, select Tools -> Analog Environment

A window will pop-up. This window is the **Analog Environment Simulation Window**.

A. Choose a Simulator

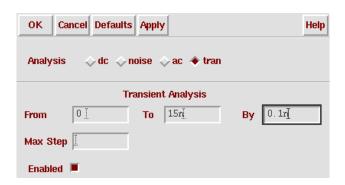

From the Analog Environment menu, select Setup -> Simulator/Directory/Host.

Enter the fields as shown below.

Choose **hspiceS** as your simulator.

Your simulation will run in the specified Project Directory.

You may choose any valid pathname and filename that you like.



B. Choose Analysis

We will do Transient Analysis on the circuit that we just produced.

From the Analog Environment menu, select Analyses -> Choose...

Fill out the form as follows:

C. Add a Variable

From the Analog Environment menu, select Variables -> Edit

The **Editing Design Variables** form will appear.

Fill out the form as shown below, and then click **Add** to send this Variable to the Table of Design Variables.

(We entered the OutCap Design Variable in section 3.I.)

D. Setup Output

When using Transient Analysis, the transient voltage will be saved automatically. We can save the current through capacitor C0 in the schematic by doing the following:

From the Analog Environment menu, select

Outputs -> To be Saved -> Select On Schematic

In the **Schematic Window**, click on the lower terminal (not the wire) of capacitor C0. After you click on the terminal, the **Analog Environment Window** should look like this:

Simulating the schematic

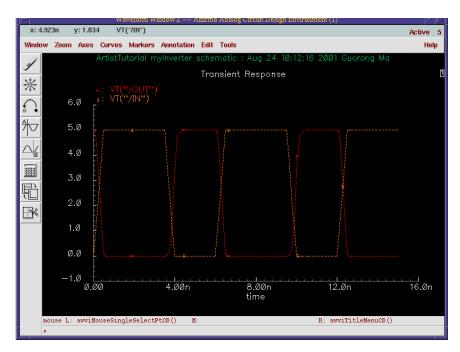
From the **Analog Environment** menu, select **Simulation -> Run**, Look at the echoing information in the **CIW** window. If the simulation succeeds, the window will display "...successful."

```
File Tools Options Technology File
                                                                                               Help
                                                                                                      1
turn initial conditions off..
                          Welcome to cdsSpice 4.4.5
THE CIRCUIT TEMPERATURE IS: 25.0000
 HSPICE EXECUTION
               ***** hspice job concluded
>info:
real
user
            0.5
 HSPICE FINISHED
elapsed time 11 S
        .successful
reading simulation data...
      ...successful.
check for and send update file if present...
mouse L:
```

Waveform Window

From the Analog Environment menu, select

Results -> Direct Plot -> Transient Signal


The Waveform Window will then pop up

In the Schematic Window,

Click on the IN wire and then Click on the OUT wire

Press **ESC** on your keyboard

The two curves (IN and OUT) will then be displayed in this window:

The following simulator settings have to be made:

menu bar command	details	
Setup - Simulator/Directory/Host	- Set Simulator to spectre - Also the Project Directory could be changed here	
Setup - Model Libraries	- Paths to the <i>Model Library Files</i> should be okay	
Setup - Temperature	- Set Degrees to 25	
Setup - Environment	Switch View List should be set to spectre cmos_sch schematicStop View List should be set to spectre ahdl	
Analyses - Choose	- Set Analysis to trans - Set Stop Time to 200n - Accuracy Defaults should be set to conservative - A description of the analysis will be listed in the field Analyses of the Affirma Analog Environment tool - To edit the Analyses entries either double-click on an entry or select Analyses Choose again	
Variables - Copy From Cellview	 Variables in the simulation schematic will be identified and will be listed in the field <i>Design</i> Variables of the Affirma Analog Environment tool To edit the <i>Design Variables</i> entries either double-click on an entry or select <i>Variables - Edit</i> from the menu bar Set output_load to 15f Set input_slew to 1n 	
Outputs - To Be Plotted - Select On Schematic	- Select the signals to plot in the simulation schematic: net (must be named!) => voltage; object node => current into the object through this node - Selected signals will be listed in the field <i>Outputs</i> of the Affirma Analog Environment tool - To edit the <i>Outputs</i> entries either double-click on an entry or select <i>Outputs</i> - <i>Setup</i> from the menu bar	

Other commands of the Analog Environment:

command	menu bar command
Run the simulation without rebuilding the netlist	Simulation - Run
Create the netlist if the schematic has changed	Simulation - Netlist - Create
View the netlist	Simulation - Netlist - Display
Force the rectreation of the netlist even if the schematic didn't change	Simulation - Netlist - Recreate
Plot the simulation results manually	Results - Plot Outputs - Transient
Start a parametric analysis (sweep design variables in a specific range)	Tools - Parametric Analysis
Calculate parameters of the cell (propagation delay, output slew,) from the simulation results	Tools - Calculator
Browse the simulation results	Tools - Results Browser
Open an additional waveform window	Tools - Waveform
Save an OCEAN script to perform the simulation of the netlist	Session - Save Script
Save the current Affirma Analog Environment settings	Session - Save State
Load Affirma Analog Environment settings	Session - Load State
Specify the directory where the Affirma Analog Environment settings are saved	Session - Options (field: State Save Directory)