
Chapter 2 A Simple, Clean-Metal Contact Resistance Model 

 

A contact resistance model is presented in this chapter. The model assumes that the 

contact surfaces are clean, that is, there are no insulating films at the contact interface. 

The model also assumes that adhesion forces between the contact surfaces are negligible. 

I first discuss the two broad components of the model - determining the distribution and 

sizes of the areas in contact at the contact interface, as a function of the contact force; and 

determining the contact resistance as a function of the distribution and sizes of the areas 

in contact.  Following a description of the model, the predicted contact force – contact 

resistance characteristics are compared with the measured characteristics of a 

microswitch.   

 

2.1 Model of Surface Roughness 

Determining the nature of the contact area at the interface necessitates a model of the 

surface roughness of the contact bump and the drain electrode. SEM micrographs of the 

contact bump surface (Figure 2.1), and SEM micrographs and STM scans of the drain 

electrode surface indicate that the contact bump is significantly rougher than the drain 

electrode. The drain electrode is assumed, therefore, to be a flat surface.  The problem 

then becomes to represent the surface of the contact bump. 

 

A large number of researchers have presented work on rough surfaces, particularly in the 

past three decades. A common approach is one first used in the “asperity-based” model of 

Greenwood and Williamson [Greenwood 1966]. In the basic GW model, a rough surface 
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Figure 2.1  SEM micrograph showing close-up of a contact bump on a microswitch that 

was flipped over. 
is represented by asperities (protuberances) of a prescribed shape and varying heights 

relative to a reference plane (Figure 2.2).  In a general model, both contacting surfaces 

are rough. However, it has been shown that such a model can be replaced by an 

equivalent rough surface in contact with a smooth surface [Greenwood 1971]. The 

asperities are commonly assumed to be spherical, with a certain end radius R, although 

paraboloid asperities have also been used [Bush 1975]. The distribution of heights is 

often assumed to be Gaussian, and there is experimental evidence that this is a good 

assumption for rough surfaces (for example, [Greenwood 1966]). When the surfaces are 

brought into contact, depending on the separation between the reference planes, the 

surfaces will be in contact at a certain number of asperities, i=1,2,...,n 

 

The deformation of each asperity i results in a circular contact spot of radius ai. For a 

given separation between the reference planes, the force on each asperity, Fi, and the radii 

ai of the corresponding contact spots can be obtained using an appropriate deformation 

model, such as the Hertz elastic deformation model [Timoshenko 1951]. Specific 
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deformation models are discussed in section 1.2. If the asperities are assumed to be 

sufficiently far apart that they transmit contact forces independently, the total contact 

force F is the sum of the forces acting on the asperities: . F Fi
i

n

=
=
∑

1

 

An asperity-based model is not realistic in the sense that it only captures the surface 

roughness at a particular length scale. Most real surfaces are rough at different length 

scales (Figure 2.3). For example, SEM micrographs of the contact bump reveal smooth-

looking asperities of the order of 0.1 micron (Figure 2.1). However, the SEM used has a 

resolution of about 0.01 micron, and would probably not be able to reveal roughness on a 

scale significantly smaller than 0.1 micron. Other researchers have shown that if a surface 
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Figure 2.2 Schematic representation of the Greenwood and Williamson asperity-based 

model. The rough surface has spherical asperities of radius R, and a certain height 

distribution. When the rough and smooth surface are in contact, depending on the 

separation d between the respective reference planes, each contacting asperity is 

deformed by a certain amount, resulting in the formation of circular contact spots.  
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is imaged repeatedly while zooming in, roughness keeps appearing at smaller and smaller 

scales until atomic steps are visible [Williams 1991]. Some researchers have shown that 

is possible to capture the surface roughness over multiple length scales using fractal 

characterization techniques (for example, [Majumdar 1990]).  

 

Fractal models provide a better description of a surface, but are also more complex than 

asperity-based models. Broadly, a fractal model resembles a set of asperity-based models, 

each with a different characteristic length. For example, a surface may be assumed to 

consist of 1 micron radius asperities with a particular roughness (height distribution); the 

surface of each 1 micron asperity is assumed to have 0.1 micron radius asperities with a 

different roughness; the surface of each 0.1 micron asperity has 0.01 micron asperities, 

and so on.  In order to capture such information accurately, STM scans of the contact 

bump surface would be required. I did not pursue this very far because of the logistical 

difficulties in precisely locating a contact bump under the instrument, and because of the 

wafer-to-wafer variation in roughness evident in SEM scans.  

 

Figure 2.3 Appearance of a rough surface on successively smaller scales (from 

[Bhushan 1999]) 
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However, it is possible to make some simplifying assumptions about the surface 

roughness. SEM images of the contact surfaces after repeated contact reveal distinct 

contact spots – where there are indentations as well material transferred between contact 

surfaces. These are more noticeable on the drain surface because it is much smoother 

than the contact bump surface. Figure 2.4 shows a typical drain surface after loading to 

100 µN, passing a current of 70 mA through the contact, and unloading. The observed 

spots occur along the arc of a circle, corresponding to the circumference of the contact 

bump; this is because the surface of the contact bump is slightly cup-shaped, an artifact of 

the fabrication process. SEM images show that there are typically between 10 and 100 

distinct spots; the size of the spots is of the order of 10 nm.  This gives us an approximate 

lower limit of the length scales over which roughness is important. Subsequent modeling 

will show that an asperity with radius of curvature R=0.01 µm would have to be 

plastically flattened to a much larger radius in order to yield such a large contact spot. For 

the asperities corresponding to the contact spots visible in Figure 2.4, an asperity radius 

of R=0.1 µm represents a reasonable lower limit, at which asperities will not be 

completely flattened. Originally, there may be significant roughness on smaller length 

scales, on top of the above asperities. However, since there is evidently significant plastic 

deformation of the asperities, as evidenced by the material transfer, we should expect 

roughness on smaller length scales to be smoothed out in the areas of contact.  

 

While developing contact models in this work, model calculations are shown for two 

different contact bump surfaces, each covered with 100 asperities of radius 0.1 µm; the 
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Figure 2.4  SEM micrograph showing close-up of the drain contact surface on a 

microswitch that was loaded to a force of 100 µN per contact bump and then unloaded. 

The scale in the right hand bottom corner shows 10 graduation marks 0.1 µm apart. 

smoother surface has a Gaussian asperity height distribution with standard deviation (σ) 

= 0.01 µm, and the rougher surface has σ= 0.1 µm.  After the final model has been 

obtained, at the end of Chapter 3, model calculations are shown for a range of asperity 

radii, and for a range of values of σ; the effects of these parameters on the model results 

are then discussed. 

 

When a surface with asperities is pressed a certain distance into the flat surface, the load 

borne by each asperity and the size of the corresponding contact spot has to be 

determined using an appropriate (elastic or plastic) deformation model. In section 2.2, I 

discuss the measurement of material properties used in the deformation model. The 

deformation model for a single asperity is discussed in sections 2.3 and 2.4, followed by a 

model with multiple asperities of different heights, resulting in multiple contact spots of 

different sizes (section 2.5). 
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2.2 Measurement of mechanical properties 

The values of hardness and elastic modulus used in the models in this section were 

obtained from nano-indentation measurements. Samples used for measurements were die 

from a silicon wafer sputtered with 0.2 µm gold on top of 1 µm SiO2 at Northeastern 

University. The measurements were performed at Hysitron Incorporated, Minneapolis. A 

Berkovich diamond indenter was used to indent the sample to a depth of 8.6 nm. The 

hardness was defined as the ratio of the maximum load to the projected area. To calculate 

the modulus of elasticity, a “reduced” modulus, Er, was calculated from the unloading 

half-cycle, as 
A

SEr
2

π
= , where S is the unloading stiffness 





 dh
dP


 , and A is the 

projected contact area. From 10 separate measurements, the average values of hardness 

and reduced modulus were reported as 2.2 GPa and 110 GPa respectively, with standard 

deviations of 0.1 GPa and 9 GPa respectively.  

 

The reduced modulus is related to the elastic moduli of the sample and the indentor as 

( ) ( )
i

i

s

s

r EEE

22 111 νν −
+

−
= , where the s and i subscripts refer to the sample and indentor 

respectively. For the indentor, I used the elasticity and Poisson’s ratio values supplied by 

Hysitron, 1140 GPa and 0.07 respectively. The Poisson’s ratio of the sample was 

assumed to be 0.5 – therefore the elastic modulus of the sample can be calculated to be 91 

GPa.  
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The same values of hardness and elastic modulus were used for the other contacting body 

(the contact bump), since corresponding measured values were not available. 

 

2.3 Contact between sphere and flat 

At small contact forces, the deformation of the contacting bodies is elastic, and therefore, 

fully reversible. Consider the contact between a single spherical asperity of radius R, and 

a flat surface. Let the moduli of elasticity of the contacting bodies be denoted by E1 and 

E2, respectively, and their Poisson's ratios by ν1 and ν2 respectively. The effective 

modulus of elasticity is defined as K, where 

)11(
4
31

2

2
2
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EEK
νν −

+
−

=  
(2.1) 

In our case, both contact bodies are assumed to have the same material properties, 

E1=E2=91 GPa, and ν1=ν2=0.5. Therefore, EK
9
8

= =80.9 GPa.  

 

In the absence of any applied contact force, the sphere and the flat touch at a single point 

(Figure 2.5 (a)). Under an applied contact force F, the contacting bodies are pressed 

against each other, so that corresponding points on the surfaces of the bodies far away 

from the contact interface approach each other by a distance α. The bodies are brought 

into contact over a spherical section (Figure 2.5 (b)).  The projection of this section on the 

undeformed flat surface is a circular contact spot of radius a.  The deformation of the 

contact bodies and the radius of the contact spot are given by the well-known Hertz 

model. The model is based on the following assumptions: 

1. a<<R; 
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2. there is no friction at the interface; 

3. there is no tensile stress in the area of the contact. 

Using these assumptions, it can be shown (for example, Johnson(1985), that the radius of 

the contact spot, a, is related to the contact force F as 

a FR
K

= ( ) /1 3  
(2.2) 

The contact radius a is related to the vertical deformation α  as 

a R= α  (2.3) 

 

As the contact force increases, there is a gradual transition from elastic to plastic 

deformation over a range of forces. The transition is usually referred to as the elasto-

plastic regime. If the von Mises criterion [Timoshenko 1951] is applied to stresses in the 

F=0
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Figure 2.5 Schematic representation of contact between a spherical asperity and a flat 

surface. In the absence of any contact force, contact occurs at a single point (a). Under a 

force F, the projection of the area of contact on the undeformed flat surface is a circular 

contact spot (b). 
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contact bodies for contact between a sphere and a flat, it is found that the condition for 

plastic yielding is first reached at a mean contact pressure of 
F
a

Y
π 2 11= . .  The plastic zone 

is initiated at points within the contacting bodies, on the contact axis and about 0.5a from 

the contact interface, where a is the contact radius [Timoshenko 1951]. As the contact 

force increases, the plastic zone expands outwards, in the process reaching the surface 

and extending over the entire contact area, and the deformation becomes fully plastic. 

Away from the contact interface, the plastic zone merges into an elastic “hinterland”. The 

elastic deformation produces the counter pressure that balances the contact load, and 

vanishes when the contact load is removed. When full plasticity is reached, the contact 

pressure becomes independent of the contact load, and equal to the hardness H: 

YH
a
Fpm 32 ===

π
, 

(2.4) 

The contact area in the intervening elasto-plastic regime has been given semi-empirically 

by Studman [Studman 1976] (for ν=0.5):  

)
3

ln
3
21(2 YR

EaY
a
Fpm +==

π
, 

(2.5) 

Full plasticity is reached (that is, the contact pressure becomes equal to 3Y) when 

E
RYaa p 60≈= , in agreement with experiments. However, in the Studman model, the 

transition from elastic to elasto-plastic deformation (when the elastic and elasto-plastic 

models both give the same contact radius at the same contact force) occurs at , 

instead of 1.1Y. Maugis and Pollock (1984) propose a modification of the Studman 

model, in order to satisfy the von Mises criterion, and still obtain the correct value of a

Ypm 9.0=

p 

at which contact becomes fully plastic. Following this approach, we have: 
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9.3

ln7.01.1(
YR

EaYpm += , 
(2.6) 

A simpler, and less physically realistic model is an elastic-perfectly plastic model, with 

an abrupt transition from the elastic to the plastic.  In this case, equation 2.2 is assumed to 

be valid until the contact pressure becomes equal to the hardness H, at a contact radius  

E
RY

K
RYa p 113 ≈= π , and equation 2.4 holds beyond this point. Figure 2.6 shows the 

radius of the contact spot as a function of the contact force, using both the modified 

Studman model and the simple elastic-plastic model. The latter characteristic shows a 

change in slope at a force of 0.55 µN, corresponding to the elastic-to-plastic transition. 

The modified Studman model predicts a gradual transition from perfectly elastic 

deformation up to a force of 0.025 µN to perfectly plastic deformation at a force of 16.3 

µN.  

 

The ultimate version of the contact model (including adhesion due to surface forces), 

developed in Chapter 3, is based on the modified Studman elasto-plastic deformation 

model. However, in the simpler adhesionless model developed in the rest of this chapter, 

the simple elastic-perfectly plastic model is used. This is to make it easier to develop a 

model of subsequent contact, after the contacts have been loaded and unloaded one or 

more times. This is discussed in greater detail in following sections.  
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Figure 2.6 Modeled variation of contact spot radius with load when a single 0.1 micron 

asperity is pressed into a flat surface, as given by the deformation model of Studman, 

modified by Maugis and Pollock. 
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2.4 Deformation during subsequent contacts 

The equations in the previous section describe what happens during contact between an 

asperity and the flat for the first time. The asperities on the contact bump have been 

assumed to be spherical, with radius R, and the surface of the drain has been assumed to 

be flat. If the contact force is sufficient to cause some plastic deformation during contact, 

there is a “flattening” of the asperities, and corresponding concavities are formed in the 

drain. Upon unloading, the elastic deformation is recovered, but the plastic deformation, 

persists, so that the asperity now has some radius R1<R’, and the concavity in the drain 

has a radius -R2, R2>R’. 

 

A simple and commonly accepted assumption is that all of the plastic deformation occurs 

during the first contact between the sphere and the flat surface. Finite element simulations 
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of a perfectly plastic deformation model have shown that this is a good assumption in this 

situation [Kral 1993]. This assumption makes it straightforward to calculate the deformed 

asperity radius in an elastic-perfectly plastic deformation model. Consider a contact 

subjected to a contact force Ff, resulting in formation of a contact spot of radius af by 

purely plastic deformation (equation 2.4).  Subsequent contacts with a contact force less 

than or equal to Ff, are governed by the Hertzian solution for elastic contact between a 

sphere and a concave spherical surface. The Hertz equations for elastic contact between a 

sphere and a flat are still applicable to this case, if the asperity radius R is replaced by an 

effective radius Reff, 

1 1
1 2R R Reff

= − 1 , (2.7) 

Re-loading the contact with a force equal to Ff results in elastically forming a contact of 

the same radius af  as given by the earlier plastic loading, so that (from the Hertz relation 

for elastic contact, equation 2.2), the effective radius of curvature is given by:  

f

f
eff F

Ka
R

3

= . 
(2.8) 

 

The amount of elastic recovery (αr) in the height of the asperity during the first unload 

half-cycle can also be calculated. Since we assume that after the first load-unload cycle, 

subsequent load-unload cycles are purely elastic and reversible, the elastic recovery must 

be equal to the vertical deformation when elastically loading to Ff during subsequent 

cycles. That is,  

efffr Ra 2=α . (2.9) 
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Figure 2.7 Modeled variation of effective asperity radius Reff as a function of the 

maximum load on the first cycle. Initial asperity radius is 0.1 micron 
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Figure 2.7 shows the calculated variation in Reff with Ff  for an asperity with initial radius 

of curvature, R=0.1 micron. Up to a load of 0.08 µN, the deformation is elastic, and there 

is no permanent change in the radius of curvature; beyond this load, there is a progressive 

increase in Reff. Figure 2.8 shows the effect of initial plastic loading up to 20 µN, and 50 

µN, on the contact spot radius versus contact force characteristic.  Initial loading up to 20 

µN results in an effective radius of curvature of 0.63 µm, and the contact radius at that 

load is 0.054 µm.  The characteristic for subsequent loading expectedly shows elastic 

deformation up to 20 µN, and shows the same contact radius of 0.054 µm at that force. 

Initial loading up to 50 µN results in Reff =1 µm  and a contact radius of 0.085 µm, and 

similarly shows elastic deformation up to 50 µN on subsequent cycles. 
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2.5 Multiple asperity model 

We now have a model for a how a single asperity deforms under a certain load. Let us 

consider a model with a distribution of multiple asperities on the surface of the contact 

bump. Our model is based on a model proposed by Chang, Etsion and Bogy [Chang 

1988]. In turn, the CEB model is a refinement of the asperity-based model introduced by 

Greenwood and Williamson [Greenwood 1966], in which the rough surface is 

represented by a collection of spherical asperities with identical end radii, whose heights 

have a statistical distribution. The asperities are assumed to be independent of each other, 

that is, the load on one asperity does not affect the deformation of another. The area of 

contact for each asperity in the Greenwood-Williamson model is calculated from the 

Hertz theory of elastic deformation, even though at a particular contact force the loads on 

some of the asperities may have exceeded the elastic limit so that the asperities deform 

plastically. The CEB model calculates the deformation of a plastically deformed asperity 

on the basis of volume conservation of a certain control volume of the asperity. In the 

following paragraphs, we briefly explain the equations governing the above model. 
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Figure 2.8 Modeled variation of contact spot radius with load on the first cycle, and on 

subsequent cycles, after the contact has been previously loaded up to 20 µN and 100 µN  

respectively. The asperity radius is initially 0.1 micron. The effective asperity radius is 

0.61 micron after loading to 20 µN, and 0.95 micron after loading to 50 µN. 
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First consider one of the spherical asperities in contact with the flat surface, under a load 

F. Depending on the load, the deformation is either elastic or perfectly plastic. For elastic 

deformation, the radius of the resulting contact spot is given by Equation 2.2, and the 

vertical deformation of the asperity is given by Equation 2.3. 

 

Plastic yielding is assumed to occur when the average pressure at the contact interface 

equals H, the hardness of the contacting material. The vertical deformation of the asperity 

at this transition is given by  
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α π
c

H
K

R= ( )2 . (2.10) 

In the plastic region, the average pressure on an asperity is assumed to be H, so that the 

contact force on the asperity is  

F Ha= π 2 . (2.11) 

In fully plastic deformation, the vertical deformation α is related to the contact radius a 

as αR2=a , as against a  in elastic deformation. In order to reflect this transition, 

based on conservation of volume arguments, the vertical deformation is given in the CEB 

model as: 

R= α

a R c= −α α
α

( )2 , α α> c   (2.12) 

Hence, for a given vertical deformation α, the force on each asperity as well as the radius 

of the corresponding contact spot can be determined.  

 

Now consider a rough surface with N asperities, each with an end radius of curvature R, 

and heights z1 > z2 > … > zN (Figure 1.1). Let the separation between the reference planes 

be d for a given contact force F, such that zn > d > zn+1. Then asperities 1,2,...,n come into 

contact. The vertical deformation of asperity i is given by 

.dzii −=α  (2.13) 

For a given separation between the reference planes, the force on each asperity, and the 

radius of each of the corresponding contact spots can be obtained using the previously 

stated equations.  
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As mentioned earlier, because of the variability of the roughness of the contact surfaces, 

contact spot radii are calculated for surfaces with 2 different roughness values - σ = 0.01 

µm, and 0.1 µm, where σ is the standard deviation in the asperity heights.  Figure 2.9 

shows the number of contact spots as a function of the contact force for each of these 

surfaces (2.9 (a) and 2.9 (c) for σ = 0.01 µm and 0.1 µm respectively) and the variation of 

a few different asperity contact radii (2.9 (b) and 2.9 (d) respectively). For the smoother 

surface, 6 asperities are predicted to be in contact at a contact force of 20 µN, increasing 

to 20 contacting asperities at 100 µN. For the rougher surface, the number of contacting 

asperities at the above forces is 2 and 3 respectively.  

 

Figure 2.10 shows the same characteristics for two cases – previously unloaded contacts, 

and contacts that were previously loaded to 100 µN and unloaded. Up to 100 µN, the 

contact spot radii of the previously loaded contacts vary more gradually with the contact 

force than the corresponding spot radii of previously unloaded contacts, since the 

asperities have been flattened by the previous load cycle. At larger forces, the two sets of 

characteristics are identical. 
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(c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) 
Figure 2.9 Modeled variation of number of contacting spots, and contact spot radii with 

contact force for a surface with roughness σ=0.01 micron ((a) & (b)), and σ=0.10 micron 

((c) & (d)). The initial asperity radius is 0.1 micron.  

Contact Force (N)
10-6 10-5 10-4 10-3

C
on

ta
ct

 s
po

t r
ad

iu
s 

(m
)

10-9

10-8

10-7

10-6

Asperity 1
Asperity 2
Asperity 5
Asperity 10

Contact Force (N)
10-6 10-5 10-4 10-3

C
on

ta
ct

 s
po

t r
ad

iu
s 

(m
)

10-9

10-8

10-7

10-6

Asperity 1
Asperity 2
Asperity 5
Asperity 10
Asperity 50

 

33 



Force (N)
10-6 10-5 10-4 10-3

N
um

be
r o

f c
on

ta
ct

 s
po

ts

0

10

20

30

40

50

60

70

80

90

100
Previously unloaded
Previously loaded to 100 µN

 

(a) 

 

 

 

 

 

 

 

(b) 

Force (N)
10-6 10-5 10-4 10-3

N
um

be
r o

f c
on

ta
ct

 s
po

ts

0

2

4

6

8

10

12

14

16

18

20

No previous loading
Previously loaded to 100 µN

 

(c) 

 

 

 

 

 

 

 

(d) 

Figure 2.10 Modeled variation of number of contacting spots, and contact spot radii 

with contact force, when the contact has previously been loaded to 100 µN and 

unloaded. Figures 2.10 (a) and 2.10 (b) correspond to a surface with roughness 

σ=0.01 micron, and 2.10 (c) and 2.10 (d) correspond to a surface with σ=0.10 micron. 

The same characteristics for a previously unloaded contact (from Figure 2.9) are also 

shown for comparison. 
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2.6 Contact Resistance 

The remaining step is to determine the contact resistance, given a certain number of 

contact spots of known radii. We first consider the contact resistance of a single spot of a 
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given radius a, separating 2 semi-infinite bodies of resistivity ρ, and then study the more 

general problem with multiple contact spots of different sizes, and finite contacting 

bodies. In the single-spot case, the contact resistance arises from two different 

phenomena. If the radius a is small compared to the electron mean free path length le of 

the material, the resistance of the contact spot is dominated by the Sharvin mechanism 

[Jansen 1980], in which electrons are projected ballistically through the contact spot 

without being scattered. In this case, 

R l
acon

e=
4
3 2

ρ
π

 (2.14) 

 

On the other hand, if the radius is much larger than the mean free path length, the 

resistance is dominated a diffuse scattering mechanism, and is given by the Maxwell 

spreading resistance formula [Holm 1967]: 

R
acon = ρ

2
 (2.15) 

 

Wexler [Wexler 1966] has given a solution of the Boltzmann equation, using the 

variational principle for resistance of a circular contact spot separating semi-infinite 

bodies. This results in a simple interpolation formula which can account for the transition 

between the Maxwell and Sharvin regimes: 

R l
a

l a
acon

e
e= +

4
3 22

ρ
π

υ ρ( / ) . 
(2.16) 
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Figure 2.11 Interpolation factor ν to account for transition from Sharvin to Maxwell 

regime (from Wexler[1966]). 

ν is a slowly varying function of the ratio le/a, with ν(0)=1, and ν(∞)=0.694 (Figure 

2.11). 

 

In general, multiple asperities come into contact, resulting in multiple contact spots of 

varying sizes. The effective contact resistance arising from the contact spots depends on 

the radii of the spots (given by the contact area model discussed previously) and the 

distribution of the spots on the contact surface. A lower bound can be obtained on the 

contact resistance by assuming that contact spots are independent and conduct in parallel 

(this is equivalent to the exact solution when the radii of the contact spots are small 

compared to the separation between the spots). Denoting the contact resistance of spot i 

as Rcon,i, 

 1 1/ /, ,R Rcon lb con i
i

= ∑  (2.17) 
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An upper bound can be obtained on the contact resistance by computing the resistance of 

a circular spot of radius aeff, and of area equal to the total area of all the individual contact 

spots combined ( ∑= 2
ieff aa ).  

R l
a

l a
acon ub

e

eff
e eff

eff
, ( / )= +4

3 22
ρ

π
υ ρ  (2.18) 

This upper bound is equivalent to the exact solution when all the conducting spots 

become large enough to merge into a single conducting spot. 

 

By putting together the contact resistance model given by equations 2.17 and 2.18 with 

the contact spot radii against force characteristics obtained in section 2.5, we can 

determine lower and upper bounds on the contact resistance, as a function of the contact 

force, for a given surface roughness. For model calculations, the resistivity ρ of the drain 

and beam layers was measured using Van der Pauw structures on the device wafer, as 

6.75x10-8 Ω-m and 3.85x10-8 Ω-m respectively. Since the total contact resistance is the 

sum of the contact resistances in the two contact bodies, we use the average of the 

measured resistivity values in equations 2.17 and 2.18. There is some inaccuracy in doing 

this, since on the underside of the contact bump is a layer of sputtered gold, 0.1 µm thick. 

The resistivity in this layer is unknown, but probably similar to that in the drain. 

However, as we will see, there is sufficient uncertainty in calculating the contact 

resistance that this error is not very important. Figure 2.12(a) shows the calculated 

dependence of contact resistance on contact force for two surfaces, one with σ=0.1 µm, 

and the other with σ=0.01 µm. The upper bound characteristic, which depends only on 

the total contact area, appears to be identical for both surfaces. This is because at low 
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contact forces, only a single asperity is in contact in either case, and at high forces, all the 

asperities usually deform plastically, so that the total contact area is the same for both 

surfaces.  Figure 2.12(b) shows the calculations for switch contacts which were 

previously loaded to 100 µN and unloaded, and deformation is consequently purely 

elastic. In this case, too, the upper bound characteristic is independent of the surface 

roughness - although there is no longer any plastic deformation, the contact area is 

determined by the previous plastic deformation. 

 

2.7 Effect of finite contact geometry 

The contact resistance expressions of equations 2.17 and 2.18 are based on an ideal 

contact geometry – a circular contact spot separating two semi-infinite contacting bodies. 

One of the contacting bodies in the microswitch is the drain electrode. Since the drain 

thickness – 0.2 micron – is comparable to the contact area, the semi-infinite idealization 

does not appear to hold. To determine the error caused by making the semi-infinite 

assumption, the contact geometry of Figure 2.13 was simulated, by a finite element 

solution of the Maxwell model. For a contact spot radius a=0.1 micron, the Maxwell 

contact resistance is R
acon = ρ

2 .  The finite element simulation gives 
a

Rcon 2
07.1 ρ

= . 

The error introduced by the assumption in the Sharvin model was not evaluated. 
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(a) (b) 

Figure 2.12  Modeled contact resistance vs contact force characteristics, on the first 

cycle (a), and after the switch has previously loaded  to 100 µN and unloaded (b). In 

each graph, the upper bounds for the two values of σ nearly coincide.  
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1.8 Measured contact resistance 

Contact resistance was measured using a microswitch design with an extra pair of 

terminals which allow the voltage across the contact to be measured (Figure 2.14). Figure 

2.15 shows the contact resistance of a microswitch, measured as a function of the gate-to-

source actuation voltage. For a previously untested microswitch, the contact resistance is 

0.5 Ω - 1 Ω for actuation voltages up to 90 V, and decreases gradually as the actuation 

voltage is increased. As the switch is cycled by turning it on and off repeatedly, its 

contact resistance decreases. The switch in Figure 2.15 has a contact resistance of the 

order of 0.1 Ω. after 1000 test cycles. However, it now also varies less with the actuation 

voltage than before.  
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Figure 2.13 Contact model used to study deviation from ideal constriction. The upper 

hemisphere represents the beam, and the lower cylinder represents the drain electrode. 

The dotted-line circle is a contact spot at their interface, diameter 0.1 micron. 

 

In order to compare the measured contact resistance with the contact resistance model, 

it is necessary to map the actuation voltage to the contact force. This can be done by 

modeling the microswitch as a beam which is clamped at its fixed end, and simply 

supported at its free end (Figure 2.16). The Euler-Bernoulli beam equations are used to 

determine the beam deflection and contact force boundary condition, assuming a certain 

distributed electrostatic force acting on the beam. In turn, the new electrostatic force is 

determined as a function of the beam shape. The two steps are repeated iteratively, until 
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Figure 2.14 Microswitch geometry used to measure contact resistance. Current 

(represented by the broken lines) is forced between one pair of source and drain 

terminals, and the other pair of source and drain terminals is used to measure the 

voltage across the contact. The contact bump on the lower surface of the beam is not 

visible in this micrograph.  

the solution converges. Figure 2.17 shows the modeled variation of contact force with 

gate voltage for the microswitch shown in Figure 2.14. An actuation voltage of 90 V is 

seen to correspond to a contact force of approximately 100 µN.  

 

Using this model, the measured contact resistance characteristics of Figure 2.15 are 

plotted as a function of contact force in Figures 2.18 (a) and (b). The lower and upper 

bounds predicted by the contact resistance model for a previously uncycled switch are 

shown for comparison in Figure 2.18 (a), and the contact resistance bounds for a switch 

previously subjected to a 100 µN load are shown in Figure 2.18 (b).  The initial measured 

resistance is 0.3-0.6 Ω higher than predicted, and its dependence on contact force has 

roughly the same shape as predicted. The measured resistance after 1000 switch cycles is 

much less sensitive to the contact force than predicted by the model, and 

correspondingly, much lower than predicted at low contact forces.  

41 



 

 

 

 

 

 

 

Figure 2.15 Measured contact resistance as a function of actuation voltage, for a 

previously untested switch, and after the same switch had been cycled 10 times and 

1000 times with an actuation voltage of 78 V and a current of 4 mA.  
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Figure 2.16 Beam model of microswitch in closed position. The fixed end of the beam is 

assumed to be clamped, and the contact bump is assumed to be simply supported at the 

drain. 
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It seems reasonable to assume that the lower contact resistance after cycling the 

switch is a result of repeated “scrubbing” of the contact surfaces resulting in a cleaner 

contact interface. However, this does not explain the reduced sensitivity to the contact 

force. The reason for this phenomenon appears to be adhesion between the contact 

surfaces.  If there is significant adhesion between the contact surfaces, this would tend to 

hold them closed while the contacts are being unloaded, reducing the sensitivity of the 

contact resistance to the contact force. It would also result in a hysteresis - the switch 

would open at a smaller actuation voltage than that at which it closes. This is indeed 

observed in measurements – Figure 2.19 shows the measured contact resistance of a 

switch when the actuation voltage is increased from 0 to 90 V, and then decreased back 

to 0 (this is actually the same measurement as shown in Figure 2.18 (b) – only the loading 

half-cycle was shown in Figure 2.18 (b)). The switch closes at 65 V, and opens at 45 V. 

 

 

 

 

 

 

 

 

Figure 2.17 Modeled variation of contact force with gate-to-source actuation voltage 

for the microswitch geometry of Figure 1.5. 
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(a) (a) (b) (b) 

Figure 2.18 Comparison of measured contact resistance with the contact resistance 

model. The measured characteristics are the ones shown in Figure 2.15: 2.18(a) shows 

the measured resistance of a previously untested switch, and (b) shows the measured 

resistance after 1000 switch cycles. The modeled contact resistance for a previously 

untested switch is shown for comparison in 2.18(a), and the modeled contact resistance 

for a contact previously subjected to 100 µN is shown in (b). 

Figure 2.18 Comparison of measured contact resistance with the contact resistance 

model. The measured characteristics are the ones shown in Figure 2.15: 2.18(a) shows 

the measured resistance of a previously untested switch, and (b) shows the measured 

resistance after 1000 switch cycles. The modeled contact resistance for a previously 

untested switch is shown for comparison in 2.18(a), and the modeled contact resistance 

for a contact previously subjected to 100 µN is shown in (b). 
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Figure 2.19 Hysteresis in contact resistance measurements. Contact resistance was 

measured first while the actuation voltage was increased from 0 to 90 V, and then while 

it was decreased back to 0.  

Figure 2.19 Hysteresis in contact resistance measurements. Contact resistance was 

measured first while the actuation voltage was increased from 0 to 90 V, and then while 

it was decreased back to 0.  
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Apart from contact adhesion, another possible reason for the observed hysteresis is 

the well-known mechanical instability of electrostatically actuated structures. This results 

in a pull-in of the beam at some critical beam-gate, which is different in the open and 

closed positions of the switch. However, the Euler-Bernulli beam model predicts that 

there is little or no hysteresis in the switch arising from mechanical instability. Also, the 

amount of hysteresis is found to change as a switch is cycled. There is also a strong 

correlation between the contact resistance and the actuation voltage at which the switch 

opens, indicating that a cleaner contact results in more hysteresis (Figure 2.20). 

 

Clearly, a major element missing from the contact resistance model at this stage is 

contact adhesion. In Chapter 3, I will present a contact resistance model that includes 

contact force, and study different aspects of contact adhesion and the resulting hysteresis. 
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Figure 2.20 Measured turn-off voltage of a group of 7 microswitches; each device 

was cycled 106 times, and its contact resistance and turn-off voltage was measured at 

intervals while cycling. The measured turn-off voltage is plotted as a function of 

contact resistance. 
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