
Distributed Clustering for Ad Hoc Networks
�

Stefano Basagni
Center for Advanced Telecommunications Systems and Services (CATSS)

Erik Jonsson School of Engineering and Computer Science EC33
The University of Texas at Dallas

2601 N. Floyd Rd.
Richardson, TX 75080

Tel. 972 883 2216 Fax. 972 883 2710
E-mail: basagni@utdallas.edu

Abstract

A Distributed Clustering Algorithm(DCA) and a Distributed Mobility-Adaptive Clustering (DMAC)
algorithm are presented that partitions the nodes of a fullymobile network (ad hocnetwork) intoclusters,
thus giving the network a hierarchical organization. Nodesare grouped by following a newweight-
based criterium that allows the choice of the nodes that coordinate the clustering process based on node
mobility-related parameters. The DCA time complexity is proven to be bounded by a network parameter
Db that depends on the possibly changingtopologyof the network rather than on itssize, i.e., the invariant
number of the network nodes. The DMAC ...

Keywords: Clustering,Ad HocNetworks, Wireless Mobile Networks, Distributed Network Algorithms.

1 Introduction

Obtaining a hierarchical organization of a network is a well-known and studied problem of distributed com-
puting. It has been proven effective in the solution of several problems, such as, minimizing the amount of
storage for communication information (e.g., routing and multicast tables), thus reducing information up-
date overhead, optimizing the use of the network bandwidth,distributing resources throughout the network,
etc.

In the case ofad hoc networks, i.e., wireless networks in which possibly all nodes can be mobile,
partitioning the nodes into groups (clusters) is similarly important. In addition,clustering is crucial for
controlling the spatial reuse of the shared channel (e.g., in terms of time division or frequency division
schemes), for minimizing the amount of data to be exchanged in order to maintain routing and control
information in a mobile environment, as well as for buildingand maintaining cluster-basedvirtual network
architectures.

The notion of cluster organization has been used for ad hoc networks since their appearance. In [1, 3],
a “fully distributed linked cluster architecture” is introduced mainly for hierarchical routing and to demon-
strate the adaptability of the network to connectivity changes. With the advent of multimedia communica-
tions, the use of the cluster architecture for ad hoc networkhas been revisited by Gerla et. al. [4, 6, 5]. In
these latter works the emphasis is toward the allocation of resources, namely, bandwidth and channel, to
support multimedia traffic in an ad hoc environment.

�

This work was supported in part by the Army Research Office under contract No. DAAG55-96-1-0382.



In existing solutions forclusteringof ad hoc networks, the clustering is performed in two phases: clustering
set upand clusteringmaintenance. The first phase is accomplished by choosing some nodes that act as
coordinators of the clustering process (clusterheads). Then acluster is formed by associating a clusterhead
with some of itsneighbors(i.e., nodes within the clusterhead’s transmission range)that become theordinary
nodesof the cluster. Once the cluster is formed, the clusterhead can continue to be the local coordinator for
the operations of its cluster (as in [1, 3, 5]), or, in order toavoid bottlenecks, the control can be distributed
among the nodes of the cluster [4, 6]. The existing clustering algorithms differ on the criterium for the
selection of the clusterheads. For example, in [1, 3, 6] the choice of the clusterheads is based on the unique
identifier (ID) associated to each node: the node with the lowest ID is selected as clusterhead, then the
cluster is formed by that node and all its neighbors. The sameprocedure is repeated among the remaining
nodes, until each node is assigned to a cluster. When the choice is based on the maximumdegree(i.e.,
the maximum number of neighbors) of the nodes, the algorithmdescribed in [5] is obtained. A common
assumption for the clustering set up is that the nodesdo not movewhile the cluster formation is in progress.
This is a major drawback, since in real ad hoc situations, no assumptions can be made on the mobility of the
nodes.

Once the nodes are partitioned into clusters, the non mobility assumption is released, and techniques are
described on how to maintain the cluster organization in thepresence of mobility (clustering maintenance).
For instance, in [1] a reorganization of the clusters, due tonode mobility, is done periodically, just invoking
the clustering process again (as at set up time). Of course, during the re-clustering process the network
cannot rely on the cluster organization. Thus, this is a feasible solution only when the network does not
need too many reorganizations. In [6] cluster maintenance in the presence of mobility is described where
each nodev decides locally whether to update its cluster or not. This decision is based on the knowledge
of thev’s oneand twohop neighbors and on the knowledge of the local topology ofv’s neighbor with the
largest degree. The resulting mobility-adaptive algorithm is thus different from the one used for the cluster
formation (based on the nodes’ IDs and on the knowledge of their one hop neighbors) and the obtained
clustering has different properties with respect to the initial one.

In this paper we present a clustering algorithm suitable forboth the clustering set up and maintenance that
aims to overcome the above mentioned mobility related limitations. For ourDistributed Mobility-Adaptive
Clustering(DMAC, for short) algorithm we obtain the following properties, not available in previous solu-
tions:

� Nodes can move, even during the clustering set up: DMAC isadaptiveto the changes in the topology
of the network, due to the mobility of the nodes or to node addition and/or removal.

� DMAC is fully distributed. A node decides its own role (i.e., clusterhead or ordinary node) solely
knowing its currentonehop neighbors.

� Every ordinary node always hasdirect accessto at least one clusterhead. Thus, the nodes in the
cluster are at most two hops apart. This guarantees fast intra-cluster communication and fast inter-
cluster exchange of information between any pair of nodes.

� DMAC uses ageneralmechanism for theselection of the clusterheads. The choice is now based on
genericweightsassociated with the nodes.

� The number of clusterheads that are allowed to be neighbors is a parameter of the algorithm (degree
of independence).

� Finally, we define for DMAC a new weight-based criterium thatallows the nodes to decide whether
to change (switch) its role or not depending on the current condition of the network, thus minimizing
the overhead due to the switching process.

2



Notice that the last three properties introduce the possibility for DMAC to be configured for the specific
ad hoc network in which it operates. For example, the weight associated to a node allows us to express
how that node is suitable for the role of clusterhead depending on properties of the node itself, such as its
speed, its transmission power, etc. Moreover, previous solutions would not allow two clusterheads to be
neighbors, forcing one of the two to resign. This is not always necessary, and two or more clusterheads
should be allowed to be neighbors depending on specific network conditions and applications. The same
reasoning applies when an ordinary node becomes a neighbor of another clusterhead: the criterium with
which it chooses whether to affiliate with the new neighboring clusterhead or not should depend again on
the current conditions of the network, and on the specific applications that use the cluster organization. We
demonstrate the advantage of our new weight-based setting by presenting simulation results that compare
DMAC with the “lowest ID first” algorithm of [6]. We show up to an 85% reduction on the communication
overhead associated with cluster maintenance.

The paper is organized as follows. In the next section we define a model for ad hoc network and the clus-
tering we want to obtain for these networks. The distributedclustering algorithm which adapts to changes
in the network topology (DMAC) is then introduced and provedcorrect in Section 4. The paper concludes
with some simulation results. The detailed codes of the procedures that implement DMAC can be found in
Appendix A.

The methods used so far for obtaining physical clustering inad hoc networks all implement some type of
greedy algorithmfor finding a set of nodes that act as coordinators of the clustering process (clusterheads).
Once the clusterheads are selected, clusters are defined by associating each non-clusterhead node with a
clusterhead following a specific rule. For instance, in the “maximum degree first” approach of Gerla et al.
[5], a node with maximumdegree(i.e., with the maximum number of neighbors) is selected as aclusterhead,
then a cluster is formed by that node and all its neighbors. The same procedure is repeated among the nodes
not assigned to a cluster yet, until all nodes belong to a cluster. In the “lowest ID first” method, used in
Ephremides et al. [3] and in Gerla et al. [4, 6], node IDs are used to choose the clusterheads.

In this paper we present aDistributed Clustering Algorithm(DCA) that generalizes the previous ap-
proaches by allowing the choice of the clusterheads based ona genericweight (a real number

�
0) asso-

ciated to each node: The bigger the weight of a node, the better that node for the role of clusterhead. The
main advantage of this approach is that now, by representingwith the weights node mobility-related param-
eters, we can choose for the role of clusterhead those nodes that are better suited for that role. For instance,
when the weight of a node is inversely proportional to its speed, the less mobile nodes are selected to be
clusterheads. Since these nodes either do not move or move slower than the other nodes, their cluster is
guaranteed to have a longer life, and consequently the overhead associated with the cluster maintenance
in the mobile environment is minimized. We prove the correctness of the DCA and we study its time and
message complexities. In particular, we prove that the timecomplexity of the DCA is bounded by a network
parameter that depends on the networktopology(that may change due to nodes mobility) rather than on the
sizeof the network, i.e., the invariant number of its nodes. By using simulations we demonstrate that the
combination of the new weight-based clusterhead selectionmechanism and the topology-dependent upper
bound on the DCA time complexity yields a logarithmic bound on the DCA time complexity. This result
improves exponentially the upper bound on the time complexity of distributed clustering presented in [6],
which is claimed to be linear in the size of the network.

2 Preliminaries and problem definition

We model anad hocnetwork by an undirected graphG � �V�E� in whichV, �V � � n, is the set of (wireless)
nodes and there is an edge�u�v� � E if and only if u andv can mutually receive each others’ transmission
(this implies that all the links between the nodes are bidirectional). In this case we say thatu andv are

3



neighbors. The set of the neighbors of a nodev � V will be denoted byΓ �v�. Due to mobility, the graph can
change in time.

Every nodev in the network is assigned a unique identifier (ID). For simplicity, here we identify each
node with its ID and we denote both withv. Finally, we consider weighted networks, i.e., a weightwv (a
real number

�
0) is assigned to each nodev � V of the network. For the sake of simplicity, in this paper we

stipulate that each node has a different weight. As an example, the topology of a simple ad hoc network is
shown in Figure 1 (a).

1 (6) 

4 (9)

3 (2)

8 (1)

6 (1) 

7 (5)

5 (8) 

2 (3) 

1 (6) 

4 (9)

3 (2)

8 (1)

6 (1) 

7 (5)

5 (8) 

2 (3) 

(a) (b)

Figure 1 (a) An ad hoc networkGwith nodesvand their weights (wv), 1� v� 8, and (b) a correct clustering
for G.

Clustering an ad hoc network means partitioning its nodes into clusters, each one with aclusterheadand
(possibly) someordinary nodes. The choice of the clusterheads is here based on theweightassociated to
each node: the bigger the weight of a node, the better that node for the role of clusterhead. In order to
meet the requirements imposed by the wireless, mobile nature of these networks, a clustering algorithm is
required to partition the nodes of the network so that the following ad hoc clustering propertiesare satisfied:

1. Every ordinary node has at least a clusterhead as neighbor(dominanceproperty).

2. Every ordinary node affiliates with the neighboring clusterhead that has the bigger weight.

3. No two clusterheads can be neighbors (independenceproperty).

Property 1. is necessary to ensure that each ordinary node has direct access to at least one clusterhead (the
one of the cluster to which it belongs), thus allowing fast intra- and inter-cluster communications. The
second property ensures that each ordinary node always stays with the neighboring clusterhead with the
bigger weight, i.e., with the clusterhead that can give it a “guaranteed good” service. Finally, property 3.
guarantees that the network is covered by a “well scattered”set of clusterheads, so that each node in the
network has a clusterhead in its neighborhood and it has direct access to that clusterhead.

Furthermore, given the possibly frequent changes in the network topology due to nodes’ mobility, the
algorithm is required to be executed at each node (i.e., the algorithm should bedistributed) with the sole
knowledge of the topology local to each node. Figure 1 (b) illustrates a correct clustering for the ad hoc
network of Figure 1 (a) (the clusterheads of each cluster arethe squared nodes).

4



3 A Distributed Clustering Algorithm (DCA)

In this section we describe a distributed algorithm that, given any ad hoc network, sets up a clustering that
satisfies the properties listed in the previous section. Themain assumption that we make here is that, during
the execution of the algorithm, the network topology does not change (see also []). We also make two other
common operational assumptions, namely, we assume that a message sent by a node is received correctly
within a finite time (astep) by all its neighbors, and that every node knows its ID, its weight and the IDs
and the weights of its neighbors.

The algorithm is executed at each node in such a way that a nodev decides its own role (clusterhead
or ordinary node) depending solely on the decision of its neighbors with bigger weights. Thus, initially,
only those nodes with the bigger weight in their neighborhood will broadcast a message to their neighbors
stating that they will be clusterheads. On receiving one or more of this “clusterhead” messages, a nodev
will decide to join the cluster of the neighboring clusterhead with the biggest weight. If no node with bigger
weight have sent such a message (thus indicating that it is going to join some other cluster as an ordinary
node), thenv will send a clusterhead message. We will show that all the nodes terminate the algorithms
being either clusterheads or ordinary nodes, and that the adhoc clustering properties are satisfied.

Except for the initial routine, the algorithm is message driven: a specific procedure will be executed at
a node depending on the reception of the corresponding message. We use two types of messages: CH(v),
used by a nodev to make its neighbors aware that it is going to be a clusterhead, and JOIN(v�u), with which
a nodev communicates to its neighbors that it will be part of the cluster whose clusterhead is nodeu � Γ�v�.
In the procedures, we use the following notation:

� v, the generic node executing the algorithm (from now on we will assume thatv encodes not only the
node’s ID but also its weightwv).

� Cluster�v�, the set of nodes inv’s cluster. It is initialized to/0, and it is updated only ifv is a cluster-
head.

� Clusterhead, the variable in which every node records the (ID of the) clusterhead that it joins. It is
initialized tonil .

� Ch ��� andJoin �� ���, boolean variables. Nodev setsCh �u�, u � �v� � Γ�v�, to true when either it
sends a CH(v) message (v � u) or it receives a CH(u) message fromu (u �� v�u � Γ�v�). The boolean
variableJoin �u�t �, u � Γ�v�, t � V, is set totrue by v when it receives a JOIN(u�t) message fromu.
They are initialized tofalse.

� By executing the commandEXIT, a nodev quits the execution of the clustering algorithm (this means
that it will not listen to any more messages from the network).

� With � and� we indicate the conventional boolean operations “and” and “or,” respectively.

Every node starts the execution of the algorithm at the same time, running the procedureInit. Only those
nodes that have the biggest weight among all the nodes in their neighborhood will send a CH message (“init
nodes”). Given the nature of the weights (real numbers), there always exists at least a nodev that transmits
the message CH(v). All the other nodes just wait to receive a message.

PROCEDUREInit ;
begin

if �u�Γ�v� 	wv 
 wu�
then begin

sendCH(v);

5



Cluster	v� :� Cluster	v� � �
v�;

Ch 	v� :� true;
Clusterhead:� v

end
end;

Then, we have the following two message triggered procedures:
� On receiving a CH message from a neighboru, nodev checks if it has received fromall its neighborsz
such thatwz � wu, a JOIN(z�x) message,x � V (this is recorded in the corresponding boolean variables).1

In this case,v will not receive a CH message from thesez, andu is the node with the biggest weight inv’s
neighborhood that has sent a CH message. Thus,v joins u, and quits the algorithm execution (it already
knows the cluster to which it belongs, i.e., its clusterhead). If there is still at least a nodez, wz � wu, that
has not sent a message yet, nodev just records in the variableCh �u� thatu sent a CH message, and keeps
waiting for a message fromz.

On receiving CH(u);
begin

Ch 	u� :� true;
if �z�Γ�v�:wz�wu 	�x�V Join 	z�x��

then begin
Clusterhead:� u;
sendJOIN(v�Clusterhead);
EXIT

end
end;

� On receiving a JOIN(u�t) message, nodev checks if it has previously sent a CH message (i.e., if it has
already decided to be a clusterhead: when this happens,Ch �v� is always assignedtrue). If this is the case,
it checks if nodeu wants to joinv’s cluster (v � t), and possibly updates itsCluster�v� set. Then, if allv’s
neighborsz such thatwz � wv have communicated their willingness to join a cluster,v quits the execution
of the DCA. Notice that, in this case, nodev does not care about its neighborsy (if any) such thatwy � wv,
because these nodes have surely joined a nodex �V such thatwx � wv (thus permittingv to be a clusterhead).
If node v has not sent a CH message, before deciding what its role is going to be, it needs to know what
all the nodesz such thatwz � wv have decided for themselves. Ifv has received a message from all such
nodes, then it checks the nature of the messages received. Ifthey are all JOIN messages, this means that
all those neighborsz have decided to join a cluster as ordinary nodes. This implies that nowv is the node
with the biggest weight among the nodes (if any) that have still to decide what to do. In this case,v will be
a clusterhead, and it executes the needed operations (i.e.,it sends a CH message, it updates itsCluster�v�
set, it sets itsCh �v� to true andClusterheadto v). At this point,v also checks if each neighbory such that
wy � wv has already joined another cluster. If this is the case,v quits the algorithm execution: it will be the
clusterhead of a cluster with a single node. Alternatively,if v has received at least a CH message fromz,
then it joins the cluster of the neighbor with the biggest weight that sent a CH message (this is selected by
the means of the operator maxwz�z : Ch �z��), and quits the execution of the DCA (notice that a node always
quits the algorithm execution as soon as it sends a JOIN message).

On receiving JOIN(u�t);
begin

Join 	u�t � :� true;
if Ch 	v�

1 We stipulate that the boolean conditions	 
� � �� in the CH(u) and in the JOIN(u
t) procedures, evaluates totrue when the sets
on which they are based are the empty set.

6



then begin
if v � t then Cluster	v� :� Cluster	v� � �

u�;
if �z�Γ�v�:wz�wv 	�x�V Join 	z�x�� then EXIT

end
else if�z�Γ�v�:wz�wv 	Ch 	z� � 	�x�V Join 	z�x���

then if �z�Γ �v�:wz�wv 	�x�V Join 	z�x��
then begin

sendCH(v);
Cluster	v� :� Cluster	v� � �

v�;
Ch 	v� :� true;
Clusterhead:� v;
if �z�Γ�v�:wz�wv 	�x�V Join 	z�x�� then EXIT

end
else begin

Clusterhead:� maxwz

�
z : Ch 	z��;

sendJOIN(v�Clusterhead);
EXIT

end
end;

EXAMPLE 1. Let us consider the simple ad hoc network of Figure 1 (a). Attime step 1 (beginning of the clustering
process) all the nodes execute theInit procedure of the DCA. Nodes 4 and 7, being the nodes with the bigger weight
in their neighborhood, send a CH message, declaring that they will be clusterheads. By the end of the same time step,
nodes 1 and 5 receive the message CH(4), nodes 2 and 6 receive the message CH(7) and nodes 3 and 8 neither receive
nor send any message. At time step 2, by executing the procedure On receiving CH(4), nodes 1 and 5 sends messages
JOIN(1,4) and JOIN(5,4), respectively, and quit the execution of the DCA. (They are not prevented to do so by any
node with weight bigger than the weight of node 4.) By the end of the same time step, node 4 has received the two
JOIN messages from nodes 1 and 5 and, having received a JOIN message from any node with weight smaller than its
own weight, quits the execution of the DCA: cluster

�
4�1�5� is formed. By the end of time step 1 nodes 2 and 6, by

executing the procedure On receiving CH(7), know that 7 is a neighboring clusterhead. Since there isno node in 6’s
neighborhood with weight
 w7, node 6 sends the message JOIN(6,7) and quits the execution of the DCA. Node 2
cannot do the same, since it has to wait for a message from node1 (whose weight is
 w7). The JOIN(1,4) message
is received at node 2 by the end of the second time step: since node 1 is going to join node 4’s cluster, node 2 has to
affiliate with node 7. Thus, by executing the procedure On receiving JOIN(1,4), node 2 sends the message JOIN(2,7).
By the end of the third time step node 7 has received a message from all the nodes with weight smaller than its own
weight and quits the execution of the DCA: cluster

�
7�2�6� is formed. Let us consider now node 3. By the end of

time step 2, it has received the message JOIN(1,4). At this time, though, node 3 cannot decide what role itis going to
assume, since there is still another node (node 2) with a weight bigger than its own weightw3 that has to decide. At the
end of the third time step, node 3 finally receives the messageJOIN(2,7) and, by executing the procedure On receiving
JOIN(2,7), it realizes that all the nodes with weight bigger thanits own weight have decided to join another cluster.
Thus, it sends a CH(3) message, declaring that it will be a clusterhead. By the end of step 4 this message is received
by node 8 (by executing the procedure On receiving CH(3)) that, sincew3 
 w8 and no other node with weight
 w3

is in its neighborhood, joins node 3’s cluster by sending themessage JOIN(8,3) and quits the execution of the DCA.
As soon as node 3 receives the JOIN message from node 8 (by executing the procedure On receivingJOIN(8,3)) it also
quits the execution of the DCA. Thus, by the end of the fifth step cluster

�
3�8� is formed and the DCA is correctly

terminated (see Figure 1 (b)). �

We prove now the time and message complexities of the DCA, andits correctness. We start by introducing
some definitions.

Let us consider thedirected acyclicgraph
�
D � �V�

�
E� induced onG � �V�E� by the following rule:

�v�u� �
�
E if and only if �v�u� � E and wv � wu. Since there is an arc fromv to u if and only if u’s

weight is bigger than the weight ofv, it is clear that anypath vi1vi2 � � �vik in
�
D, k � n � 1, is such that

7



wvi1 � wvi2 � � � � � wvik
. With v � u we indicate thelongest pathin

�
D from nodev to nodeu (if any), and

with �v � u� we denote its length, i.e., the number of the arcs in the path.(If there is no path in
�
D from v

to u we define�v � u� � 0.) Let us now consider the setI � �i : i � V�wi � wu �u � Γ�i �� of the init nodes

(they are all and only the nodes for which no arc�i �v� exists in
�
E, v � V

�
I ). Of course,I �� /0. For each

nodev � V
�

I , let us define the followingblocking distancefunctionb : V
�

I � �1� � � � �n� 1� such that:

v �� b�v� � max� �v � i � : i � I � �
The functionb is extended to the init nodes by definingb�i� � max�b�v� : v � Γ�i ��. Notice thatb is
well defined because at least one path fromv �� I to at least one init node always exists. Intuitively, the
blocking functionb�v� indicates how many time steps nodev is blocked in deciding which role it is going to
have. Finally, withDb � max�b�v� : v � V �, we indicate theblocking diameterof the network.2 Of course,
Db � n� 1. The blocking diameter of the network of Figure 1 is 5 (whichis b�8�, the length of the longest
path from node 8 to the init node 4 formed by nodes 8, 3, 2, 1, 5 and 4).

The following result is fundamental in proving the time and message complexities of the DCA.

Proposition 1 Each node of the network sends exactly one message within Db � 1 steps.

Proof Each node v sends at least a message within Db� 1 steps. We proceed by induction onb�v� � � � Db,
v � V, showing that ifb�v� � �, thenv sends either a CH or a JOIN message within� � 1 steps. Letb�v� � 1.
If v � I then the thesis trivially holds at the first step. Ifv �� I , thenv receives all the CH(i) message(s),i � I ,
in the first step. In this case, we observe that all the neighbors ofv that are not init nodes have weights� wv

(otherwise, a nodeu � Γ �v� such thatwu � wv andu �� I has to have at least a neighborzsuch thatwz � wu,
and this impliesb�v� � 1). Thus, executing the CH procedure,v sends a JOIN(v� i) message to the init node
with the biggest weight (and terminates) in the second step.

Let us assume now that each node with blocking distance�, 1 � � � Db, sends a message within� � 1
steps. Letv be a node such thatb�v� � � � 1. By definition ofb, all the nodesu � Γ �v� with wu � wv are
such thatb�u� � �. Thus, by inductive hypothesis, they all send a message within � � 1 steps. If all these
messages are JOIN messages then, within� � 2 stepsv sends a CH message, otherwise it sends a a JOIN

message. Thus, by induction, every nodev such thatb�v� � � sends a message CH or JOIN within � � 1
steps, 1� � � Db.

Each node v sends at most one message. Supposev has sent a CH(v) message. Then:

� v cannot send another CH(v) message. The only way in whichv can send a CH message are either
while executing theInit procedure or while executing thethen branch on the innermostif of the JOIN

procedure. The first case is impossible because theInit procedure can be executed just once. The
second case is also prevented to happen because theCh �v� variable is set totrue when the first CH
message has been sent.

� v cannot send a JOIN(v�u) message. Let us suppose thatv sends a JOIN(v�u) message. The only case
in which this is possible is by executing the CH(u) procedure,u � Γ�v� (as above, theCh �v� variable
has been assignedtrue when the first CH message has been sent, and this prevents the execution of
the elsebranch of the outermostif ). We notice that a nodeu � Γ�v� such thatwu � wv can never
send a CH(u) message, neither using theInit procedure (v prevents it to issue such a message) nor
executing thethen branch on the innermostif of the JOIN procedure (nodeu has already received the
CH(v) message, so that it is prevented to execute that branch). Thus, we consider a nodeu such that
wu � wv. In this case, we notice thatv did not send the CH(v) message by executing theInit procedure

2 The blocking diameterDb is not to be confused with the network diameterD, which is defined as the length of the longest
among theshortestpaths. In general, there is no relation betweenDb andD.

8



(u prevents it to issue such a message). Therefore,v has sent that message by executing thethen
branch on the innermostif of the JOIN procedure. This is possible only ifv has received a JOIN(u�x)
message,x � V, beforereceiving the CH(u) message. But this is impossible because, in this case,u
would have quit the DCA (so that it cannot send the CH(u) message).

Whenv sends a JOIN message, it always quits the execution of the DCA. So it is impossible for it to
send another message. �

From this result we can state the time complexity of the DCA.

Corollary 1 The DCA terminates within Db� 1 steps.

Proof Proposition 1 ensures that withinDb � 1 steps every ordinary node of the ad hoc network terminates
the algorithm. This guarantees that within the same number of steps every clusterhead also terminates the
DCA (see procedure On receiving JOIN(u�t)). �

On the ad hoc network of Figure 1 (a) the DCA terminates (correctly) in 5 � Db � 1 � 6 time steps (see
Example 1). We notice that, having bound the time complexityof the DCA to a parameterDb that depends
on the (possibly changing) topology of the ad hoc network as opposed to an invariant like the numbern
of its nodes, induces an upper bound on the DCA time complexity that improves on theO�n� upper bound
presented in [6] in all those cases in whichDb

�
n.3,

REMARK 1. If we consider algorithms that produce a clustering with the three properties stated in Section 2 and for
which at least a message has to be sent by each node of the network, the upper bound induced by the previous corollary
cannot be improved. Indeed, it is easy to find networks in which the DCA needs exactlyDb� 1 � n steps to terminate
(e.g., consider a network that is a blocking path withn nodes,n odd). �

The following corollary states the message complexity of the DCA.

Corollary 2 The message complexity of the DCA is n.

Corollary 3 Each node belongs exactly to a cluster.

Proof Each nodev that sends a CH(v) message belongs to the cluster of which it is the clusterhead. On the
other hand, if a nodeu sends a JOIN(u�t) message,t � Γ�u�, then it belongs to the cluster whose clusterhead
is t. �

The previous corollary immediately implies that a node is either a clusterhead or an ordinary node, that an
ordinary node joins only one clusterhead (no overlapping clusters), that an ordinary node is only one hop
apart from the clusterhead it joins (dominance property, see 1., page 4), and thus that the diameter of a
cluster is at most two. These properties are all independenton the weighting associated to the network. The
following proposition takes weights into account, characterizing uniquely the DCA.

Proposition 2 A node v of an ad hoc network sends aCH message if and only if all its neighbors z with
wz � wv have already joined another clusterhead. A node v sends aJOIN �v�u� message if and only if it has
at least a neighbor u with wu � wv that has sent aCH �u� message, all the neighbors z such that wz � wu

have joined a cluster, and the other neighbors y (wv � wy � wu) have sent either aCH or a JOIN message.
In this case, u is guaranteed to have the biggest weight amongall nodes that have sent aCH message.

3 We notice that, even in the caseDb � n� 1, the time complexity of the proposed algorithm isexactly Db � 1 steps, i.e., our
result in not asymptotic.

9



Proof Let us consider the setZ � �z : z � Γ�v� �wz � wv�. If Z � /0 then the thesis follows because of the Init
procedure (nodev sends a CH(v) message). WhenZ �� /0, then the only case in whichv can send a CH(v)
message is by executing thethen branch of the innermostif in the JOIN procedure. This can happen if and
only if �z�Z ��x�V Join �z�x�� � true, i.e., if and only if all the nodesz � Γ�v�, wz � wv, have already joined
a clusterheadx � V.

A nodev can send a JOIN message if and only if it executes either the CH procedure or theelsebranch
of the innermostif of the JOIN procedure. In both cases it has to have received a CH message from at least a
nodeu such thatwu � wv, and JOIN messages from all the nodes with weights� wu. In the case of the JOIN

procedure,v has also to receive (either CH or JOIN) messages from all those nodesy such thatwv � wy � wu.
If the JOIN message has been sent while executing the CH(u) procedure,u is guaranteed to have the biggest
weight among all the nodesz � Γ�v� �wz � wv, because all nodes with weight� wu have already sent a JOIN

message (otherwise,v could not execute thethen branch of theif command). If the JOIN message has been
sent while executing theelsebranch of the innermostif in the JOIN procedure, the thesis is guaranteed by
the max operator. �

Corollary 4 No two clusterheads can be neighbors.

Proof Let v andu be neighboring clusterheads. Suppose, without loss of generality, thatwu � wv. Then,
v cannot be a clusterhead, because there exists at least one ofits neighbor, namelyu, with wu � wv, that
has not joined another clusterhead (u has already sent a CH(u) message, and it cannot send a JOIN message
anymore). �

Proposition 2 and the previous corollary state the clustering properties 2. and 3., respectively (Section 2).
The previous results are summed up in the following theorem that states the correctness of the DCA.

Theorem 1 All the nodes of the network exit the execution of the algorithm having been assigned either the
role of clusterhead or the role of ordinary node so that the three ad hoc clustering properties are satisfied.

We conclude this section by noticing that the requirement that all the nodes initiate the DCA at the same time
is not a severe constraint. In order to “synchronize” the nodes on a specific initial time it is enough that a
selected node issues a broadcast message to request the start of the clustering process. Broadcast algorithms
such as the one presented in [2] are suitable algorithms for this purpose, being completely distributed,
deterministic and mobility adaptive. In this way, it is always guaranteed that after a specific bounded amount
of time each node of the network knows that a clustering has been requested, and the DCA can start at each
node.

4 Distributed and Mobility-Adaptive Clustering (DMAC)

In this section we describe a distributed algorithm for the set up and the maintenance of a cluster organization
in the presence of nodes’ mobility that satisfies the three adhoc clustering properties. The main difference
with the DCA presented in the previous section consists in the fact that here we do not assume that during
the clustering process the nodes of the network need need notto move. This makes this algorithm suitable
for both the clustering set up and its maintenance, which wasnot available in previous solutions. Adaptation
to changes in the network topology is now made possible by letting each node to properly “react” not only to
the reception of a message from other nodes, but also to the the failure of a link with another node (possibly
caused by a node failure, or by nodes’ movements) or to the presence of a new link.

10



In describing the procedures of our Distributed and Mobility-Adaptive Clustering (DMAC) algorithm,
we still assume that a message sent by a node is received correctly within a finite time (a step) by all its
neighbors. We also assume that each node knows its own ID, itsweight, its role (if it has already decided to
be a clusterhead or an ordinary node) and the ID, the weight and the role of all its neighbors (if they have
already decided their role). When a node has not yet decided what its role is going to be, it is considered as
an ordinary node.

Except for the procedure that each node executes as soon as itstarts the clustering operations, as in the
case of DCA, the algorithm is message driven. Here, we use thesame two types of messages used in the
DCA (namely, CH(v) and JOIN(v�u)).

In the following we use the notation forv, Cluster�v�, ClusterheadandCh ��� with the same meaning
that they have in Section 3. Furthermore, we assume that:

� Every node is made aware of the failure of a link, or of the presence of a new link by a service of a
lower level (this will trigger the execution of the corresponding procedure);

� The procedures of DMAC (M-procedures, for short) are “atomic,” i.e., they are not interruptible;

� At clustering set up or when a node is added to the network its variablesClusterhead, Ch ���, and
Cluster��� are initialized tonil , falseand /0, respectively.

The following is the description of the six M-procedures.
� Init. At the clustering set up, or when a nodev is added to the network, it executes the procedureInit in
order to determine its own role. If among its neighbors thereis at least a clusterhead with bigger weight,
thenv will join it. Otherwise it will be a clusterhead. Notice thata neighbor with a bigger weight that has
not decided its role yet (this may happen at the clustering set up, or when two or more nodes are added to
the network at the same time), will eventually send a message(every node executes theInit procedure). If
this message is a CH message, thenv will affiliate with the new clusterhead.

PROCEDUREInit ;
begin

if
�
z � Γ	v� : wz 
 wv � Ch 	z�� �� /0
then begin

x :� maxwz�wv

�
z : Ch 	z��;

sendJOIN(v,x);
Clusterhead:� x

end
else begin

sendCH(v);
Ch 	v� :� true;
Clusterhead:� v;
Cluster	v� :� �

v�
end

end;
� Link failure. Whenever made aware of the failure of the link with a nodeu, nodev checks if its own role
is clusterhead and ifu used to belong to its cluster. If this is the case,v removesu from Cluster�v�. If v is
an ordinary node, andu was its own clusterhead, then it is necessary to determine a new role forv. To this
aim,v checks if there exists at least a clusterheadz � Γ�v� such thatwz � wv. If this is the case, thenv joins
the clusterhead with the bigger weight, otherwise it becomes a clusterhead.

11



PROCEDURELink failure (u);
begin

if Ch 	v� and (u � Cluster	v�)
then Cluster	v� :� Cluster	v� � �u�
else ifClusterhead� u then

if
�
z � Γ	v� : wz 
 wv � Ch 	z�� �� /0
then begin

x :� maxwz�wv

�
z : Ch 	z��;

sendJOIN(v,x);
Clusterhead:� x

end
else begin

sendCH(v);
Ch 	v� :� true;
Clusterhead:� v;
Cluster	v� :� �

v�
end

end;
� New link. When nodev is made aware of the presence of a new neighboru, it checks ifu is a clusterhead. If this is
the case, and ifwu is bigger than the weight ofv’s current clusterhead, than, independently of its own role, v affiliates
with u.

PROCEDURENewlink (u);
begin

if Ch 	u� then
if (wu 
 wClusterhead)

then begin
sendJOIN(v,u);
Clusterhead:� u;
if Ch 	v� then Ch 	v� :� false

end
end;

� On receivingCH(u). When a neighboru becomes a clusterhead, on receiving the corresponding CH

message, nodev checks if it has to affiliate withu, i.e., it checks whetherwu is bigger than the weight ofv’s
clusterhead or not. In this case, independently of its current role,v joins u’s cluster.

On receiving CH(u);
begin

if (wu 
 wClusterhead) then begin
sendJOIN(v,u);
Clusterhead:� u;
if Ch 	v� then Ch 	v� :� false

end
end;

� On receivingJOIN(u,z). On receiving the message JOIN(u,z), the behavior of nodev depends on whether
it is a clusterhead or not. In the affirmative,v has to check if eitheru is joining its cluster (z� v: in this case,
u is added toCluster�v�) or if u belonged to its cluster and is now joining another cluster (z �� v: in this
case,u is removed fromCluster�v�). If v is not a clusterhead, it has to check ifu was its clusterhead. Only
if this is the case,v has to decide its role: It will join the biggest clusterheadx in its neighborhood such that
wx � wv if such a node exists. Otherwise, it will be a clusterhead.

12



On receiving JOIN(u�z);
begin

if Ch 	v�
then if z� v then Cluster	v� :� Cluster	v� � �

u�
else ifu � Cluster	v� then Cluster	v� :� Cluster	v� � �u�

else ifClusterhead� u then
if

�
z � Γ	v� : wz 
 wv � Ch 	z�� �� /0

then begin
x :� maxwz�wv

�
z : Ch 	z��;

sendJOIN(v,x);
Clusterhead:� x

end
else begin

sendCH(v);
Ch 	v� :� true;
Clusterhead:� v;
Cluster	v� :� �

v�
end

end;

We conclude this section by showing that by using the M-procedures we obtain and maintain for any ad hoc
network a clustering that always satisfies the ad hoc clustering properties listed in Section 2.

Theorem 2 Using the M-procedures, any ad hoc network is (maintained) clustered in such a way that the
ad hoc clustering properties are always satisfied.

Proof We start by noticing that it is easy to check from the code of the Init procedure that as soon as a node
has executed this procedure, it is always assigned a role which is consistent with the clustering properties.

We proceed by showing that by executing the M-procedures in reaction to changes in the network topol-
ogy, the nodes assume/change their roles so that the ad hoc clustering properties are always satisfied.

1. That each ordinary nodev does not affiliate with more that one clusterhead is evident by noticing
that anytime it sends a JOIN(v�u) message its variableClusterheadis initialized (only) tou. Thatv
affiliates with at least a clusterhead derives from the fact that when it has to decide its role and there are
clusterheads with bigger weights among its neighbors, or when a switch to another cluster is required,
the ordinary nodev always looks for the clusterhead with the biggest weight andaffiliates with it.
This can be easily checked in the codes of: theInit procedure (then branch); theLink Failure and the
On receiving JOIN(u�z) procedures (when the link with its clusterheadu is broken, or the clusterhead
u has resigned, joining another node,v looks for another clusterhead; of course, if no clusterheadis
available, it will be a clusterhead), and theNewLink and the On receiving CH(u) procedures (ifu is
the new clusterhead on the block, if nodev needs to affiliate withu, it does so by executing thethen
branch of the innermostif ). Thus, there is no case in which an ordinary nodev remains without a
clusterhead.

2. At the clustering set up, or when a node is added to the (already clustered) network, or when its
current clusterhead moves away, a node always affiliates with the clusterhead with the biggest weight
(if there is no such clusterhead, it will become a clusterhead itself), so that the second ad hoc clustering
property is always satisfied (see the code of proceduresInit, Link Failure, On receiving JOIN). The
other cases to consider are when an ordinary nodev switches from a cluster to another, or whenv is a
clusterhead that resigns to join the cluster of a new neighboring clusterhead. In these cases, the second

13



property is guaranteed by the proceduresNewLink and On Receiving CH, where nodev switches to
u’s cluster only ifwu � wClusterhead.

3. Each time a node becomes a clusterhead, i.e., it transmitsa CH message (see theelsebranch of the
if in the Init procedure, theelsebranch of the innermost if in theLink Failure procedure, and the
same branch in the On receiving JOIN procedure), it does so because there is no other neighboring
clusterhead with which it can affiliate. The other cases thatremain to be checked are when either
a clusterheadv has one of its neighbors that becomes a clusterhead, or a clusterhead moves into its
neighborhood, and the weight of the new neighbor does not forcev to affiliate with it. In both these
cases, the third ad hoc clustering property is guaranteed bythe execution of theelsebranch

Thus, the three properties for ad hoc clustering are always satisfied. �

5 Conclusions

This paper presented two distributed algorithms, DCA and DMAC, for the efficient partitioning of the the
nodes of an ad hoc wireless network into clusters with a clusterhead and some ordinary nodes. This is a
practically important task, especially for all those network algorithms/applications that assume a mobility-
adaptive hierarchical organization of the network. A new weight-based criterium is introduced for the cluster
formation that allows the choice of the clusterheads based on node mobility-related parameters, not available
in previous clustering algorithms. The proposed algorithms needs only knowledge of the local topology at
each node (one hop neighbors), and allows each ordinary nodeto have direct access to at least a clusterhead,
thus guaranteeing fast inter- and intra-cluster communication between each pair of nodes. The DCA is easy
to implement and its time complexity is proven to be bounded by a network parameter that depends on the
possibly changing topology of the ad hoc network rather thanon n, the invariant size of the network. The
DMAC combines easiness of implementation with full adaptation to the mobility of the nodes, even during
clustering set up.

References

[1] BAKER, D. J., EPHREMIDES, A., AND FLYNN , J. A. The design and simulation of a mobile radio
network with distributed control.IEEE Journal on Selected Areas in Communications SAC-2, 1 (January
1984), 226–237.

[2] BASAGNI, S., AND CHLAMTAC , I. Broadcast in peer-to-peer networks. InProceedings of the Second
IASTED International Conference European Parallel and Distributed Systems, Euro-PDS’98(Vienna,
Austria, July 3–5 1998), O. Bukhres and H. El-Rewini, Eds., pp. 117–122.

[3] EPHREMIDES, A., WIESELTHIER, J. E.,AND BAKER, D. J. A design concept for reliable mobile radio
networks with frequency hopping signaling.Proceedings of the IEEE 75, 1 (January 1987), 56–73.

[4] GERLA, M., AND L IN , C. R. Multimedia transport in multihop dynamic packet radio networks. In
Proceedings of International Conference on Network Protocols (Tokyo, Japan, 7–10 November 1995),
pp. 209–216.

[5] GERLA, M., AND TSAI, J. T.-C. Multicluster, mobile, multimedia radio network.Wireless Networks
1, 3 (1995), 255–265.

14



[6] L IN , C. R.,AND GERLA, M. Adaptive clustering for mobile wireless networks.Journal on Selected
Areas in Communications 15, 7 (September 1997), 1265–1275.

15


