Distributed Clustering for Ad Hoc Networks

Stefano Basagni
Center for Advanced Telecommunications Systems and Ss{CATSS)
Erik Jonsson School of Engineering and Computer Scienc8EC3
The University of Texas at Dallas
2601 N. Floyd Rd.
Richardson, TX 75080
Tel. 972 883 2216 Fax. 972 883 2710
E-mail: basagni @it dal | as. edu

Abstract

A Distributed Clustering Algorithn{DCA) and a Distributed Mobility-Adaptive Clustering (DMZ)
algorithm are presented that partitions the nodes of a futipile network &d hocnetwork) intoclusters
thus giving the network a hierarchical organization. Nodes grouped by following a neweight
based criterium that allows the choice of the nodes thatdioate the clustering process based on node
mobility-related parameters. The DCA time complexity isy®n to be bounded by a network parameter
Dy, that depends on the possibly changiogologyof the network rather than on isze i.e., the invariant
number of the network nodes. The DMAC ...

Keywords: Clustering Ad HocNetworks, Wireless Mobile Networks, Distributed Networlgarithms.

1 Introduction

Obtaining a hierarchical organization of a network is a wealbwn and studied problem of distributed com-
puting. It has been proven effective in the solution of salvproblems, such as, minimizing the amount of
storage for communication information (e.g., routing andtimast tables), thus reducing information up-
date overhead, optimizing the use of the network bandwditributing resources throughout the network,
etc.

In the case ofad hoc networksi.e., wireless networks in which possibly all nodes can habile,
partitioning the nodes into groupslysters) is similarly important. In additionclusteringis crucial for
controlling the spatial reuse of the shared channel (eagterms of time division or frequency division
schemes), for minimizing the amount of data to be exchangeaatder to maintain routing and control
information in a mobile environment, as well as for buildewgd maintaining cluster-basedtual network
architectures.

The notion of cluster organization has been used for ad htveonks since their appearance. In [1, 3],
a “fully distributed linked cluster architecture” is inttaced mainly for hierarchical routing and to demon-
strate the adaptability of the network to connectivity dsm With the advent of multimedia communica-
tions, the use of the cluster architecture for ad hoc netwasdibeen revisited by Gerla et. al. [4, 6, 5]. In
these latter works the emphasis is toward the allocatioresdurces, namely, bandwidth and channel, to
support multimedia traffic in an ad hoc environment.

*This work was supported in part by the Army Research Officesuiedntract No. DAAG55-96-1-0382.

In existing solutions foclusteringof ad hoc networks, the clustering is performed in two phaslestering

set upand clusteringnaintenance The first phase is accomplished by choosing some nodes d¢hasa
coordinators of the clustering procestugterheads Then aclusteris formed by associating a clusterhead
with some of itsneighborg(i.e., nodes within the clusterhead’s transmission ratigg)become therdinary
nodesof the cluster. Once the cluster is formed, the clusterheactontinue to be the local coordinator for
the operations of its cluster (as in [1, 3, 5]), or, in ordeawid bottlenecks, the control can be distributed
among the nodes of the cluster [4, 6]. The existing clustealyorithms differ on the criterium for the
selection of the clusterheads. For example, in [1, 3, 6] Hodoe of the clusterheads is based on the unique
identifier (ID) associated to each node: the node with theetdwD is selected as clusterhead, then the
cluster is formed by that node and all its neighbors. The sameedure is repeated among the remaining
nodes, until each node is assigned to a cluster. When theeci®mbased on the maximudegree(i.e.,

the maximum number of neighbors) of the nodes, the algorilesctribed in [5] is obtained. A common
assumption for the clustering set up is that the naftesot movevhile the cluster formation is in progress.
This is a major drawback, since in real ad hoc situations ssaraptions can be made on the mobility of the
nodes.

Once the nodes are partitioned into clusters, the non niyb#isumption is released, and techniques are
described on how to maintain the cluster organization imptiesence of mobility (clustering maintenance).
For instance, in [1] a reorganization of the clusters, dusoie mobility, is done periodically, just invoking
the clustering process again (as at set up time). Of cours@gdthe re-clustering process the network
cannot rely on the cluster organization. Thus, this is aili@solution only when the network does not
need too many reorganizations. In [6] cluster maintenandbé presence of mobility is described where
each noder decides locally whether to update its cluster or not. Thisgien is based on the knowledge
of thev's oneand twohop neighbors and on the knowledge of the local topology<oheighbor with the
largest degree The resulting mobility-adaptive algorithm is thus diffet from the one used for the cluster
formation (based on the nodes’ IDs and on the knowledge af dme hop neighbors) and the obtained
clustering has different properties with respect to théahone.

In this paper we present a clustering algorithm suitablédb the clustering set up and maintenance that
aims to overcome the above mentioned mobility related diticibs. For ouDistributed Mobility-Adaptive
Clustering(DMAC, for short) algorithm we obtain the following propis, not available in previous solu-
tions:

e Nodes can move, even during the clustering set up: DMA&aptiveto the changes in the topology
of the network, due to the mobility of the nodes or to node tialliand/or removal.

e DMAC is fully distributed A node decides its own role (i.e., clusterhead or ordinargen solely
knowing its currenbnehop neighbors.

e Every ordinary node always habrect accesdo at least one clusterhead. Thus, the nodes in the
cluster are at most two hops apart. This guarantees faatéhister communication and fast inter-
cluster exchange of information between any pair of nodes.

¢ DMAC uses ageneralmechanism for theelection of the clusterhead3he choice is now based on
genericweightsassociated with the nodes.

e The number of clusterheads that are allowed to be neighb@parameter of the algorithrdggree
of independencg

¢ Finally, we define for DMAC a new weight-based criterium taibws the nodes to decide whether
to change (switch) its role or not depending on the currentlitimn of the network, thus minimizing
the overhead due to the switching process.

Notice that the last three properties introduce the pdggilior DMAC to be configured for the specific
ad hoc network in which it operates. For example, the weighbeaiated to a node allows us to express
how that node is suitable for the role of clusterhead depgndn properties of the node itself, such as its
speed, its transmission power, etc. Moreover, previougtisos would not allow two clusterheads to be
neighbors, forcing one of the two to resign. This is not alsvagcessary, and two or more clusterheads
should be allowed to be neighbors depending on specific meteanditions and applications. The same
reasoning applies when an ordinary node becomes a neigfileorother clusterhead: the criterium with
which it chooses whether to affiliate with the new neighbprifusterhead or not should depend again on
the current conditions of the network, and on the specifidiegpns that use the cluster organization. We
demonstrate the advantage of our new weight-based settipgelsenting simulation results that compare
DMAC with the “lowest ID first” algorithm of [6]. We show up tore85% reduction on the communication
overhead associated with cluster maintenance.

The paper is organized as follows. In the next section we eefimodel for ad hoc network and the clus-
tering we want to obtain for these networks. The distributiedtering algorithm which adapts to changes
in the network topology (DMAC) is then introduced and prowedrect in Section 4. The paper concludes
with some simulation results. The detailed codes of thequtoes that implement DMAC can be found in
Appendix A.

The methods used so far for obtaining physical clusteriraglihoc networks all implement some type of
greedy algorithnfor finding a set of nodes that act as coordinators of theeatfimng} processalusterheads.
Once the clusterheads are selected, clusters are definesbbgiating each non-clusterhead node with a
clusterhead following a specific rule. For instance, in t@Ximum degree first” approach of Gerla et al.
[5], a node with maximundegreg(i.e., with the maximum number of neighbors) is selected@ssierhead,
then a cluster is formed by that node and all its neighbore. SBme procedure is repeated among the nodes
not assigned to a cluster yet, until all nodes belong to aeiusn the “lowest ID first” method, used in
Ephremides et al. [3] and in Gerla et al. [4, 6], node IDs aslus choose the clusterheads.

In this paper we present Ristributed Clustering Algorithm{DCA) that generalizes the previous ap-
proaches by allowing the choice of the clusterheads basedgemericweight(a real numbee> 0) asso-
ciated to each node: The bigger the weight of a node, therlibitenode for the role of clusterhead. The
main advantage of this approach is that now, by representitigthe weights node mobility-related param-
eters, we can choose for the role of clusterhead those nbdeare better suited for that role. For instance,
when the weight of a node is inversely proportional to itseshdhe less mobile nodes are selected to be
clusterheads. Since these nodes either do not move or mawersthan the other nodes, their cluster is
guaranteed to have a longer life, and consequently the eadrhssociated with the cluster maintenance
in the mobile environment is minimized. We prove the comess of the DCA and we study its time and
message complexities. In particular, we prove that the tameplexity of the DCA is bounded by a network
parameter that depends on the netwoology(that may change due to nodes mobility) rather than on the
sizeof the network, i.e., the invariant number of its nodes. Bwgsimulations we demonstrate that the
combination of the new weight-based clusterhead seleatiechanism and the topology-dependent upper
bound on the DCA time complexity yields a logarithmic boundtbe DCA time complexity. This result
improves exponentially the upper bound on the time complei distributed clustering presented in [6],
which is claimed to be linear in the size of the network.

2 Preliminaries and problem definition

We model arad hocnetwork by an undirected gragh= (V,E) in whichV, |V| = n, is the set of (wireless)
nodes and there is an edfje v} € E if and only if u andv can mutually receive each others’ transmission
(this implies that all the links between the nodes are bitiibeal). In this case we say thatandv are

neighbors. The set of the neighbors of a nedeV will be denoted by (v). Due to mobility, the graph can
change in time.

Every nodev in the network is assigned a unique identifier (ID). For sigify, here we identify each
node with its ID and we denote both with Finally, we consider weighted networks, i.e., a weight(a
real number> 0) is assigned to each node V of the network. For the sake of simplicity, in this paper we
stipulate that each node has a different weight. As an exantié topology of a simple ad hoc network is
shown in Figure 1 (a).

7(5)

(@) (b)

Figure 1 (a) An ad hoc networks with nodesv and their weightswy), 1< v< 8, and (b) a correct clustering
for G.

Clustering an ad hoc network means patrtitioning its nodesdlusters each one with &lusterheadand
(possibly) someordinary nodes The choice of the clusterheads is here based omvthghtassociated to
each node: the bigger the weight of a node, the better that faxdthe role of clusterhead. In order to
meet the requirements imposed by the wireless, mobile @aiuthese networks, a clustering algorithm is
required to partition the nodes of the network so that thedhg ad hoc clustering propertiegre satisfied:

1. Every ordinary node has at least a clusterhead as neigtddminanceproperty).
2. Every ordinary node affiliates with the neighboring atuktad that has the bigger weight.

3. No two clusterheads can be neighbanslépendenceroperty).

Property 1. is necessary to ensure that each ordinary nadditezt access to at least one clusterhead (the
one of the cluster to which it belongs), thus allowing fadtan and inter-cluster communications. The
second property ensures that each ordinary node always wfitty the neighboring clusterhead with the
bigger weight, i.e., with the clusterhead that can give igadranteed good” service. Finally, property 3.
guarantees that the network is covered by a “well scatteset’df clusterheads, so that each node in the
network has a clusterhead in its neighborhood and it hastdieeess to that clusterhead.

Furthermore, given the possibly frequent changes in thearkttopology due to nodes’ mobility, the
algorithm is required to be executed at each node (i.e.,lwitom should bealistributed) with the sole
knowledge of the topology local to each node. Figure 1 (bjsthates a correct clustering for the ad hoc
network of Figure 1 (a) (the clusterheads of each clustett@requared nodes).

3 A Distributed Clustering Algorithm (DCA)

In this section we describe a distributed algorithm thategiany ad hoc network, sets up a clustering that
satisfies the properties listed in the previous section.mam assumption that we make here is that, during
the execution of the algorithm, the network topology dogschange (see also []). We also make two other
common operational assumptions, namely, we assume thassageesent by a node is received correctly
within a finite time (astep) by all its neighbors, and that every node knows its ID, its weiglit the IDs
and the weights of its neighbors.

The algorithm is executed at each node in such a way that awnddeides its own role (clusterhead
or ordinary node) depending solely on the decision of itgmeors with bigger weights. Thus, initially,
only those nodes with the bigger weight in their neighbothwdll broadcast a message to their neighbors
stating that they will be clusterheads. On receiving one oremf this “clusterhead” messages, a nede
will decide to join the cluster of the neighboring clusteatievith the biggest weight. If no node with bigger
weight have sent such a message (thus indicating that itig do join some other cluster as an ordinary
node), therv will send a clusterhead message. We will show that all theesddrminate the algorithms
being either clusterheads or ordinary nodes, and that theadlustering properties are satisfied.

Except for the initial routine, the algorithm is messageei a specific procedure will be executed at
a node depending on the reception of the corresponding ges¥se use two types of messagesi(d,
used by a node to make its neighbors aware that it is going to be a clustekhaad dIN(v, u), with which
a nodev communicates to its neighbors that it will be part of the ®usvhose clusterhead is node I (v).

In the procedures, we use the following notation:

¢ Vv, the generic node executing the algorithm (from now on wéag$ume that encodes not only the
node’s ID but also its weighty,).

e Cluster(v), the set of nodes iu's cluster. It is initialized td, and it is updated only ¥ is a cluster-
head.

¢ Clusterhead the variable in which every node records the (ID of the) teltleead that it joins. It is
initialized tonil.

e Ch(-) andJoin(—,—), boolean variables. NodesetsCh (u), u € {v} Ul (v), totrue when either it
sends a @(v) messageM= u) or it receives a @(u) message fronu (u# v,u € '(v)). The boolean
variableJoin(u,t), u€ I'(v), t € V, is set totrue by v when it receives adin(u,t) message fronu.
They are initialized tdalse

¢ By executing the commareiT, a nodev quits the execution of the clustering algorithm (this means
that it will not listen to any more messages from the network)

¢ With A andV/ we indicate the conventional boolean operatiossd” and “or,” respectively.

Every node starts the execution of the algorithm at the sameg, running the procedurait. Only those
nodes that have the biggest weight among all the nodes inrthigihborhood will send aiCmessage (“init
nodes”). Given the nature of the weights (real numbers)ethlvays exists at least a nodéhat transmits
the message K{v). All the other nodes just wait to receive a message.

PROCEDUREINit ;
begin
if /\uel‘(v) (Wy > wy)
then begin
sendCH(V);

Cluster(v) := Cluster(v) U {v};

Ch(v) := true;
Clusterhead=v
end

end;

Then, we have the following two message triggered procedure

e On receiving a @ message from a neighbar nodev checks if it has received fromll its neighborsz
such thatwv, > wy, a DIN(zX) messagex € V (this is recorded in the corresponding boolean variables).
In this casey will not receive a G message from these andu is the node with the biggest weight us
neighborhood that has sent ai@essage. Thus;joins u, and quits the algorithm execution (it already
knows the cluster to which it belongs, i.e., its clusterhedfithere is still at least a node w;, > w,, that
has not sent a message yet, nedest records in the variabl€h(u) thatu sent a G message, and keeps
waiting for a message from

On receiving Gi(u);

begin
Ch(u) :=true;
if /\zel'(v):wz>wLJ (Vxev Join (27 X))
then begin
Clusterhead= u;
sendJoIN(v,Clusterhead;
EXIT
end
end,

e On receiving a dIN(u,t) message, node checks if it has previously sent aHOnessage (i.e., if it has
already decided to be a clusterhead: when this hap@ng) is always assignettue). If this is the case,

it checks if nodeu wants to joinv's cluster ¢ =t), and possibly updates iGluster(v) set. Then, if al\’s
neighborsz such thatw, < w, have communicated their willingness to join a clusteguits the execution
of the DCA. Notice that, in this case, nodeloes not care about its neighbgréf any) such thatv, > w,
because these nodes have surely joined a radé such thatv, > w, (thus permittingsto be a clusterhead).

If node v has not sent a € message, before deciding what its role is going to be, it si¢@dknow what
all the node< such thatw, > w, have decided for themselves. vthas received a message from all such
nodes, then it checks the nature of the messages receivétkylfire all 1IN messages, this means that
all those neighborg have decided to join a cluster as ordinary nodes. This impliat nowv is the node
with the biggest weight among the nodes (if any) that havetstdecide what to do. In this casewill be

a clusterhead, and it executes the needed operationgt(§ends a @ message, it updates i@uster(v)
set, it sets it<Ch(v) to true andClusterheadto v). At this point,v also checks if each neighbgisuch that
Wy < Wy has already joined another cluster. If this is the caspiits the algorithm execution: it will be the
clusterhead of a cluster with a single node. Alternativiély, has received at least aHGnessage fronz,
then it joins the cluster of the neighbor with the biggestgheithat sent a € message (this is selected by
the means of the operator mgkz: Ch(2)}), and quits the execution of the DCA (notice that a node adway
quits the algorithm execution as soon as it sendsial dnessage).

On receiving dIN(u,t);
begin
Join(u,t) := true;
if Ch(v)

1 We stipulate that the boolean conditiof$...) in the O4(u) and in the ®IN(u,t) procedures, evaluatestime when the sets
on which they are based are the empty set.

then begin
if v=t then Cluster(v) := Cluster(v) U {u};
if /\zer(v):wz<vvv(vxev Join(zx)) then EXIT
end
else if/\zer(v):wz>w\,(Ch (Z) v (Ver Join (Za X)))
then if /\ZEr(V)ZWz>WV(VXEV Join (27 X))
then begin
sendCH(V);
Cluster(v) := Cluster(v) U{v};
Ch(v) := true;
Clusterhead=v;
if /\zer(v):wz<wv(\/xev Join(z, X)) then ExIT
end
else begin
Clusterhead= maxy,{z: Ch(2)};
sendJoIN(v,Clusterhead;
EXIT
end
end;

EXAMPLE 1. Let us consider the simple ad hoc network of Figure 1 (a)timé¢ step 1 (beginning of the clustering
process) all the nodes execute thié2 procedure of the DCA. Nodes 4 and 7, being the nodes with tigebiweight

in their neighborhood, send aHGnessage, declaring that they will be clusterheads. By tHeéthe same time step,
nodes 1 and 5 receive the messagg4}, nodes 2 and 6 receive the messag€ AT and nodes 3 and 8 neither receive
nor send any message. At time step 2, by executing the proe@iureceiving @(4), nodes 1 and 5 sends messages
Join(1,4) and &IN(5,4), respectively, and quit the execution of the DCA. (Ihee not prevented to do so by any
node with weight bigger than the weight of node 4.) By the ehthe same time step, node 4 has received the two
JoIN messages from nodes 1 and 5 and, having receivednardessage from any node with weight smaller than its
own weight, quits the execution of the DCA: clus{er 1,5} is formed. By the end of time step 1 nodes 2 and 6, by
executing the procedure On receiving @), know that 7 is a neighboring clusterhead. Since them®isode in 6’s
neighborhood with weight- w7, node 6 sends the messagenN(6,7) and quits the execution of the DCA. Node 2
cannot do the same, since it has to wait for a message fromhfadkose weight is> w7). The DIN(1,4) message

is received at node 2 by the end of the second time step: sode his going to join node 4's cluster, node 2 has to
affiliate with node 7. Thus, by executing the procedure Oriréng JIN(1,4), node 2 sends the messageN(2,7).

By the end of the third time step node 7 has received a messameail the nodes with weight smaller than its own
weight and quits the execution of the DCA: clus{&; 2,6} is formed. Let us consider now node 3. By the end of
time step 2, it has received the messagan{l,4). At this time, though, node 3 cannot decide what roi dfoing to
assume, since there is still another node (node 2) with ahwbigger than its own weights that has to decide. At the
end of the third time step, node 3 finally receives the mes3ag€?2,7) and, by executing the procedure On receiving
JoIN(2,7), it realizes that all the nodes with weight bigger thitarown weight have decided to join another cluster.
Thus, it sends a &(3) message, declaring that it will be a clusterhead. By titbaf step 4 this message is received
by node 8 (by executing the procedure On receivirg3}) that, sincevs > wg and no other node with weight ws

is in its neighborhood, joins node 3's cluster by sendingniessage diN(8,3) and quits the execution of the DCA.
As soon as node 3 receives th@N message from node 8 (by executing the procedure On recelwing8,3)) it also
quits the execution of the DCA. Thus, by the end of the fiftipstiister{3,8} is formed and the DCA is correctly
terminated (see Figure 1 (b)). o

We prove now the time and message complexities of the DCAjtamdrrectness. We start by introducing

some definitions.
Let us consider thelirected acyclicgraphD = (V,E) induced onG = (V,E) by the following rule:

(v,u) € E if and only if {v,u} € E andw, < w,. Since there is an arc fromto u if and only if u's
weight is bigger than the weight of it is clear that anyath v, Vi, ...V, in D, k< n—1, is such that

7

Wy, <Wy, <.oo < Wy, - With v — u we indicate thdongest pattin D from nodev to nodeu (if any), and

with |v — u| we denote its length, i.e., the number of the arcs in the péittthere is no path irD from v
to u we definelv — u| = 0.) Let us now consider the skt= {i :i € V,w; > wy,u € I'(i)} of the init nodes

(they are all and only the nodes for which no &rw) exists inE, veV \I). Of course|| # 0. For each
nodev € V \ I, let us define the followinfplocking distancdunctionb:V \ 1 — {1,...,n— 1} such that:

v b(v) =max{|lv—i|:iel}.

The functionb is extended to the init nodes by definibgi) = max{b(v) : v I'(i)}. Notice thatb is
well defined because at least one path from | to at least one init node always exists. Intuitively, the
blocking functionb(v) indicates how many time steps nodes blocked in deciding which role it is going to
have. Finally, withD, = max{b(v) : v € V}, we indicate thédlocking diameteof the networlké Of course,
Dp < n—1. The blocking diameter of the network of Figure 1 is 5 (whigh(8), the length of the longest
path from node 8 to the init node 4 formed by nodes 8, 3, 2, 1054an

The following result is fundamental in proving the time andssage complexities of the DCA.

Proposition 1 Each node of the network sends exactly one message withiilBteps.

Proof Each node v sends at least a message withis D steps We proceed by induction do(v) = £ < Dy,

v eV, showing that ifo(v) = ¢, thenv sends either a €or a LIN message withii+ 1 steps. Leb(v) = 1.

If v €1 then the thesis trivially holds at the first stepv i |, thenv receives all the &(i) message(s),< I,

in the first step. In this case, we observe that all the neighblby that are not init nodes have weightsw,
(otherwise, a noda € I" (v) such thatv, > w, andu ¢ | has to have at least a neightmsuch thaw, > w,
and this implied(v) > 1). Thus, executing the &€procedurey sends a diN(V,i) message to the init node
with the biggest weight (and terminates) in the second step.

Let us assume now that each node with blocking dist@nde< ¢ < Dy, sends a message within- 1
steps. Letv be a node such théi(v) = £+ 1. By definition ofb, all the nodesu € I (v) with w, > w, are
such thatb(u) < £. Thus, by inductive hypothesis, they all send a messagenmti 1 steps. If all these
messages areodN messages then, withiéH- 2 stepsv sends a @ message, otherwise it sends ac@anN
message. Thus, by induction, every nadgeuch thatb(v) = £ sends a messageH®r JOIN within £+ 1
steps, K £ < Dy,

Each node v sends at most one mess&gpposer has sent a €(v) message. Then:

¢ v cannot send anotherHfv) message. The only way in whichcan send a € message are either
while executing thénit procedure or while executing thileen branch on the innermodt of the bIN
procedure. The first case is impossible becausdniigrocedure can be executed just once. The
second case is also prevented to happen becausghttw variable is set tdrue when the first &
message has been sent.

e v cannot send aQlN(v,u) message. Let us suppose thaends a diIN(v,u) message. The only case
in which this is possible is by executing thei(@)) procedurep € I'(v) (as above, th€h(v) variable
has been assigndrdue when the first & message has been sent, and this prevents the execution of
the elsebranch of the outermost). We notice that a noda € I'(v) such thatw, < w, can never
send a @G (u) message, neither using that procedure ¥ prevents it to issue such a message) nor
executing thehen branch on the innermost of the bIN procedure (node has already received the
CH(V) message, so that it is prevented to execute that branchis, Te consider a nodesuch that
Wy > Wy. In this case, we notice thatdid not send the E(v) message by executing that procedure

2 The blocking diameteby, is not to be confused with the network diameerwhich is defined as the length of the longest
among theshortestpaths. In general, there is no relation betwB&grandD.

(u prevents it to issue such a message). Therefolggs sent that message by executing ttien
branch on the innermodt of the bIN procedure. This is possible onlyvfhas received aqQlN(u, X)
messagex € V, beforereceiving the G (u) message. But this is impossible because, in this ease,
would have quit the DCA (so that it cannot send th&(@ message).

Whenv sends a IN message, it always quits the execution of the DCA. So it isossfble for it to
send another message. .

From this result we can state the time complexity of the DCA.

Corollary 1 The DCA terminates within P+ 1 steps.

Proof Proposition 1 ensures that withidy, + 1 steps every ordinary node of the ad hoc network terminates
the algorithm. This guarantees that within the same numbsieps every clusterhead also terminates the
DCA (see procedure On receivingid(u,t)). .

On the ad hoc network of Figure 1 (a) the DCA terminates (otigein 5 < Dp+ 1 = 6 time steps (see
Example 1). We notice that, having bound the time complexitthe DCA to a parametddy, that depends
on the (possibly changing) topology of the ad hoc network @®oseed to an invariant like the number
of its nodes, induces an upper bound on the DCA time compléxitt improves on th®(n) upper bound
presented in [6] in all those cases in whidh < n.2,

REMARK 1. If we consider algorithms that produce a clustering whih three properties stated in Section 2 and for
which at least a message has to be sent by each node of the'kdtveaupper bound induced by the previous corollary
cannot be improved. Indeed, it is easy to find networks in wtiie DCA needs exactl, + 1 = n steps to terminate
(e.g., consider a network that is a blocking path withodesn odd). *

The following corollary states the message complexity ef SICA.
Corollary 2 The message complexity of the DCA is n.

Corollary 3 Each node belongs exactly to a cluster.

Proof Each noder that sends a B(v) message belongs to the cluster of which it is the clustekh@a the
other hand, if a noda sends adiN(u,t) message, € I (u), then it belongs to the cluster whose clusterhead
ist. .

The previous corollary immediately implies that a node theagi a clusterhead or an ordinary node, that an
ordinary node joins only one clusterhead (no overlappingteks), that an ordinary node is only one hop
apart from the clusterhead it joins (dominance propertg, ke page 4), and thus that the diameter of a
cluster is at most two. These properties are all indepermietite weighting associated to the network. The
following proposition takes weights into account, chagsizing uniquely the DCA.

Proposition 2 A node v of an ad hoc network send€a message if and only if all its neighbors z with
w; > wy have already joined another clusterhead. A node v senitsm(v,u) message if and only if it has
at least a neighbor u with w> w, that has sent &H(u) message, all the neighbors z such thatsww,
have joined a cluster, and the other neighbors y fmvy, < w,) have sent either €H or a JOIN message.
In this case, u is guaranteed to have the biggest weight aralbmgdes that have sent@+ message.

3 We notice that, even in the caBg = n— 1, the time complexity of the proposed algorithmeisactly 0, + 1 steps, i.e., our
result in not asymptotic.

Proof Let us consider the s@&t= {z:z€ I'(v),w; > w}. If Z= 0then the thesis follows because of the Init
procedure (node sends a @(v) message). Whea # 0, then the only case in whichcan send a €(v)
message is by executing theen branch of the innermost in the IN procedure. This can happen if and
only if Azez(Vxev JOin(z x)) =true, i.e., if and only if all the nodes € I" (v), w; > wy, have already joined
a clusterhead ¢ V.

A nodev can send adIiN message if and only if it executes either the @rocedure or thelsebranch
of the innermosif of the IN procedure. In both cases it has to have received s@ssage from at least a
nodeu such thatv, > wy,, and dIN messages from all the nodes with weightsy,. In the case of theqin
procedurey has also to receive (eithe®r JOIN) messages from all those nodesuch thatw, < wy, < wu.
If the JOIN message has been sent while executing th@OQprocedureyp is guaranteed to have the biggest
weight among all the node== I (v), w, > w,, because all nodes with weightw, have already sent aN
message (otherwise,could not execute then branch of théf command). If the 3IN message has been
sent while executing thelsebranch of the innermost in the bIN procedure, the thesis is guaranteed by
the max operator. .

Corollary 4 No two clusterheads can be neighbors.

Proof Let v andu be neighboring clusterheads. Suppose, without loss ofrgktyethatw, > w,. Then,
v cannot be a clusterhead, because there exists at least dsenefghbor, namely, with w, > wy, that
has not joined another clusterheach@s already sent aHfu) message, and it cannot sendaaN) message
anymore). .

Proposition 2 and the previous corollary state the clusgeproperties 2. and 3., respectively (Section 2).
The previous results are summed up in the following theotmnhstates the correctness of the DCA.

Theorem 1 All the nodes of the network exit the execution of the algorihaving been assigned either the
role of clusterhead or the role of ordinary node so that thee¢had hoc clustering properties are satisfied.

We conclude this section by noticing that the requiremeattali the nodes initiate the DCA at the same time
is not a severe constraint. In order to “synchronize” theasooh a specific initial time it is enough that a
selected node issues a broadcast message to requestttbétbaclustering process. Broadcast algorithms
such as the one presented in [2] are suitable algorithmshisrpurpose, being completely distributed,
deterministic and mobility adaptive. In this way, it is alygaguaranteed that after a specific bounded amount
of time each node of the network knows that a clustering has bequested, and the DCA can start at each
node.

4 Distributed and Mobility-Adaptive Clustering (DMAC)

In this section we describe a distributed algorithm for thieup and the maintenance of a cluster organization
in the presence of nodes’ mobility that satisfies the threkaadclustering properties. The main difference
with the DCA presented in the previous section consistserfdiot that here we do not assume that during
the clustering process the nodes of the network need nedad natve. This makes this algorithm suitable
for both the clustering set up and its maintenance, whichnetavailable in previous solutions. Adaptation
to changes in the network topology is now made possible bpdetach node to properly “react” not only to
the reception of a message from other nodes, but also todHaittire of a link with another node (possibly
caused by a node failure, or by nodes’ movements) or to tteepoe of a new link.

10

In describing the procedures of our Distributed and Maopiidaptive Clustering (DMAC) algorithm,
we still assume that a message sent by a node is receivedtbométhin a finite time (a step) by all its
neighbors. We also assume that each node knows its own Weitgt, its role (if it has already decided to
be a clusterhead or an ordinary node) and the ID, the weighttanrole of all its neighbors (if they have
already decided their role). When a node has not yet decidhed g role is going to be, it is considered as
an ordinary node.

Except for the procedure that each node executes as soostagstthe clustering operations, as in the
case of DCA, the algorithm is message driven. Here, we useahme two types of messages used in the
DCA (namely, Gi(v) and DIN(V, u)).

In the following we use the notation fer Cluster(v), ClusterheacandCh(—) with the same meaning
that they have in Section 3. Furthermore, we assume that:

e Every node is made aware of the failure of a link, or of the @nee of a new link by a service of a
lower level (this will trigger the execution of the correspling procedure);

¢ The procedures of DMAC (M-procedures, for short) are “atgiie., they are not interruptible;

e At clustering set up or when a node is added to the networkaitgblesClusterhead Ch(—), and
Cluster(—) are initialized tonil, false and0, respectively.

The following is the description of the six M-procedures.

e Init. At the clustering set up, or when a nodés added to the network, it executes the procednitein
order to determine its own role. If among its neighbors therat least a clusterhead with bigger weight,
thenv will join it. Otherwise it will be a clusterhead. Notice thatneighbor with a bigger weight that has
not decided its role yet (this may happen at the clusteribgigeor when two or more nodes are added to
the network at the same time), will eventually send a meséagery node executes ttiait procedure). If
this message is alCmessage, thenwill affiliate with the new clusterhead.

PROCEDUREINIt;
begin
if {zel(v):w;>w, A Ch(2)} #0
then begin
X:=MaXy>w,{2: Ch(2)};
sendJOIN(V,X);
Clusterhead= x
end
else begin
sendCH(V);
Ch(v) := true;
Clusterhead=v;
Cluster(v) := {v}
end
end;

e Link failure. Whenever made aware of the failure of the link with a nadeodev checks if its own role
is clusterhead and if used to belong to its cluster. If this is the cageemovesu from Cluster(v). If vis

an ordinary node, andwas its own clusterhead, then it is necessary to determimsvaaie forv. To this

aim, v checks if there exists at least a clusterhead™ (v) such thatv, > wy. If this is the case, thenjoins

the clusterhead with the bigger weight, otherwise it bemelusterhead.

11

PROCEDURELink_failure (u);
begin
if Ch(v) and (u € Cluster(v))
then Cluster(v) := Cluster(v) \ {u}
else ifClusterhead= uthen
if {zel(v):w;>w A Ch(2)} #0
then begin
X:= maXy>w,{Z: Ch(2)};
sendJoIN(V,X);
Clusterhead= x

end
else begin
sendCH(V);
Ch(v) := true;

Clusterhead=;
Cluster(v) := {v}
end
end;

e Newlink. When noder is made aware of the presence of a new neighibdrchecks ifu is a clusterhead. If this is

the case, and ify, is bigger than the weight ofs current clusterhead, than, independently of its own, noéfiliates
with u.

PROCEDURENewlink (u);
begin
if Ch(u) then
if (Wy > Weysterhead
then begin
sendJoIN(v,u);
Clusterhead= u;
if Ch(v) then Ch(v) := false
end
end;

e On receivingCH(u). When a neighbou becomes a clusterhead, on receiving the corresponding C
message, nodechecks if it has to affiliate with, i.e., it checks whethem, is bigger than the weight ofs
clusterhead or not. In this case, independently of its otinae, v joins u’s cluster.

On receiving Gi(u);
begin
if (Wu > Welusterhead then begin
sendJOIN(v,u);
Clusterhead= u;
if Ch(v) then Ch(v) := false
end
end;

¢ On receivingJoIN(u,2). On receiving the messageidi(u,z), the behavior of node depends on whether
it is a clusterhead or not. In the affirmatiwehas to check if eitheu is joining its cluster £= v: in this case,
u is added tcCluster(v)) or if u belonged to its cluster and is now joining another clustet ¢: in this
caseu is removed fromCluster(v)). If vis not a clusterhead, it has to checkiifvas its clusterhead. Only
if this is the casey has to decide its role: It will join the biggest clusterhead its neighborhood such that
Wy > W, if such a node exists. Otherwise, it will be a clusterhead.

12

On receiving ®IN(u, 2);
begin
if Ch(v)
then if z= vthen Cluster(v) := Cluster(v) U {u}
else ifu € Cluster(v) then Cluster(v) := Cluster(v) \ {u}
else ifClusterhead= uthen
if {zel(v):w;>wy A Ch(2)} #0
then begin
X:= maxy>w,{2: Ch(2)};
sendJoIN(V,X);
Clusterhead= x

end
else begin
sendCH(V);
Ch(v) := true;

Clusterhead=v;
Cluster(v) := {v}
end
end;

We conclude this section by showing that by using the M-pitaoes we obtain and maintain for any ad hoc
network a clustering that always satisfies the ad hoc cingt@roperties listed in Section 2.

Theorem 2 Using the M-procedures, any ad hoc network is (maintaindultered in such a way that the
ad hoc clustering properties are always satisfied.

Proof We start by noticing that it is easy to check from the code efniit procedure that as soon as a node
has executed this procedure, it is always assigned a rolehvidiconsistent with the clustering properties.

We proceed by showing that by executing the M-proceduresdation to changes in the network topol-
ogy, the nodes assume/change their roles so that the adusterolg properties are always satisfied.

1. That each ordinary nodedoes not affiliate with more that one clusterhead is evidgnudticing
that anytime it sends a0IN(v,u) message its variablelusterheadis initialized (only) tou. Thatv
affiliates with at least a clusterhead derives from the faattwhen it has to decide its role and there are
clusterheads with bigger weights among its neighbors, @nvhswitch to another cluster is required,
the ordinary nodes always looks for the clusterhead with the biggest weight affilates with it.
This can be easily checked in the codes of:Itlieprocedure then branch); theLink_Failure and the
On receiving ®IN(u,2) procedures (when the link with its clusterhaais broken, or the clusterhead
u has resigned, joining another noddpoks for another clusterhead; of course, if no clusterhisad
available, it will be a clusterhead), and tNew.Link and the On receiving &u) procedures (if1 is
the new clusterhead on the block, if nodaeeds to affiliate withy, it does so by executing thhen
branch of the innermost). Thus, there is no case in which an ordinary nedemains without a
clusterhead.

2. At the clustering set up, or when a node is added to thea@relustered) network, or when its
current clusterhead moves away, a node always affiliatdstindt clusterhead with the biggest weight
(if there is no such clusterhead, it will become a clustedhtslf), so that the second ad hoc clustering
property is always satisfied (see the code of procedumiesLink_Failure, On receiving ®IN). The
other cases to consider are when an ordinary naitches from a cluster to another, or wheis a
clusterhead that resigns to join the cluster of a new neighpp@lusterhead. In these cases, the second

13

property is guaranteed by the proceduresnLink and On Receiving €, where nodes switches to
u's cluster only ifw, > Weysterhead

3. Each time a node becomes a clusterhead, i.e., it tranan@its message (see thlasebranch of the
if in the Init procedure, theelsebranch of the innermost if in theink_Failure procedure, and the
same branch in the On receivingId procedure), it does so because there is no other neighboring
clusterhead with which it can affiliate. The other cases thatain to be checked are when either
a clusterhead has one of its neighbors that becomes a clusterhead, ortartlead moves into its
neighborhood, and the weight of the new neighbor does noefoto affiliate with it. In both these
cases, the third ad hoc clustering property is guaranteedebgxecution of thelsebranch

Thus, the three properties for ad hoc clustering are alwatysfied. .

5 Conclusions

This paper presented two distributed algorithms, DCA anddOMfor the efficient partitioning of the the
nodes of an ad hoc wireless network into clusters with a ethstad and some ordinary nodes. This is a
practically important task, especially for all those netkvalgorithms/applications that assume a mobility-
adaptive hierarchical organization of the network. A nevightebased criterium is introduced for the cluster
formation that allows the choice of the clusterheads basetwde mobility-related parameters, not available
in previous clustering algorithms. The proposed algorghmaeds only knowledge of the local topology at
each node (one hop neighbors), and allows each ordinarytoddee direct access to at least a clusterhead,
thus guaranteeing fast inter- and intra-cluster commutioicdoetween each pair of nodes. The DCA is easy
to implement and its time complexity is proven to be boundga betwork parameter that depends on the
possibly changing topology of the ad hoc network rather tan, the invariant size of the network. The
DMAC combines easiness of implementation with full addptato the mobility of the nodes, even during
clustering set up.

References

[1] BAKER, D. J., EPHREMIDES A., AND FLYNN, J. A. The design and simulation of a mobile radio
network with distributed controlEEE Journal on Selected Areas in Communications SAC(Zanuary
1984), 226-237.

[2] BASAGNI, S.,AND CHLAMTAC, |. Broadcast in peer-to-peer networks.Rroceedings of the Second
IASTED International Conference European Parallel andtiilisited Systems, Euro-PDS'§®ienna,
Austria, July 3-5 1998), O. Bukhres and H. EI-Rewini, Edp., i 7-122.

[3] EPHREMIDES A., WIESELTHIER, J. E.,AND BAKER, D. J. A design concept for reliable mobile radio
networks with frequency hopping signalingroceedings of the IEEE 73 (January 1987), 56—73.

[4] GERLA, M., AND LIN, C. R. Multimedia transport in multihop dynamic packet madietworks. In
Proceedings of International Conference on Network Prol®€Tokyo, Japan, 7—10 November 1995),
pp. 209-216.

[5] GERLA, M., AND TsAl, J. T.-C. Multicluster, mobile, multimedia radio netwoM/ireless Networks
1, 3 (1995), 255-265.

14

[6] LIN, C. R.,AND GERLA, M. Adaptive clustering for mobile wireless network¥ournal on Selected
Areas in Communications 13 (September 1997), 1265-1275.

15

