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Abstract - A distributed algorithm is presented 
that partitions the nodes of a fully mobile network 
(multi-hop network) into clusters, thus giving the net- 
work a hierarchical organization. The algorithm is 
proven to be adaptive to changes in the network 
topology due to nodes’ mobility and to nodes addi- 
tion/removal. A new weight-based mechanism is intro- 
duced for the efficient cluster formation/maintenance 
that allows the cluster organization to be configured for 
specific applications and adaptive to changes in the net- 
work status, not available in previous solutions. Specif- 
ically, new and flexible criteria are defined that allow 
the choice of the nodes that coordinate the cluster- 
ing process based on mobility parameters and/or their 
current status. Simulation results are provided that 
demonstrate up to an 85% reduction on the commu- 
nication overhead associated with the cluster mainte- 
nance with respect to techniques used in clustering al- 
gorithms previously proposed. 

I. INTRODUCTION 
In this paper we introduce a distributed and mobility- 
adaptive protocol that partitions the nodes of a multi- 
hop wireless network, i.e., a wireless network in which 
possibly all nodes can be mobile, into groups (clusters), 
thus giving the network a hierarchical organization. 

The notion of cluster organization, often called clus- 
tering, has been used for multi-hop networks since their 
appearance (when these networks were often called 
“multi-hop packet radio networks,” see, e.g., [I, 21). 
With the advent of multimedia communications, the 
use of the cluster architecture for multi-hop networks 
has been revisited by Gerla et. al. [3, 41. Clustering 
has also been proven effective in supporting quality of 
service in multi-bop networks, as well as location proce- 
dures and virtual circuit management (see [5], where ex- 
tensive references can also be found). It is thus impor- 
tant to define efficient clustering algorithms that meet 
the requirements of multimedia applications in multi- 
hop networks while imposing the minimum clustering 
management overhead due to network mobility. 

Previous solutions for clustering a multi-hop uet- 
work usually perform the clustering in two phases: clus- 
tering set up and clustering maintenance. The first 
phase is accomplished by choosing some nodes that act 
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as coordinators of the clustering process (clusterheads). 
Then a cluster is formed by associating a clusterhead 
with some of its neighbors (i.e., nodes within the clus- 
terhead’s transmission range) that become the ordinary 
nodes of the cluster. A common assumption for the set 
up phase is that the nodes do not move while the clus- 
ter formation is in progress. This is a major drawback, 
since in real situations, no assumptions can be made on 
the mobility of the nodes. 

Once the nodes are partitioned into clusters, the 
non mobility assumption is released, and techniques are 
described on how to maintain the cluster organization 
in the presence of mobility (clustering maintenance). 
Among these techniques, some are baaed on a periodi- 
cal reorganization of the clusters [l]. Of course, during 
the re-clustering process the network cannot rely on 
the cluster organization. Thus, this is a feasible solu- 
tion only when the network does not need too many 
reorganizations (or when the network is not mobile). 
Other techniques (such as, e.g., the one used in [3]) 
need each node to know the identity of its neighbors up 
to two hops, which increases the overhead due to clus- 
tering maintenance. Moreover, the obtained clustering 
has different properties with respect to the initial one. 

In [6] a distributed clustering algorithm is presented 
that overcomes the above mentioned limitations and 
that is suitable for both the clustering set up and 
maintenance. The Distributed and Mobility-Adaptive 
Clustering (DMAC) algorithm generalizes existing so- 
lutions by allowing the selection of the clusterheads 
based on nodes’ mobility-related parameters expressed 
by generic weights associated to each node (instead of 
using a node’s identifier or the number of its current 
neighbors). The idea is that with the weights we can 
express bow suitable a node is for the role of cluster- 
head given its own current status: The bigger a node’s 
weight, the more suitable it is for the role of cluster- 
head. (Of course, weights can change in time, reflect- 
ing the changing conditions in a node’s status.) Simi- 
lar to existing solutions, however, the clusterheads are 
bound to never be neighbors. This implies that, when 
due to the mobility of the nodes two or more cluster- 
heads become neighbors, those with the smaller weights 
have to resign and affiliate with the now bigger neigh- 
boring clusterhead. Furthermore, when a clusterhead 
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w becomes the neighbor of an ordinary node U w,hose 
current clusterhead has weight smaller than w’s weight, 
U has to affiliate with (i.e., switch to the cluster of) w .  
These “resignation” and “switching” processes due to 
nodes’ mobility are a consistent part of the clustering 
management overhead that should be minimized. 

In this paper we introduce a generalization of the 
DMAC protocol that aims to overcome the DMAC lim- 
itations while retaining its desirable properties. In par- 
ticular, as for the DMAC algorithm, in our Generalized 
DMAC (G-DMAC): 

Nodes can move, even during the clustering set up. 
A node decides its owu role (clusterhead or ordinary 

node) solely knowing its current one hop neighbors. 
Furthermore, for G-DMAC we also obtain the following 
properties: 

The number of clusterheads that are allowed to be 
neighbors is a parameter of the algorithm (degree of 
independence), and: 

A new weight-based criterion is defined that allows 
the nodes to decide whether to  change (switch) its role 
or not depending on the current condition of the net- 
work. 
The last two properties introduce the possibility for G- 
DMAC to be configured for the specific multi-hop net- 
work in which it operates. Indeed, two or more clus- 
terheads should be allowed to be neighbors depending 
on specific network conditions and applications. The 
same reasoning applies when an ordinary node becomes 
a neighbor of another clusterhead: the criterion with 
which it chooses whether to  affiliate with the new neigh- 
boring clusterhead or not should depend again on the 
current conditions of the network, and on the specific 
applications that use the cluster organization. 

We demonstrate the advantage of our new weight- 
based setting by presenting simulation results that com- 
pare G-DMAC with a “lowest ID first” algorithm based 
on the one presonted in. 131. We show up to 85% 
reduction on the communication overhead associated 
with cluster management overhead (measured, as men- 
tioned, in terms of the number of reafiliations and elec- 
tions of new clusterheads due to nodes’ mobility). 

In the rest of this section we give some basic defini- 
tions that are used throughout the paper. We model a 
multi-hop network by an undirected graph G = (V, E )  
in which V ,  IV/ = n, is the set of (wireless) nodes and 
there is an edge {U, U }  E E if and only if U and v can 
mutually receive each others’ transmission. In this case 
we say that U and w are neighbors. The set of the neigh- 
bors of a node w E V will be denoted by r(w). Due to 
mobility, the graph can change in time. 

Every node w in the network is assigned a unique 
identifier (ID). For simplicity, here we identify each 
node with its ID and we denote both with U .  Finally, 
we consider weighted networks, i.e., a weight wv (a real 
number 2 0). is assigned to each node w E V of the 
network. For the sake of simplicity, in this paper we 
stipulate that each node has a different weight. 

Clustering a multi-hop network means partitioning 
its nodes into clusters, each one with a clusterhead and 
(possibly) some ordinary nodes. The choice of the clus- 
terheads here is based on the weight associated to each 
node: the bigger the weight of a node, the better that 
node for the role of clusterhead. The process of clus- 
ter formation/maintenance is continuously executed at 
each node, and each node decides its own role so that 
the following three requirements (that we call “multi- 
hop clustering properties”) are satisfied: 
1. Every ordinary node always affiliates with (only) one 
clusterhead. 
2. For every ordinary node w there is no clusterhead 
u E r(w) such that w, > WClusterhead + h, where 
Clusterhead indicates the current clusterhead of w .  
3. A clusterhead cannot have more than k neighboring 
clusterheads (k being an integer, 0 5 IC < n). 
Requirement number 1. ensures that each ordinary 
node has direct access to  at least one clusterhead (the 
one of the cluster to which it belongs), thus allowing 
fast intra- and inter-cluster communications. The sec- 
ond requirement guarantees that each ordinary node 
always stays with a clusterhead that can give it a “guar- 
anteed good” service. By varying the threshold para- 
meter h (a real number 2 0) it is possible to reduce 
the communication overhead associated to  the passage 
of an ordinary node from its current clusterhead to a 
new neighboring one when it is not necessary. Finally, 
requirement number 3. allows us to have the number of 
clusterheads that can be neighbors as a parameter of 
the algorithm. This, as seen for requirement number 
2., and as will be demonstrated by the use of simula- 
tions, allows us to consistently reduce the communica- 
tion overhead due to the change of role of nodes. 
The rest of the paper is organized as follows. In the 
next section we describe the G-DMAC algorithm in de- 
tails and we prove that the multi-hop clustering prop- 
erties are always satisfied. The paper concludes with 
simulation results. 

11. GENERALIZED DISTRIBUTED 
MOBILITY-ADAPTIVE CLUSTE- 
RING (G-DMAC) 

In this section we describe a distributed algorithm for 
the set up and the maintenance of a cluster organiza- 
tion in the presence of nodes’ mobility that satisfies the 
three properties listed in the previous section. 
We start by making the following two common assump- 
tions: 
1. A message sent by a node is received correctly within 
a finite time (a s t e p )  by all its neighbors. 
2. Each node knows its own ID, its weight, its role (if 
it has already decided its role: either a clusterhead or 
an ordinary node) and the ID, the weight and the role 
of all its neighbors (if they have already decided their 
role). When a node has not yet decided what its role 
is going to be, it is considered as an ordinary node. 
The algorithm is executed at each node in such a way 
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that at a certain time a node U decides (to change) 
its role. This decasion is entirely based on the decision 
(i.e., the role) of the nodes U E r(u) such that w, > w,. 

Except for the initial procedure, the algorithm is 
message driven: a specific procedure will be executed 
at a node depending on the reception of the correspond- 
ing message. We use three types of messages that are 
exchanged among the nodes: CH(V), used by a node 
U E V to make its neighbors aware that it is going to be 
a clusterhead, JOIN(U, U ) ,  with which a node U commu- 
nicates to its neighbors that it will be part of the clus- 
ter whose clusterhead is node U E r ( u ) ,  U, U E V ,  and 
RESIGN(W) that notifies a clusterhead whose weight is 
5 w that it has to resign its role. In the discussion 
below we use the following notation: 
* w, the generic node executing the algorithm (from now 
on we will assume that U encodes not only the node’s 
ID but also its weight wv); 

Cluster(v), the set of nodes in U’S cluster. It is initial- 
ized to 0, and it is updated only if U is a clusterhead; 

Clusterhead, the variahle in which every node records 
the (ID of the) clusterhead that it joins. It is initialized 
to nil; 
Furthermore: 
* Every node is made aware of the failure of a link, or 
of the presence of a new link by a service of a lower 
level (this will trigger the execution of a corresponding 
procedure). 

The procedures of G-DMAC (M-procedures, for 
short) are “atomic,” i.e., they are not interruptible. 
The following two rules define how the nodes as- 
sume/change their roles adapting to changes in the net- 
work topology. 
1. Each time a node U moves into the neighborhood of 
a clusterhead u with a bigger weight, we require that U 
switches to U’S cluster only if w, > wclusterhead + h, 
where Clusterhead is the clusterhead of U (it can be w 
itself) and h is a real number 2 0. This should happen 
independently of the current role of U. With this rule 
we want to model the fact that we incur the switch- 
ing overhead only when it is really convenient. When 
h = 0 we simply obtain that each ordinary nodes affili- 
ates with the neighboring clusterhead with the biggest 
weight. 
2. We allow a clusterhead U to have up to k neighboring 
clusterheads, 0 5 k < n. We call this condition the k- 
neighborhood condition. Choosing k = 0 we obtain 
that no two clusterheads can be neighbors (maximum 
degree of independence). 
The parameters h and k can be different from node 
to node, and they can vary in time. This allows G- 
DMAC to self-confignre dynamically in order to meet 
the specific needs of upper layer applications/protocols 
that requires an underlying clustering organization. At 
the same time, different values of h and k allow our 
algorithm to take into account dynamically changing 
network conditions, such as the network connectivity 
(related to the averagenodal degree, i.e., to the average 

number of the neighbors of the nodes), variations in the 
rate of the mobility of the nodes, etc. Notice that the 
case with h = k = 0 corresponds to the DMAC protocol 
introduced in [6]. 

The following is the informal description of the six M- 
procedures. Details and pseudo codes can be found in 

Init. At the clustering set up, or when a node U is 
added to the network, it executes the procedure Init in 
order to determine its own role. If among its neighbors 
there is at least a clusterhead with bigger weight, then 
w will join it. Otherwise it will be a clusterhead. In 
this case, the new clusterhead U has to check the num- 
ber of its neighbors that are already clusterheads. If 
they exceed k, then a RESIGN message is also transmit- 
ted, bearing the weight of the first clusterhead (namely, 
the one with the (k + 1)th biggest weight) that violates 
the k-neighborhood condition. On receiving a message 
RESIGN(W), every clusterhead U such that wu 5 w will 
resign. Notice that a neighbor with a bigger weight that 
has not decided its role yet (this may happen at the 
clustering set up, or when two or more nodes are added 
to the network at the same time), will eventually send 
a message (every node executes the Init procedure). If 
this message is a CH message, then U could possihly 
resign (after receiving the corresponding RESIGN mes- 
sage) or affiliate with the new clusterhead. 

Linkfailure. Whenever made aware of the failure of 
the link with a node U, node U checks if its own role 
is clusterhead and if U used to belong to its cluster. 
If this is the case, U removes u from Cluster(u). If U 
is an ordinary node, and u was its own clusterhead, 
then it is necessary to determine a new role for U. To 
this aim, U checks if there exists at least a clusterhead 
z E r ( u )  such that w, > w.. If this is the case, then 
U joins the clusterhead with the bigger weight, other- 
wise it becomes a clusterhead. As in the case of the 
Inat procedure, a test on the number of the neighboring 
clusterheads is now needed, with the possible resigning 
of some of them. 

Nemlink. When node w is made aware of the pres- 
ence of a new neighbor U ,  it checks if U is a clusterhead. 
If this is the case, and if wu is bigger than the weight 
of U ’ S  current clusterhead plus the threshold h, than, 
independently of its own role, U affiliates with U. Oth- 
erwise, if U itself is a clusterhead, and the number of its 
cnrrent neighboring clusterheads is > k then the weight 
of the clusterhead x that violates the k-neighborhood 
condition is determined. If wy > wI then node 2 has 
to resign, otherwise, if no clusterhead x exists with a 
weight smaller than U’S weight, w can no longer be a 
clusterhead, and it will join the neighboring cluster- 
head with the biggest weight. 

On receiving CH(u). When a neighbor U becomes a 
clusterhead, on receiving the corresponding CH mes- 
sage, node U checks if it has to affiliate with U ,  i.e., 
it checks whether w, is bigger than the weight of 1)’s 

171. 
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clusterhead plus the threshold h or not. In this case, in- 
dependently of its current role, v joins U’S cluster. Oth- 
erwise, if 2) is a clusterhead with more than k neighbors 
which are clusterheads, as in the case of a new link, 
the weight of the clusterhead z that violates the k- 
neighborhood condition is determined, and correspond- 
ingly the clusterhead with the smallest weight will re- 
sign. 

On receiving JOIN(U,I). On receiving the message 
JOIN(U,Z), the behavior of node v depends on whether 
it is a clusterhead or not. In the affirmative, v has to 
check if either U is joining its cluster (z  = U: in this 
case, U is added to Cluster(w)) or if U belonged to its 
cluster and is now joining another cluster (2 # v: in 
this case, U is removed from Cluster(u)). If w is not 
a clusterhead, it has to check if U was its clusterhead. 
Only if this is the case, v has to decide its role: It will 
join the biggest clusterhead z in its neighborhood such 
that w, > wv if such a node exists. Otherwise, it will be 
a clusterhead. In this latter case, if the k-neighborhood 
condition is violated, a RESIGN message is transmitted 
in order for the clusterhead with the smallest weight in 
w’s neighborhood to resign. 

On receiving RESIGN(W). On receiving the message 
RESIGN(W), node U checks if its weight is 5 w. In this 
case, it has to resign and it will join the neighboring 
clusterhead with the biggest weight. Notice that since 
the M-procedures are supposed to be not interruptible, 
and since w could have resigned already, it has also to 
check if it is still a clusterhead. 

We conclude this section by showing that by using the 
M-procedures we obtain and maintain for any multi- 
hop network a clustering that always satisfies the multi- 
hop clustering properties listed in the Introduction (a 
more detailed proof based on the actual procedure 
pseudo-code can be found in [7]). 

Theorem 1 Using the M-procedures, any multi-hop 
network is clustered in such a way that the multi-hop 
clustering properties al~e always satisfied. 
Proof We start by noticing that as soon as a node has 
executed the Init procedure as described above, it is al- 
ways assigned a role which is consistent with the clus- 
tering properties. We then proceed by showing that by 
executing the M-procedures in reaction to changes in 
the network topology, the nodes assume/change their 
roles so that the multi-hop clustering properties are al- 
ways satisfied. 
1. That each ordinary node w does not affiliate with 
more that one clusterhead is evident by noticing that 
anytime it sends a JOIN(IJ,U) message its variable 
Clusterhead is initialized (only) to U. That v affili- 
ates with at least a clusterhead derives from the fact 
that when it has to decide its role and there are clus- 
terheads with bigger weights among its neighbors, or 
when a switch to another cluster is required, the ordi- 
nary node v always looks for the clusterhead with the 
biggest weight and affiliates with it. Thus, there is no 

case in which an ordinary node v remains without a 
clusterhead. 
2. At the clustering set up, or when a node is added 
to the (already clustered) network, or when its current 
clusterhead either resigns or moves away, or, finally, 
when it is forced to resign, a node always affiliates with 
the clusterhead with the biggest weight (if there is no 
such clusterhead, it will become a clusterhead itself), so 
that the second multi-hop clustering property is always 
satisfied. The other cases to consider are when an ordi- 
nary node w switches from a cluster to another, or when 
v is a clusterhead that resigns to join the cluster of a 
new neighboring clusterhead. In these cases, the second 
property is guaranteed by the procedures New-Lznk and 
On Receiving CH, where node v switches to U’S cluster 
only if W u  
3. Each time a node becomes a clusterhead, i.e., it 
transmits a CH message, it does so because there is 
no other neighboring clusterhead with which it can af- 
filiate. In this case, it always checks if it has more 
than k neighboring clusterheads, and if this is the case, 
it decides (on a weight basis) the clusterheads thdt 
have to resign. When these clusterheads receive the 
corresponding message RESIGN, they have no choice 
but to resign, joining the clusterhead with the biggest 
weight around them. The other cases that remain to be 
checked are when either a clusterhead v has one of iCs 
neighbors that becomes a clusterhead, or a clusterhead 
moves into its neighborhood, and the weight of the new 
neighbor does not force li to affiliate with it. In both 
these cases, the third multi-hop clustering property 1s 
guaranteed by checking if, upon the arrival of a nepr 
clusterhead, the k-neighborhood condition is violated. 
If this is the case, the clusterhead with the minimum 
weight is determined, and the corresponding RESIGN 
message is transmitted. 

wCl&erhead f h. 

111. SIMULATION RESULTS 
Here we demonstrate by the use of simulations that G- 
DMAC achieves substantial improvements with respect 
to algorithms based on techniques for the selections of 
the clusterheads introduced in earlier works. 

We simulated our algorithm by placing n = 30 
nodes randomly on a grid of size 100 x 100. The speed 
s, and the power p, of every node w are given in grid 
units. Two nodes w and U in the network are neigh- 
bors if the Euclidean distance dg between their coor- 
dinates in the grid is less than the minimum between 
their transmission radii (i.e., d,(w, U) < min{p,,p,}). 

At every tick of the simulation clock, each node 
determines its direction randomly, by choosing it uni- 
formly between 0 and 2n. Each node will then move 
in that direction according to its current speed. When 
a node reaches the bounds of the grid, it bounces back 
with an angle determined by the incoming direction. 

We define the stability of a mobility-adaptive clus- 
tering algorithm in terms of the number of elections 
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Table 1 G-DMAC vs. “lowest ID first:” min-max percentage gain in networks with 30 nodes. 

and reafiliations per tick. An election occurs all the 
times that, due to a change in the topology of the net- 
work, either an ordinary node or a node that becomes 
alive decides to be a clusterhead. We have a reaffili- 
ation when either an ordinary node or a clusterhead, 
or a node that becomes alive, affiliates as an ordinary 
node with a newly close clusterhead. 

G-DMAC is compared here with the clustering algo- 
rithm based on the “lowest ID first” approach presented 
in [3, 41. In this algorithm the node with the minimum 
ID in its current neighborhood is chosen as a cluster- 
head. Since in (41 it is shown that the “lowest ID first” 
clustering is always more stable than the clustering ob- 
tained following a “largest degree first” approach, we 
do not consider the latter one. 

In the first set of simulations the weight associated 
to a node represents its speed:,the slower a node is, the 
better it is for the role of clusterhead. We define the 
weight of the node v by wy = zf l -s , ,  where the speed 
sy is chosen uniformly in [l,z], z E [1,100]. In this way, 
for each z, the nodes that are moving at lower speed are 
assigned bigger weights. The percentage gains obtained 
for elections and reaffiliations by G-DMAC with respect 
to the ‘9owest ID first” algorithm when all the nodes 
v E V have constant power p ,  = 30 and p ,  = 40 are 
shown in Table 1 for four different values of k. The 
choice of these two values for the power is motivated 
by the fact that with values between 30 and 40 the 
network is always guaranteed to be connected. 

In the other set of simulations, weights represent 
nodes’ transmission power: the bigger the power of a 
node, the better that node for the role of clusterhead. 
If z E [10,100] indicates the maximum transmission 
power, we initialize each node with a power p, cho- 
sen with uniform distribution in the range [5,z]. The 
weight of the node v is then wv = p ,  (in this way, for 
each z, the nodes with the bigger transmission pow- 
ers are assigned bigger weights). The third and fourth 
rows of Table 1 show the percentage gains for elections 
and reaffiliations when the speed sy of each node v E V 
varies in the range [0,6] and it is constantly = 6, re- 
spectively. 

In all the simulations h = uma*;um*a, where 
ymln = 1 for the simulations with variable speed and 
ymln = 5 for the simulations with variable power, and 

urnas = I. The confidence level of our results is 95% 
and their precision is 5%. 
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