
Distributed and Mobility-Adaptive Clustering for
Multimedia Support in Multi-Hop Wireless Networks

Stefan0 Basagni

Center for Advanced Telecommunications Systems and Services (CATSS)
Erik Jonsson School of Engineering and Computer Science

The University of Texas at Dallas
e-mail: b a s a g n i m u t d a l l a s . edu

Abstract - A distributed algorithm is presented
that partitions the nodes of a fully mobile network
(multi-hop network) into clusters, thus giving the net-
work a hierarchical organization. The algorithm is
proven to be adaptive to changes in the network
topology due to nodes’ mobility and to nodes addi-
tion/removal. A new weight-based mechanism is intro-
duced for the efficient cluster formation/maintenance
that allows the cluster organization to be configured for
specific applications and adaptive to changes in the net-
work status, not available in previous solutions. Specif-
ically, new and flexible criteria are defined that allow
the choice of the nodes that coordinate the cluster-
ing process based on mobility parameters and/or their
current status. Simulation results are provided that
demonstrate up to an 85% reduction on the commu-
nication overhead associated with the cluster mainte-
nance with respect to techniques used in clustering al-
gorithms previously proposed.

I. INTRODUCTION
In this paper we introduce a distributed and mobility-
adaptive protocol that partitions the nodes of a multi-
hop wireless network, i.e., a wireless network in which
possibly all nodes can be mobile, into groups (clusters),
thus giving the network a hierarchical organization.

The notion of cluster organization, often called clus-
tering, has been used for multi-hop networks since their
appearance (when these networks were often called
“multi-hop packet radio networks,” see, e.g., [I, 21).
With the advent of multimedia communications, the
use of the cluster architecture for multi-hop networks
has been revisited by Gerla et. al. [3, 41. Clustering
has also been proven effective in supporting quality of
service in multi-bop networks, as well as location proce-
dures and virtual circuit management (see [5], where ex-
tensive references can also be found). It is thus impor-
tant to define efficient clustering algorithms that meet
the requirements of multimedia applications in multi-
hop networks while imposing the minimum clustering
management overhead due to network mobility.

Previous solutions for clustering a multi-hop uet-
work usually perform the clustering in two phases: clus-
tering set up and clustering maintenance. The first
phase is accomplished by choosing some nodes that act

0-7803-5435-4/99/510.W 0 1999 E3EE

as coordinators of the clustering process (clusterheads).
Then a cluster is formed by associating a clusterhead
with some of its neighbors (i.e., nodes within the clus-
terhead’s transmission range) that become the ordinary
nodes of the cluster. A common assumption for the set
up phase is that the nodes do not move while the clus-
ter formation is in progress. This is a major drawback,
since in real situations, no assumptions can be made on
the mobility of the nodes.

Once the nodes are partitioned into clusters, the
non mobility assumption is released, and techniques are
described on how to maintain the cluster organization
in the presence of mobility (clustering maintenance).
Among these techniques, some are baaed on a periodi-
cal reorganization of the clusters [l]. Of course, during
the re-clustering process the network cannot rely on
the cluster organization. Thus, this is a feasible solu-
tion only when the network does not need too many
reorganizations (or when the network is not mobile).
Other techniques (such as, e.g., the one used in [3])
need each node to know the identity of its neighbors up
to two hops, which increases the overhead due to clus-
tering maintenance. Moreover, the obtained clustering
has different properties with respect to the initial one.

In [6] a distributed clustering algorithm is presented
that overcomes the above mentioned limitations and
that is suitable for both the clustering set up and
maintenance. The Distributed and Mobility-Adaptive
Clustering (DMAC) algorithm generalizes existing so-
lutions by allowing the selection of the clusterheads
based on nodes’ mobility-related parameters expressed
by generic weights associated to each node (instead of
using a node’s identifier or the number of its current
neighbors). The idea is that with the weights we can
express bow suitable a node is for the role of cluster-
head given its own current status: The bigger a node’s
weight, the more suitable it is for the role of cluster-
head. (Of course, weights can change in time, reflect-
ing the changing conditions in a node’s status.) Simi-
lar to existing solutions, however, the clusterheads are
bound to never be neighbors. This implies that, when
due to the mobility of the nodes two or more cluster-
heads become neighbors, those with the smaller weights
have to resign and affiliate with the now bigger neigh-
boring clusterhead. Furthermore, when a clusterhead

889 VTC ‘99

w becomes the neighbor of an ordinary node U w,hose
current clusterhead has weight smaller than w’s weight,
U has to affiliate with (i.e., switch to the cluster of) w .
These “resignation” and “switching” processes due to
nodes’ mobility are a consistent part of the clustering
management overhead that should be minimized.

In this paper we introduce a generalization of the
DMAC protocol that aims to overcome the DMAC lim-
itations while retaining its desirable properties. In par-
ticular, as for the DMAC algorithm, in our Generalized
DMAC (G-DMAC):

Nodes can move, even during the clustering set up.
A node decides its owu role (clusterhead or ordinary

node) solely knowing its current one hop neighbors.
Furthermore, for G-DMAC we also obtain the following
properties:

The number of clusterheads that are allowed to be
neighbors is a parameter of the algorithm (degree of
independence), and:

A new weight-based criterion is defined that allows
the nodes to decide whether to change (switch) its role
or not depending on the current condition of the net-
work.
The last two properties introduce the possibility for G-
DMAC to be configured for the specific multi-hop net-
work in which it operates. Indeed, two or more clus-
terheads should be allowed to be neighbors depending
on specific network conditions and applications. The
same reasoning applies when an ordinary node becomes
a neighbor of another clusterhead: the criterion with
which it chooses whether to affiliate with the new neigh-
boring clusterhead or not should depend again on the
current conditions of the network, and on the specific
applications that use the cluster organization.

We demonstrate the advantage of our new weight-
based setting by presenting simulation results that com-
pare G-DMAC with a “lowest ID first” algorithm based
on the one presonted in. 131. We show up to 85%
reduction on the communication overhead associated
with cluster management overhead (measured, as men-
tioned, in terms of the number of reafiliations and elec-
tions of new clusterheads due to nodes’ mobility).

In the rest of this section we give some basic defini-
tions that are used throughout the paper. We model a
multi-hop network by an undirected graph G = (V, E)
in which V , IV/ = n, is the set of (wireless) nodes and
there is an edge {U, U } E E if and only if U and v can
mutually receive each others’ transmission. In this case
we say that U and w are neighbors. The set of the neigh-
bors of a node w E V will be denoted by r(w). Due to
mobility, the graph can change in time.

Every node w in the network is assigned a unique
identifier (ID). For simplicity, here we identify each
node with its ID and we denote both with U . Finally,
we consider weighted networks, i.e., a weight wv (a real
number 2 0). is assigned to each node w E V of the
network. For the sake of simplicity, in this paper we
stipulate that each node has a different weight.

Clustering a multi-hop network means partitioning
its nodes into clusters, each one with a clusterhead and
(possibly) some ordinary nodes. The choice of the clus-
terheads here is based on the weight associated to each
node: the bigger the weight of a node, the better that
node for the role of clusterhead. The process of clus-
ter formation/maintenance is continuously executed at
each node, and each node decides its own role so that
the following three requirements (that we call “multi-
hop clustering properties”) are satisfied:
1. Every ordinary node always affiliates with (only) one
clusterhead.
2. For every ordinary node w there is no clusterhead
u E r(w) such that w, > WClusterhead + h, where
Clusterhead indicates the current clusterhead of w .
3. A clusterhead cannot have more than k neighboring
clusterheads (k being an integer, 0 5 IC < n).
Requirement number 1. ensures that each ordinary
node has direct access to at least one clusterhead (the
one of the cluster to which it belongs), thus allowing
fast intra- and inter-cluster communications. The sec-
ond requirement guarantees that each ordinary node
always stays with a clusterhead that can give it a “guar-
anteed good” service. By varying the threshold para-
meter h (a real number 2 0) it is possible to reduce
the communication overhead associated to the passage
of an ordinary node from its current clusterhead to a
new neighboring one when it is not necessary. Finally,
requirement number 3. allows us to have the number of
clusterheads that can be neighbors as a parameter of
the algorithm. This, as seen for requirement number
2., and as will be demonstrated by the use of simula-
tions, allows us to consistently reduce the communica-
tion overhead due to the change of role of nodes.
The rest of the paper is organized as follows. In the
next section we describe the G-DMAC algorithm in de-
tails and we prove that the multi-hop clustering prop-
erties are always satisfied. The paper concludes with
simulation results.

11. GENERALIZED DISTRIBUTED
MOBILITY-ADAPTIVE CLUSTE-
RING (G-DMAC)

In this section we describe a distributed algorithm for
the set up and the maintenance of a cluster organiza-
tion in the presence of nodes’ mobility that satisfies the
three properties listed in the previous section.
We start by making the following two common assump-
tions:
1. A message sent by a node is received correctly within
a finite time (a s t e p) by all its neighbors.
2. Each node knows its own ID, its weight, its role (if
it has already decided its role: either a clusterhead or
an ordinary node) and the ID, the weight and the role
of all its neighbors (if they have already decided their
role). When a node has not yet decided what its role
is going to be, it is considered as an ordinary node.
The algorithm is executed at each node in such a way

0.7803-5435-4/99/$10.W 0 1999 IEEE 890 VTC ‘99

that at a certain time a node U decides (to change)
its role. This decasion is entirely based on the decision
(i.e., the role) of the nodes U E r(u) such that w, > w,.

Except for the initial procedure, the algorithm is
message driven: a specific procedure will be executed
at a node depending on the reception of the correspond-
ing message. We use three types of messages that are
exchanged among the nodes: CH(V), used by a node
U E V to make its neighbors aware that it is going to be
a clusterhead, JOIN(U, U) , with which a node U commu-
nicates to its neighbors that it will be part of the clus-
ter whose clusterhead is node U E r (u) , U, U E V , and
RESIGN(W) that notifies a clusterhead whose weight is
5 w that it has to resign its role. In the discussion
below we use the following notation:
* w, the generic node executing the algorithm (from now
on we will assume that U encodes not only the node’s
ID but also its weight wv);

Cluster(v), the set of nodes in U’S cluster. It is initial-
ized to 0, and it is updated only if U is a clusterhead;

Clusterhead, the variahle in which every node records
the (ID of the) clusterhead that it joins. It is initialized
to nil;
Furthermore:
* Every node is made aware of the failure of a link, or
of the presence of a new link by a service of a lower
level (this will trigger the execution of a corresponding
procedure).

The procedures of G-DMAC (M-procedures, for
short) are “atomic,” i.e., they are not interruptible.
The following two rules define how the nodes as-
sume/change their roles adapting to changes in the net-
work topology.
1. Each time a node U moves into the neighborhood of
a clusterhead u with a bigger weight, we require that U
switches to U’S cluster only if w, > wclusterhead + h,
where Clusterhead is the clusterhead of U (it can be w
itself) and h is a real number 2 0. This should happen
independently of the current role of U. With this rule
we want to model the fact that we incur the switch-
ing overhead only when it is really convenient. When
h = 0 we simply obtain that each ordinary nodes affili-
ates with the neighboring clusterhead with the biggest
weight.
2. We allow a clusterhead U to have up to k neighboring
clusterheads, 0 5 k < n. We call this condition the k-
neighborhood condition. Choosing k = 0 we obtain
that no two clusterheads can be neighbors (maximum
degree of independence).
The parameters h and k can be different from node
to node, and they can vary in time. This allows G-
DMAC to self-confignre dynamically in order to meet
the specific needs of upper layer applications/protocols
that requires an underlying clustering organization. At
the same time, different values of h and k allow our
algorithm to take into account dynamically changing
network conditions, such as the network connectivity
(related to the averagenodal degree, i.e., to the average

number of the neighbors of the nodes), variations in the
rate of the mobility of the nodes, etc. Notice that the
case with h = k = 0 corresponds to the DMAC protocol
introduced in [6].

The following is the informal description of the six M-
procedures. Details and pseudo codes can be found in

Init. At the clustering set up, or when a node U is
added to the network, it executes the procedure Init in
order to determine its own role. If among its neighbors
there is at least a clusterhead with bigger weight, then
w will join it. Otherwise it will be a clusterhead. In
this case, the new clusterhead U has to check the num-
ber of its neighbors that are already clusterheads. If
they exceed k, then a RESIGN message is also transmit-
ted, bearing the weight of the first clusterhead (namely,
the one with the (k + 1)th biggest weight) that violates
the k-neighborhood condition. On receiving a message
RESIGN(W), every clusterhead U such that wu 5 w will
resign. Notice that a neighbor with a bigger weight that
has not decided its role yet (this may happen at the
clustering set up, or when two or more nodes are added
to the network at the same time), will eventually send
a message (every node executes the Init procedure). If
this message is a CH message, then U could possihly
resign (after receiving the corresponding RESIGN mes-
sage) or affiliate with the new clusterhead.

Linkfailure. Whenever made aware of the failure of
the link with a node U, node U checks if its own role
is clusterhead and if U used to belong to its cluster.
If this is the case, U removes u from Cluster(u). If U
is an ordinary node, and u was its own clusterhead,
then it is necessary to determine a new role for U. To
this aim, U checks if there exists at least a clusterhead
z E r (u) such that w, > w.. If this is the case, then
U joins the clusterhead with the bigger weight, other-
wise it becomes a clusterhead. As in the case of the
Inat procedure, a test on the number of the neighboring
clusterheads is now needed, with the possible resigning
of some of them.

Nemlink. When node w is made aware of the pres-
ence of a new neighbor U , it checks if U is a clusterhead.
If this is the case, and if wu is bigger than the weight
of U ’ S current clusterhead plus the threshold h, than,
independently of its own role, U affiliates with U. Oth-
erwise, if U itself is a clusterhead, and the number of its
cnrrent neighboring clusterheads is > k then the weight
of the clusterhead x that violates the k-neighborhood
condition is determined. If wy > wI then node 2 has
to resign, otherwise, if no clusterhead x exists with a
weight smaller than U’S weight, w can no longer be a
clusterhead, and it will join the neighboring cluster-
head with the biggest weight.

On receiving CH(u). When a neighbor U becomes a
clusterhead, on receiving the corresponding CH mes-
sage, node U checks if it has to affiliate with U , i.e.,
it checks whether w, is bigger than the weight of 1)’s

171.

0-7803-5435-41991510.WQ 1999 BEE 89 1 VTC ‘99

clusterhead plus the threshold h or not. In this case, in-
dependently of its current role, v joins U’S cluster. Oth-
erwise, if 2) is a clusterhead with more than k neighbors
which are clusterheads, as in the case of a new link,
the weight of the clusterhead z that violates the k-
neighborhood condition is determined, and correspond-
ingly the clusterhead with the smallest weight will re-
sign.

On receiving JOIN(U,I). On receiving the message
JOIN(U,Z), the behavior of node v depends on whether
it is a clusterhead or not. In the affirmative, v has to
check if either U is joining its cluster (z = U: in this
case, U is added to Cluster(w)) or if U belonged to its
cluster and is now joining another cluster (2 # v: in
this case, U is removed from Cluster(u)). If w is not
a clusterhead, it has to check if U was its clusterhead.
Only if this is the case, v has to decide its role: It will
join the biggest clusterhead z in its neighborhood such
that w, > wv if such a node exists. Otherwise, it will be
a clusterhead. In this latter case, if the k-neighborhood
condition is violated, a RESIGN message is transmitted
in order for the clusterhead with the smallest weight in
w’s neighborhood to resign.

On receiving RESIGN(W). On receiving the message
RESIGN(W), node U checks if its weight is 5 w. In this
case, it has to resign and it will join the neighboring
clusterhead with the biggest weight. Notice that since
the M-procedures are supposed to be not interruptible,
and since w could have resigned already, it has also to
check if it is still a clusterhead.

We conclude this section by showing that by using the
M-procedures we obtain and maintain for any multi-
hop network a clustering that always satisfies the multi-
hop clustering properties listed in the Introduction (a
more detailed proof based on the actual procedure
pseudo-code can be found in [7]).

Theorem 1 Using the M-procedures, any multi-hop
network is clustered in such a way that the multi-hop
clustering properties al~e always satisfied.
Proof We start by noticing that as soon as a node has
executed the Init procedure as described above, it is al-
ways assigned a role which is consistent with the clus-
tering properties. We then proceed by showing that by
executing the M-procedures in reaction to changes in
the network topology, the nodes assume/change their
roles so that the multi-hop clustering properties are al-
ways satisfied.
1. That each ordinary node w does not affiliate with
more that one clusterhead is evident by noticing that
anytime it sends a JOIN(IJ,U) message its variable
Clusterhead is initialized (only) to U. That v affili-
ates with at least a clusterhead derives from the fact
that when it has to decide its role and there are clus-
terheads with bigger weights among its neighbors, or
when a switch to another cluster is required, the ordi-
nary node v always looks for the clusterhead with the
biggest weight and affiliates with it. Thus, there is no

case in which an ordinary node v remains without a
clusterhead.
2. At the clustering set up, or when a node is added
to the (already clustered) network, or when its current
clusterhead either resigns or moves away, or, finally,
when it is forced to resign, a node always affiliates with
the clusterhead with the biggest weight (if there is no
such clusterhead, it will become a clusterhead itself), so
that the second multi-hop clustering property is always
satisfied. The other cases to consider are when an ordi-
nary node w switches from a cluster to another, or when
v is a clusterhead that resigns to join the cluster of a
new neighboring clusterhead. In these cases, the second
property is guaranteed by the procedures New-Lznk and
On Receiving CH, where node v switches to U’S cluster
only if W u
3. Each time a node becomes a clusterhead, i.e., it
transmits a CH message, it does so because there is
no other neighboring clusterhead with which it can af-
filiate. In this case, it always checks if it has more
than k neighboring clusterheads, and if this is the case,
it decides (on a weight basis) the clusterheads thdt
have to resign. When these clusterheads receive the
corresponding message RESIGN, they have no choice
but to resign, joining the clusterhead with the biggest
weight around them. The other cases that remain to be
checked are when either a clusterhead v has one of iCs
neighbors that becomes a clusterhead, or a clusterhead
moves into its neighborhood, and the weight of the new
neighbor does not force li to affiliate with it. In both
these cases, the third multi-hop clustering property 1s
guaranteed by checking if, upon the arrival of a nepr
clusterhead, the k-neighborhood condition is violated.
If this is the case, the clusterhead with the minimum
weight is determined, and the corresponding RESIGN
message is transmitted.

wCl&erhead f h.

111. SIMULATION RESULTS
Here we demonstrate by the use of simulations that G-
DMAC achieves substantial improvements with respect
to algorithms based on techniques for the selections of
the clusterheads introduced in earlier works.

We simulated our algorithm by placing n = 30
nodes randomly on a grid of size 100 x 100. The speed
s, and the power p, of every node w are given in grid
units. Two nodes w and U in the network are neigh-
bors if the Euclidean distance dg between their coor-
dinates in the grid is less than the minimum between
their transmission radii (i.e., d,(w, U) < min{p,,p,}).

At every tick of the simulation clock, each node
determines its direction randomly, by choosing it uni-
formly between 0 and 2n. Each node will then move
in that direction according to its current speed. When
a node reaches the bounds of the grid, it bounces back
with an angle determined by the incoming direction.

We define the stability of a mobility-adaptive clus-
tering algorithm in terms of the number of elections

0-7803-5435-4/99/$10.w0 1999 IEEE 892 VTC ‘99

Table 1 G-DMAC vs. “lowest ID first:” min-max percentage gain in networks with 30 nodes.

and reafiliations per tick. An election occurs all the
times that, due to a change in the topology of the net-
work, either an ordinary node or a node that becomes
alive decides to be a clusterhead. We have a reaffili-
ation when either an ordinary node or a clusterhead,
or a node that becomes alive, affiliates as an ordinary
node with a newly close clusterhead.

G-DMAC is compared here with the clustering algo-
rithm based on the “lowest ID first” approach presented
in [3, 41. In this algorithm the node with the minimum
ID in its current neighborhood is chosen as a cluster-
head. Since in (41 it is shown that the “lowest ID first”
clustering is always more stable than the clustering ob-
tained following a “largest degree first” approach, we
do not consider the latter one.

In the first set of simulations the weight associated
to a node represents its speed:,the slower a node is, the
better it is for the role of clusterhead. We define the
weight of the node v by wy = zf l -s , , where the speed
sy is chosen uniformly in [l,z], z E [1,100]. In this way,
for each z, the nodes that are moving at lower speed are
assigned bigger weights. The percentage gains obtained
for elections and reaffiliations by G-DMAC with respect
to the ‘9owest ID first” algorithm when all the nodes
v E V have constant power p , = 30 and p , = 40 are
shown in Table 1 for four different values of k. The
choice of these two values for the power is motivated
by the fact that with values between 30 and 40 the
network is always guaranteed to be connected.

In the other set of simulations, weights represent
nodes’ transmission power: the bigger the power of a
node, the better that node for the role of clusterhead.
If z E [10,100] indicates the maximum transmission
power, we initialize each node with a power p, cho-
sen with uniform distribution in the range [5,z]. The
weight of the node v is then wv = p , (in this way, for
each z, the nodes with the bigger transmission pow-
ers are assigned bigger weights). The third and fourth
rows of Table 1 show the percentage gains for elections
and reaffiliations when the speed sy of each node v E V
varies in the range [0,6] and it is constantly = 6, re-
spectively.

In all the simulations h = uma*;um*a, where
ymln = 1 for the simulations with variable speed and
ymln = 5 for the simulations with variable power, and

urnas = I. The confidence level of our results is 95%
and their precision is 5%.
IV. ACKNOWLEDGMENTS
This paper was supported in part by the 1998/1999 Tx-
TEC Consortium Fellowship and by the Army Research
Office under contract No. DAAG55-96-1-0382. The au-
thor is also pleased to thank Marco Monguzzi for his
collaboration in the earlier stages of this research.
REFERENCES
(1) D. J. Baker, A. Ephremides, and J . A. Flynn,

“The design and simulation of a mobile radio net-
work with distributed control,” IEEE Journal on
Selected Areas in Communications, vol. SAC-2,
pp. 226-237, January 1984.

(2) A. Ephremides, J. E. Wieselthier, and D. J. Baker,
“A design concept for reliable mobile radio net-
works with frequency hopping signaling,” Proceed-
ings of the IEEE, vol. 75, pp. 56-73, January 1987.

(3) C. R. Lin and M. Gerla, “Adaptive clustering for
mobile wireless networks,” Journal on Selected AT-
eas in Communications, vol. 15, pp. 1265-1275,
September 1997.

(4) M. Gerla and J. T.-C. Tsai, “Multicluster, mo-
bile, multimedia radio network,” Wireless Net-
works, vol. 1, no. 3, pp. 255-265,1995.

(5) R. Ramanathan and M. Steenstrup,
“Hierarchically-organized, multihop mobile
wireless networks for quality-of-service sup-
port,” Mobile Networks d Applications, vol. 3,
pp. 101-119, June 1998.

(6) S. Basagni, “Distributed clustering for ad hoc net-
works,” in Proceedings of the 1999 International
Symposium on Parallel Architectures, Algorithms,
and Networks (I-SPAN’W), (Perth/Fremantle,
Australia), pp. 310-315, IEEE Computer Society,
June 23-25 1999.

(7) S. Basagni, “Distributed and mobility-adaptive
clustering for ad hoc networks,” Tech. Rep.
UTD/EE02-98, Erik Jonsson School of Engineer-
ing and Computer Science, The University of Texas
at Dallas, July 1998.

0-7803-5435-41991$10.OOQ 1999 IEBE 893 VTC ‘99

