MOBILE AD HOC NETWORKING
MOBILE AD HOC NETWORKING

Cutting Edge Directions

Second Edition

Edited by

STEFANO BASAGNI
MARCO CONTI
SILVIA GIORDANO
IVAN STOJMENOVIC

IEEE PRESS

IEEE SERIES ON DIGITAL & MOBILE COMMUNICATION

WILEY
CONTENTS

PREFACE xiii
ACKNOWLEDGMENTS xv
CONTRIBUTORS xvii

PART I GENERAL ISSUES

1 Multihop Ad Hoc Networking: The Evolutionary Path 3
Marco Conti and Silvia Giordano
1.1 Introduction, 3
1.2 MANET Research: Major Achievements and Lessons Learned, 5
1.3 Multihop Ad Hoc Networks: From Theory to Reality, 16
1.4 Summary and Conclusions, 25
References, 26

2 Enabling Technologies and Standards for Mobile Multihop Wireless Networking 34
Enzo Mingozzi and Claudio Cicconetti
2.1 Introduction, 35
2.2 Broadband Wireless Access Technologies, 37
2.3 Wireless Local Area Networks Technologies, 43
2.4 Personal Area Networks Technologies, 53
2.5 Mobility Support in Heterogeneous Scenarios, 65
2.6 Conclusions, 67
References, 69

3 Application Scenarios 77
Ilias Leontiadis, Ettore Ferranti, Cecilia Mascolo, Liam McNamara, Bence Pasztor, Niki Trigoni, and Sonia Waharte

3.1 Introduction, 78
3.2 Military Applications, 79
3.3 Network Connectivity, 81
3.4 Wireless Sensor Networks, 84
3.5 Search and Rescue, 89
3.6 Vehicular Networks, 93
3.7 Personal Content Dissemination, 96
3.8 Conclusions, 98
References, 98

4 Security in Wireless Ad Hoc Networks 106
Roberto Di Pietro and Josep Domingo-Ferrer

4.1 Introduction, 106
4.2 Wireless Sensor Networks, 110
4.3 Unattended WSN, 125
4.4 Wireless Mesh Networks, 130
4.5 Delay-Tolerant Networks, 134
4.6 Vehicular Ad Hoc Networks (VANETs), 137
4.7 Conclusions and Open Research Issues, 144
References, 144

5 Architectural Solutions for End-User Mobility 154
Salvatore Vanini and Anna Förster

5.1 Introduction, 154
5.2 Mesh Networks, 155
5.3 Wireless Sensor Networks, 182
5.4 Conclusion, 188
References, 188

6 Experimental Work Versus Simulation in the Study of Mobile Ad Hoc Networks 191
Carlo Vallati, Victor Omwando, and Prasant Mohapatra

6.1 Introduction, 191
6.2 Overview of Mobile Ad Hoc Network Simulation Tools and Experimental Platforms, 192
6.3 Gap Between Simulations and Experiments: Issues and Factors, 199
PART II MESH NETWORKING

7 Resource Optimization in Multiradio Multichannel Wireless Mesh Networks 241
Antonio Capone, Ilario Filippini, Stefano Gualandi, and Di Yuan

7.1 Introduction, 242
7.2 Network and Interference Models, 244
7.3 Maximum Link Activation Under the SINR Model, 245
7.4 Optimal Link Scheduling, 247
7.5 Joint Routing and Scheduling, 254
7.6 Dealing with Channel Assignment and Directional Antennas, 257
7.7 Cooperative Networking, 263
7.8 Concluding Remarks and Future Issues, 269
References, 271

8 Quality of Service in Mesh Networks 275
Raffaele Bruno

8.1 Introduction, 275
8.2 QoS Definition, 277
8.3 A Taxonomy of Existing QoS Routing Approaches, 278
8.4 Routing Protocols with Optimization-Based Path Selection, 280
8.5 Routing Metrics for Minimum-Weight Path Selection, 291
8.6 Feedback-Based Path Selection, 307
8.7 Conclusions, 308
References, 308

PART III OPPORTUNISTIC NETWORKING

9 Applications in Delay-Tolerant and Opportunistic Networks 317
Teemu Kärkkäinen, Mikko Pitkanen, and Joerg Ott

9.1 Application Scenarios, 318
9.2 Challenges for Applications Over DTN, 322
9.3 Critical Mechanisms for DTN Applications, 328
CONTENTS

13.5 Related Work, 510
13.6 Conclusions and Future Work, 510
References, 512

PART IV VANET

14 A Taxonomy of Data Communication Protocols for Vehicular Ad Hoc Networks 517
Yousef-Awwad Daraghmi, Ivan Stojmenovic, and Chih-Wei Yi

14.1 Introduction, 517
14.2 Taxonomy of VANET Communication Protocols, 520
14.3 Reliability-Oriented Geocasting Protocols, 525
14.4 Time-Critical Geocasting Protocols, 527
14.5 Small-Scale Routing Protocols, 529
14.6 Large-Scale Routing, 534
14.7 Summary, 539
14.8 Conclusion and Future Work, 539
References, 542

15 Mobility Models, Topology, and Simulations in VANET 545
Francisco J. Ros, Juan A. Martinez, and Pedro M. Ruiz

15.1 Introduction and Motivation, 545
15.2 Mobility Models, 547
15.3 Mobility Simulators, 551
15.4 Integrated Simulators, 557
15.5 Modeling Vehicular Communications, 560
15.6 Analysis of Connectivity in Highways, 565
15.7 Conclusion and Future Work, 572
References, 573

16 Experimental Work on VANET 577
Minglu Li and Hongzi Zhu

16.1 Introduction, 577
16.2 MIT CarTel, 579
16.3 UMass DieselNet, 581
16.4 SJTU ShanghaiGrid, 584
16.5 NCTU VANET Testbed, 587
16.6 UCLA CVeT, 589
16.7 GM DSRC Fleet, 590
16.8 FleetNet Project, 591
16.9 Network on Wheels (NOW) Project, 592
16.10 Advanced Safety Vehicles (ASVs), 593
16.11 Japan Automobile Research Institute (JARI), 594
References, 595

17 MAC Protocols for VANET
Mohammad S. Almalag, Michele C. Weigle, and Stephan Olariu
17.1 Introduction, 599
17.2 MAC Metrics, 602
17.3 IEEE Standards for MAC Protocols for VANETs, 602
17.4 Alternate MAC Protocols for VANET, 606
17.5 Conclusion, 616
References, 617

18 Cognitive Radio Vehicular Ad Hoc Networks: Design, Implementation, and Future Challenges
Marco Di Felice, Kaushik Roy Chowdhury, and Luciano Bononi
18.1 Introduction, 620
18.2 Characteristics of Cognitive Radio Vehicular Networks, 622
18.3 Applications of Cognitive Radio Vehicular Networks, 628
18.4 CRV Network Architecture, 629
18.5 Classification and Description of Existing Works on CRV Networks, 630
18.6 Research Issues in CRVs, 636
18.7 Conclusion, 640
References, 640

19 The Next Paradigm Shift: From Vehicular Networks to Vehicular Clouds
Stephan Olariu, Tihomir Hristov, and Gongjun Yan
19.1 By Way of Motivation, 646
19.2 The Vehicular Model, 647
19.3 Vehicular Networks, 649
19.4 Cloud Computing, 650
19.5 Vehicular Clouds, 652
19.6 How are Vehicular Clouds Different?, 654
19.7 Feasible Instances of Vehicular Clouds, 657
19.8 More Application Scenarios, 660
19.9 Security and Privacy in Vehicular Clouds, 666
19.10 Key Management, 677
19.11 Research Challenges, 680
19.12 Architectures for Vehicular Clouds, 681
19.13 Resource Aggregation in Vehicular Clouds, 683
19.14 A Simulation Study of VC, 690
CONTENTS

19.15 Future Work, 691
19.16 Where to From Here?, 693
References, 694

PART V SENSOR NETWORKING

20 **Wireless Sensor Networks with Energy Harvesting**
Stefano Basagni, M. Yousof Naderi, Chiara Petrioli, and Dora Spenza
20.1 Introduction, 703
20.2 Node Platforms, 704
20.3 Techniques of Energy Harvesting, 709
20.4 Prediction Models, 713
20.5 Protocols for EHWSNs, 717
References, 728

21 **Robot-Assisted Wireless Sensor Networks: Recent Applications and Future Challenges**
Rafael Falcon, Amiya Nayak, and Ivan Stojmenovic
21.1 Introduction, 737
21.2 Robot-Assisted Sensor Placement, 740
21.3 Robot-Assisted Sensor Relocation, 751
21.4 Robot-Assisted Sensor Maintenance, 762
21.5 Future Challenges, 763
References, 765

22 **Underwater Networks with Limited Mobility: Algorithms, Systems, and Experiments**
Carrick Detweiler, Elizabeth Basha, Marek Doniec, and Daniela Rus
22.1 Introduction, 770
22.2 Related Work, 772
22.3 Decentralized Control Algorithm, 775
22.4 General System Architecture and Design, 779
22.5 Application-Specific Architecture and Design, 786
22.6 Experiments and Results, 789
22.7 Conclusions, 799
References, 800

23 **Advances in Underwater Acoustic Networking**
Tommaso Melodia, Hovannes Kulhandjian, Li-Chung Kuo, and Emrecan Demirors
23.1 Introduction, 805
23.2 Communication Architecture, 806
CONTENTS

23.3 Basics of Underwater Communications, 807
23.4 Physical Layer, 814
23.5 Medium Access Control Layer, 822
23.6 Network Layer, 829
23.7 Cross-Layer Design, 833
23.8 Experimental Platforms, 834
23.9 UW-Buffalo: An Underwater Acoustic Testbed at the University at Buffalo, 842
23.10 Conclusions, 842
References, 843

Index 853
PREFACE

The mobile multihop ad hoc networking paradigm was born with the idea of extending Internet services to groups of mobile users. In these networks, often referred to as MANETs (Mobile Ad hoc NETworks), the wireless network nodes (e.g., the users’ mobile devices) communicate with each other to perform data transfer without the support of any network infrastructure: Nearby users can communicate directly by exploiting the wireless technologies of their devices in ad hoc mode. For this reason, in a MANET the users’ devices must cooperatively provide the Internet services usually provided by the network infrastructure (e.g., routers, switches, and servers).

At the time we published our first book, “Mobile Ad Hoc Networking” (IEEE-Wiley, 2004), mobile ad hoc networking was seen as one of the most innovative and challenging areas of wireless networking, and was poised to become one of the main technologies of the increasingly pervasive world of telecommunications. In that spirit, our first book presented a comprehensive view of MANETs, with topics ranging from the physical up to the application layer.

After about a decade, we observe that the promise of ad hoc networking never fully realized, and that MANET solutions are not used in people’s life. What happened, and why?

We start from these questions to write this second book. Our main interests here are:

- to highlight the reasons of MANET’s failure;
- to illustrate how the mobile ad hoc networking paradigm gave birth to several cutting-edge research directions;
- to present the emerging technologies that derived from MANET, their challenges, and their current development;
• to show that these new technologies successfully penetrated the marked and exist in everybody’s life.

We initially analyze the reasons of the lack of success of the generic ad hoc technology, and show how the derived new technologies did not repeat the same mistakes:

• The multihop ad hoc networking paradigm is extended to include some infrastructure to provide a cost-effective wireless broadband extension of the Internet. Mesh networks constitute the most relevant example of this approach.

• Node mobility is not considered as a problem to face, but as a feature to exploit, allowing the design of a completely new networking paradigm. Opportunistic networks constitute one of the most relevant examples in this sense.

• The multihop ad hoc networking paradigm is applied to specialized fields where the self-organizing nature of this paradigm and the absence of a pre-deployed infrastructure are a plus, and not a limitation. Notable examples of this approach are application-driven networks such as vehicular networks and sensor networks.

In order to create a common background for understanding the challenges and the results in the field of the emerging networking technologies illustrated in this book, we give general descriptions of their enabling technologies and standards, application scenarios, the need for securing their communications, and their architectural solutions for mobility.

We then present the new challenges and the most advanced research results in mesh networks, opportunistic networks, vehicular networks, and sensor networks.

This book is intended for developers, researchers, and graduate students in computer science and electrical engineering, researchers and developers in the telecommunication industry, and researchers and developers in all the fields that make use of mobile networking, which can potentially benefit from innovative solutions. We believe that this book is innovative in the topics covered, relies on the expertise of top researchers, and presents a balanced selection of chapters that provides current hot topics and cutting-edge research directions in the field of mobile ad hoc networking.

We take this opportunity to express our sincere appreciation to all the authors, who contributed high-quality chapters, and to all invited reviewers for their invaluable work and responsiveness under tight deadlines. A special thank goes to the Associate Editor of Wiley-IEEE Press, Mary Hatcher, who has been truly outstanding in supporting us through all the book construction phases, and to the teams at Wiley and Thomson Digital.

Enjoy your reading!

Stefano Basagni
Marco Conti
Silvia Giordano
Ivan Stojmenovic
ACKNOWLEDGMENTS

Stefano Basagni was supported in part by the NSF funded project “GENIUS: Green Sensor Networks for Air Quality Support” (NSF CNS 1143681).

Marco Conti wishes to thank his wife, Laura, for her invaluable support, encouragement, and understanding throughout this book project.

Silvia Giodrano wishes to personally thank her husband Piergiorgio, and her kids Virginia and Lorenzo for their support and encouragement in creating this book.

Ivan Stojmenovic was supported in part by NSERC Discovery grant.
CONTRIBUTORS

Mohammad S. Almalag, Department of Computer Science, Old Dominion University Norfolk, Virginia, USA

Stefano Basagni, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts

Elizabeth Basha, University of the Pacific, Stockton, California; and Massachusetts Institute of Technology, Cambridge, Massachusetts

Chiara Boldrini, Institute of Informatics and Telematics (IIT), Italian National Research Council (CNR), Pisa, Italy

Luciano Bononi, Department of Computer Science, University of Bologna, Bologna, Italy

Raffaele Bruno, Institute of Informatics and Telematics (IIT), Italian National Research Council (CNR), Pisa, Italy

Antonio Capone, Dipartimento di Elettronica e Informazione Politecnico di Milano, Milano, Italy

Song Chong, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejon, Korea

Kaushik Roy Chowdhury, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts

Claudio Cicconetti, Telecommunications Business Unit, Intecs S.p.A., Pisa, Italy
Marco Conti, Institute of Informatics and Telematics (IIT), Italian National Research Council (CNR), Pisa, Italy

J. Crowcroft, Computer Laboratory, University of Cambridge, Cambridge, United Kingdom

Yousef-Awwad Daraghmi, Department of Computer Science, National Chiao Tung University, Hsinchu City, Taiwan

Carrick Detweiler, University of Nebraska—Lincoln, Lincoln, Nebraska; and Massachusetts Institute of Technology, Cambridge, Massachusetts

Emrecan Demirors, Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, USA

Marco Di Felice, Department of Computer Science, University of Bologna, Bologna, Italy

Roberto Di Pietro, Department of Mathematics, Università di Roma Tre, Rome, Italy

Josep Domingo-Ferrer, Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain

Marek Doniec, Massachusetts Institute of Technology, Cambridge, Massachusetts

Rafael Falcon, Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

Ettore Ferranti, ABB Corporate Research, Zurich, Switzerland

Ilario Filippini, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

Anna Foster, Networking Laboratory, University of Applied Technology of Southern Switzerland (SUPSI), Lugano, Switzerland

Silvia Giordano, Institute of Systems for Informatics and Networking (ISIN), University of Applied Technology of Southern Switzerland (SUPSI), Lugano, Switzerland

Stefano Gualandi, Dipartimento di Matematica, Università di Pavia, Pavia, Italy

Tihomir Hristov, Old Dominion University, Norfolk, Virginia

Pan Hui, Deutsche Telekom Laboratories, Berlin, Germany

Teemu Kärkkäinen, Comnet, Aalto University, Espoo, Finland

Hovannes Kulhandjian, Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, USA

Li-Chung Kuo, Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
CONTRIBUTORS

Kyunghan Lee, School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea

Ilias Leontiadis, Computer Laboratory, University of Cambridge, Cambridge, United Kingdom

Minglu Li, Department of Computer Science and Technology, Shanghai Jiao Tong University, Shanghai, China

Juan A. Martinez, Department of Information and Communications Engineering, University of Murcia, Murcia, Spain

Cecilia Mascolo, Computer Laboratory, University of Cambridge, Cambridge, United Kingdom

Liam McNamara, Department of Information Technology, Uppsala University, Uppsala, Sweden

Tommaso Melodia, Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York

Enzo Mingozzi, Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy

Prasant Mohapatra, Department of Computer Science, University of California at Davis, Davis, California

Derek G. Murray, Computer Laboratory, University of Cambridge, Cambridge, United Kingdom

M. Yousof Naderi, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts

Amiya Nayak, Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

Karthik Nilakant, Computer Laboratory, University of Cambridge, Cambridge, United Kingdom

Stephan Olariu, Department of Computer Science, Old Dominion University, Norfolk, Virginia

Victor Omwando, Department of Computer Science, University of California at Davis, Davis, California

Joerg Ott, Comnet, Aalto University, Espoo, Finland

Andrea Passarella, Institute of Informatics and Telematics (IIT), Italian National Research Council (CNR), Milan, Italy

Bence Pasztor, Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
Chiara Petrioli, Dipartimento di Informatica, Università di Roma “La Sapienza,” Roma, Italy

Andreea Picu, Communication System Group, ETH Zürich, Zürich, Switzerland

Mikko Pitkänen, Comnet, Aalto University, Espoo, Finland

Francisco J. Ros, Department of Information and Communications Engineering, University of Murcia, Murcia, Spain

Pedro M. Ruiz, Department of Information and Communications Engineering, University of Murcia, Murcia, Spain

Daniela Rus, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

Dora Spenza, Dipartimento di Informatica, Università di Roma “La Sapienza,” Roma, Italy

Thrasyvoulos Spyropoulos, Mobile Communications Department, EURECOM, Sophie Antipolis, France

Ivan Stojmenovic, Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

Niki Trigoni, Department of Computer Science, University of Oxford, Oxford, United Kingdom

Carlo Vallati, Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy

Salvatore Vanini, Networking Laboratory, University of Applied Technology of Southern Switzerland (SUPSI), Lugano, Switzerland

Sonia, Waharte, Department of Computer Science and Technology, University of Bedfordshire, Luton, United Kingdom

Michele C. Weigle, Department of Computer Science, Old Dominion University, Norfolk, Virginia, USA

Gongjun Yan, School of Science, Indiana University, Kokomo, Indiana

Chih-Wei Yi, Department of Computer Science, National Chiao Tung University, Hsinchu City, Taiwan

E. Yoneki, Computer Laboratory, University of Cambridge, Cambridge, United Kingdom

Di Yuan, Department of Science and Technology, Linköping University, Linköping, Sweden

Hongzi Zhu, Department of Computer Science and Technology, Shanghai Jiao Tong University, Shanghai, China