
L

a

s

h
R

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

OpenRAN Gym: AI/ML development, data collection, and testing for O-RAN
on PAWR platforms✩

eonardo Bonati ∗, Michele Polese, Salvatore D’Oro, Stefano Basagni, Tommaso Melodia
Institute for the Wireless Internet of Things, Northeastern University, Boston, MA, USA

A R T I C L E I N F O

Keywords:
5G/6G
O-RAN
AI/ML

A B S T R A C T

Open Radio Access Network (RAN) architectures will enable interoperability, openness and programmable data-
driven control in next generation cellular networks. However, developing and testing efficient solutions that
generalize across heterogeneous cellular deployments and scales, and that optimize network performance in
such diverse environments is a complex task that is still largely unexplored. In this paper, we present OpenRAN
Gym, a unified, open, and O-RAN-compliant experimental toolbox for data collection, design, prototyping and
testing of end-to-end data-driven control solutions for next generation Open RAN systems. OpenRAN Gym
extends and combines into a unique solution several software frameworks for data collection of RAN statistics
and RAN control, and a lightweight O-RAN near-real-time RAN Intelligent Controller (RIC) tailored to run
on experimental wireless platforms. We first provide an overview of the various architectural components of
OpenRAN Gym and describe how it is used to collect data and design, train and test artificial intelligence
and machine learning O-RAN-compliant applications (xApps) at scale. We then describe in detail how to test
the developed xApps on softwarized RANs and provide an example of two xApps developed with OpenRAN
Gym that are used to control a network with 7 base stations and 42 users deployed on the Colosseum testbed.
Finally, we show how solutions developed with OpenRAN Gym on Colosseum can be exported to real-world,
heterogeneous wireless platforms, such as the Arena testbed and the POWDER and COSMOS platforms of the
PAWR program. OpenRAN Gym and its software components are open-source and publicly-available to the
research community. By guiding the readers from instantiating the components of OpenRAN Gym, to running
experiments in a softwarized RAN with an O-RAN-compliant near-RT RIC and xApps, we aim at providing a
key reference for researchers and practitioners working on experimental Open RAN systems.
1. Introduction

Once seen as monolithic and mostly immutable ‘‘black-box’’ sys-
tems, cellular networks are converging toward the more flexible,
software-based open architectures based on the Open Radio Access
Network (RAN) paradigm. This new approach to cellular communica-
tions promotes openness, virtualization, and programmability of RAN
functionalities and components, and enables data-driven intelligent
control loops for cellular systems [2]. As such, the Open RAN enables
network operators to support new bespoke services on shared physical
infrastructures, and to dynamically reconfigure them based on network
conditions and user demand. The resulting increased efficiency will also
decrease the operational costs of the network.

✩ This is a revised and substantially extended version of Bonati et al. (2022) [1], which appeared in the Proceedings of the IEEE Wireless Communications
nd Networking Conference (WCNC) 2022 Workshops.
This work was partially supported by the U.S. National Science Foundation under Grants CNS-1925601, CNS-2120447, and CNS-2112471.
∗ Corresponding author.
E-mail addresses: l.bonati@northeastern.edu (L. Bonati), m.polese@northeastern.edu (M. Polese), s.doro@northeastern.edu (S. D’Oro),

.basagni@northeastern.edu (S. Basagni), melodia@northeastern.edu (T. Melodia).

In this context, standardization bodies and other organizations are
releasing a number of specifications to regulate the operations of
the Open RAN, and to define its capabilities, constraints, and use
cases. The most notable is the O-RAN Alliance, which is developing
specifications—collected under the O-RAN umbrella—to apply Open
RAN principles to prevailing radio access technologies, including 3rd
Generation Partnership Project (3GPP) LTE and NR networks [3].

O-RAN introduces two network RAN Intelligent Controllers (RICs),
operating at different timescales, enabling programmatic closed-loop
control of the RAN elements. It also defines a set of open interfaces
to connect the controllers to key elements of the RAN, such as the NR
Central Units (CUs), Distributed Units (DUs), Radio Units (RUs), and
the LTE O-RAN-compliant evolved Node Bases (eNBs) [4]. In details,
ttps://doi.org/10.1016/j.comnet.2022.109502
eceived 25 July 2022; Received in revised form 10 November 2022; Accepted 29
 November 2022

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:l.bonati@northeastern.edu
mailto:m.polese@northeastern.edu
mailto:s.doro@northeastern.edu
mailto:s.basagni@northeastern.edu
mailto:melodia@northeastern.edu
https://doi.org/10.1016/j.comnet.2022.109502

L. Bonati et al.

m
p
m
m
a
n
i
O

O
A
n
b
t
o

Fig. 1. OpenRAN Gym architecture.
the near-real-time (or near-RT) RIC connects to the RAN elements
(i.e., the CUs and DUs) through the E2 interface, and enables control
loops operating at timescales ranging between 10 ms and 1 s [5]. In-
stead, the non-real-time (or non-RT) RIC is included as part of Service
Management and Orchestration (SMO) frameworks, and operates at
timescales larger than 1 s [6]. This component also interacts with one or

ultiple near-RT RICs via the A1 interface, which is used to disseminate
olicies and information external to the network. The non-RT RIC also
anages the Artificial Intelligence (AI) and Machine Learning (ML)
odels, which are instantiated on the RICs in the form of standalone

pplications, namely xApps (on the near-RT RIC) and rApps (on the
on-RT RIC). Finally, the SMO connects to the RAN through the O1
nterface, used for management and orchestration routines, and to the
-RAN virtualization platform (the O-Cloud) via the O2 interface.

Thanks to its RICs, open interfaces and disaggregated architecture,
-RAN ultimately enables the practical deployment and execution of
I/ML solutions at scale, which can be used to infer and forecast
etwork traffic, or to reconfigure the nodes of the RAN at run time
ased on real-time conditions and user demand. Typical workflows for
he design and testing of such AI/ML algorithms encompass a number
f different steps such as [7,8]: (i) data collection, to create practical

datasets representative of the different environments (e.g., the wireless
channel) where the AI/ML models will be deployed, as well as of
various performance indicators of the network; (ii) AI/ML model design,
selecting the inputs and outputs of the models, and training and testing,
to evaluate the effectiveness and limits of such models; (iii) model
deployment as applications deployed on the RICs, i.e., xApps/rApps
or—as recently proposed in [9]—directly on the CUs/DUs via dApps;
(iv) model fine-tuning with run-time data from the RAN, to adapt the
models to different production environments, and (v) the actual control,
inference and/or forecasting or the RAN.

In this paper, we build upon and extend our prior work [1], and
present OpenRAN Gym, an open-source toolbox to develop AI/ML O-
RAN-compliant inference and control algorithms, to deploy them as
xApps on the near-RT RIC, and to test them on a large-scale softwarized
RAN controlled by the RIC. Throughout this work, we guide readers on
how to start using the OpenRAN Gym framework to run experiments
in a softwarized Open RAN managed by an O-RAN-compliant near-RT
RIC, how to implement custom AI/ML solutions of their design as xApps
on the Colosseum wireless network emulator, and how to transition
such solution on over-the-air open testbeds for wireless research. First,
we give a high-level overview of the various components of OpenRAN
Gym, and discuss how they enable development and testing work-
flows of data-driven xApps. We showcase an example of two xApps
designed with OpenRAN Gym and used to control a large-scale RAN
instantiated on the Colosseum wireless network emulator [10] through
the SCOPE framework [11], and controlled by the ColO-RAN near-
RT RIC [8]. We also show how OpenRAN Gym can be seamlessly
ported from an emulator such as Colosseum to over-the-air real-world
platforms, such as the Arena testbed [12], and the platforms of the

U.S. National Science Foundation-sponsored Platforms for Advanced
Wireless Research (PAWR) program [13] including the Platform for
Open Wireless Data-driven Experimental Research (POWDER) [14] and
the Cloud Enhanced Open Software Defined Mobile Wireless Testbed
for City-Scale Deployment (COSMOS) [15] platforms. To the best of our
knowledge, OpenRAN Gym is the first open, portable toolset for end-to-
end design, prototyping, testing, and experimentation of AI/ML O-RAN
xApps on heterogeneous wireless platforms. As such, we hope that this
work can be an important reference for researchers and practitioners
working on—or starting to work on—experimental Open RAN systems.

Previous experimental work has focused on the development of
data-driven solutions and xApps for specific use cases [16,17], on
the description of the AI/ML capabilities of O-RAN [18,19], on in-
teroperability testing [20], and on orchestration [21]. Compared to
the state of the art, OpenRAN Gym enables an end-to-end workflow
for the design and testing of AI/ML solutions as xApps in the O-
RAN ecosystem. By doing so, it empowers users with a first-of-its-kind
open and publicly-available O-RAN-compliant toolbox that will unleash
the potential of data-driven applications for next generation cellular
networks. OpenRAN Gym aims at contributing to the thriving commu-
nity of wireless researchers and developers by providing open-source
software components for experimental O-RAN-enabled data-driven re-
search. We actively maintain an up-to-date resource on the OpenRAN
Gym project1 that can be used to review the functionalities of our
framework, and as a reference to repositories, documentation, tutorials,
and containers. This also includes publications that describe in details
each component, the different use cases in which they were used, as
well as public datasets collected through OpenRAN Gym.

The remainder of this paper is organized as follows. We give an
overview of the various components of OpenRAN Gym in Section 2.
Practical descriptions of the OpenRAN Gym data collection and con-
trol framework, and of the O-RAN control architecture, are given in
Sections 3 and 4, respectively. The xApp design and testing workflow
is presented in Section 5, along with an example of large-scale RAN
control using xApps developed with OpenRAN Gym on Colosseum. Sec-
tion 6 discusses how OpenRAN Gym components and experiments can
be ported from Colosseum to heterogeneous real-world testbeds. Sec-
tion 7 showcases exemplary results obtained on the different platforms
considered in this work. Finally, conclusions are drawn in Section 8.

2. OpenRAN Gym

The OpenRAN Gym architecture is shown in Fig. 1. Its main com-
ponents are: (i) publicly- and remotely-accessible experimental wireless
platforms for collecting data, prototyping, and testing solutions in het-
erogeneous environments. Example of these are the Colosseum wireless
network emulator [10], the Arena testbed [12], and the platforms of
the PAWR program [13]; (ii) a softwarized RAN implemented through
open protocol stacks for cellular networks, such as srsRAN [22] and

1 https://openrangym.com

https://openrangym.com

L. Bonati et al.

g

c

OpenAirInterface [23]; (iii) a data collection and control framework,
such as SCOPE [11], that exposes Application Programming Interfaces
(APIs) to extract relevant Key Performance Measurements (KPMs) from
the RAN, and dynamically control it at run-time, and (iv) an O-RAN
control architecture, such as ColO-RAN [8], able to connect to the
RAN through open and standardized interfaces (e.g., the O-RAN E2
interface), receive the run-time KPMs from the RAN, and control it
through AI/ML solutions running, for instance, as xApps/rApps. As we
will show in Sections 6 and 7, OpenRAN Gym is platform-independent,
and it allows users to perform data collection campaigns, prototype,
and evaluate solutions in a set of heterogeneous wireless environments
and deployments before transitioning them to production networks.
As such, OpenRAN Gym can be used to first prototype and validate
solutions on the Colosseum wireless network emulator, and then seam-
lessly transfer such solutions to heterogeneous platforms, such as the
Arena testbed, and the POWDER and COSMOS platforms from the
PAWR program [13]. The procedures to port the various components
of OpenRAN Gym on these platforms will be described in Section 6.

Arena is an indoor wireless testbed equipped with a grid of 64 an-
tennas and 24 Software-defined Radios (SDRs) (among USRPs X310
and N210) controlled by high-performance compute servers [12]. Its
deployment is representative of a live office environment.

Colosseum is the world’s largest wireless network emulator [10].
It allows researchers and practitioners to experiment at scale, and in
different channel conditions and virtual environments through a set
of 128 SDRs (USRPs X310) controlled through dedicated servers—
namely, Standard Radio Nodes (SRNs)—interconnected through a Mas-
sive Channel Emulator (MCHEM). The latter, is capable of reproducing
conditions of the wireless channel (e.g., path loss, fading, user mobility,
signal interference and superimposition) by means of Finite Impulse
Response (FIR) filters implemented through Field Programmable Gate
Arrays (FPGAs). The channel emulation is performed by the FIR filters,
which apply the channel impulse response of the desired wireless chan-
nel to the signals transmitted by the SRNs. Sets of channel impulse re-
sponses for different environments (e.g., urban, rural, etc.)—referred to
as Radio Frequency (RF) scenarios in Colosseum—are modeled through
mathematical equations, or captured through ray-tracing software.

POWDER is a city-scale wireless testbed deployed in Salt Lake City,
UT [14]. The testbed includes a number of SDRs deployed across an
outdoor area, an over-the-air indoor laboratory setup, and a wired
attenuator matrix. The objective of this testbed is to foster experimental
research in heterogeneous technology, such as 5G cellular technologies
and network orchestration.

COSMOS is a city-scale testbed deployed in New York City, NY,
which mainly focuses on mmWave communications with edge-computin
capabilities [15]. This testbed absorbed the Open-Access Research
Testbed for Next-Generation Wireless Networks (ORBIT) [24], an in-
door over-the-air wireless platform with remotely-accessible SDR de-
vices and compute servers.

At the time of this writing, OpenRAN Gym softwarized RAN lever-
ages the cellular implementation provided by srsRAN [22], which
allows users to instantiate protocol stacks of 3GPP base stations and
User Equipments (UEs) using SDRs as front-end interfaces. This cel-
lular protocol stack is augmented by the SCOPE framework, which
adds a number of networking and control functionalities to srsRAN
including network slicing capabilities, support for additional scheduling
algorithms, data collection pipelines, and open APIs to control such
functionalities at run time. As we will discuss in Section 3, SCOPE
can facilitate data collection campaigns by automating the collec-
tion of relevant RAN KPM in the heterogeneous testbed where it is
instantiated [8,21,25].

Finally, ColO-RAN implements the O-RAN control architecture of
OpenRAN Gym. This framework adapts the near-RT RIC provided by
the O-RAN Software Community (OSC) to run in a lightweight con-
tainerized environment, and extends it to swiftly interface with, and

control, the SCOPE base stations through the E2 interface standardized p
by O-RAN. As discussed in Section 4, ColO-RAN allows users to pro-
totype AI/ML-based O-RAN applications through an xApp Software De-
velopment Kit (SDK), to instantiate them on an OSC-compliant near-RT
RIC, and to leverage them to control a softwarized RAN (Fig. 1).

3. Data collection and control framework

The data collection and control framework of OpenRAN Gym is
based on SCOPE [11]. This framework provides a programmable en-
vironment for prototyping and testing solutions for softwarized RANs,
and data collection capabilities of relevant KPMs (e.g., throughput,
Transport Blocks (TBs), buffer occupancy). Concerning the cellular
protocol stack for base stations and UEs, SCOPE leverages srsRAN [22],
and extends it with novel network slicing and a set of additional
scheduling algorithms. Open APIs to fine-tune the configuration of the
RAN at run time, and to perform data collection campaigns are also
provided by SCOPE. Coupled with different testbeds—such as Colos-
seum and the platform of the PAWR program—SCOPE can facilitate
the collection of RAN KPMs in a set of heterogeneous scenarios and en-
vironments by automatically collecting such statistics from the running
experiments [8,11,25]. Finally, SCOPE connects to the O-RAN near-RT
RIC through a RAN-side O-RAN E2 termination, which is based on the
OSC DU [26]. This allows user-defined xApps running on the near-RT
RIC to swiftly interface with the RAN base stations, and to dynamically
control their functionalities at run time (e.g., modify the scheduling
policy and set the amount of resources allocated to each network slice).
In the remainder of this section, we will give a high-level overview of
the main configuration options and parameters of the SCOPE-enabled
base stations, and show how to instantiate a cellular network with it.
SCOPE has been open-sourced to the research community,2 and also
provided to the Colosseum users in the form of a ready-to-use Linux
Container (LXC) (namely scope/scope-with-e2). In Section 6, we
will show how the publicly-available SCOPE container can be ported to
different testbeds (e.g., the Arena testbed, and the POWDER and COS-
MOS testbeds of the PAWR program) with minor modifications. In this
way, SCOPE truly enables the process of cellular-network-as-a-service,
in which the solutions are first prototyped in a controlled environment
(e.g., Colosseum), and then ported in the wild on real-world testbeds.

3.1. Starting SCOPE

SCOPE provides Command-line Interface (CLI) tools to start the
cellular base stations and configure them through parameters passed
via configuration files. The main parameters of interest to OpenRAN
Gym are described as follows.3

• network-slicing: enables/disables the network slicing func-
tionalities of the base station.

• slice-allocation: if network slicing has been enabled, this
parameter sets the Resource Block Groups (RBGs) allocated by the
base station to each slice. The input of this configuration option is
passed as {slice:[first_rbg, last_rbg], . . . }. As an
example, {0:[0,5],1:[6,10]} allocates RBGs 0–5 to slice 0
and 6–10 to slice 1.

• slice-scheduling-policy: sets the scheduling policy used
for each network slice of the base station. As an example, [1,2]
assigns slicing policy 1 to slice 0 and policy 2 to slice 1. The
possible numerical values for this field match the scheduling
policies supported by SCOPE (i.e., 0: round-robin, 1: waterfilling,
2: proportionally fair).

2 The SCOPE source code is available at https://github.com/wineslab/
olosseum-scope and https://github.com/wineslab/colosseum-scope-e2.

3 A comprehensive description of the SCOPE APIs and configuration
arameters can be found at https://github.com/wineslab/colosseum-scope.

https://github.com/wineslab/colosseum-scope
https://github.com/wineslab/colosseum-scope
https://github.com/wineslab/colosseum-scope-e2
https://github.com/wineslab/colosseum-scope

L. Bonati et al.

c
o
S
t
a
u
o
p

4

b
p
p
h
D
o
b
o
m

c
R
l
a
a
d
a
d
N

n

2
o

t
w
t
T
T
R
t
u
w
w
s
u
s
c
t
c
e
t

c

p

• slice-users: associates UEs to a specific network slice. The in-
put of this configuration option is passed as
{slice:[ue1,ue2], . . . }. As an example,
{0:[4,5],1:[2,3]} assigns UEs 4, 5 to slice 0, and UEs 2,
3 to slice 1.

• generic-testbed: specifies whether SCOPE is running on a
testbed other than Colosseum. In this case, the parameters node-
is-bs and ue-id can also be passed to specify whether the node
should act as a base station or a UE, and the identifier of the UE
in the latter case.4

After the SCOPE configuration has been written in a JSON-formatted
file,5 (named radio.conf in the code snippet below), the cellular
base station, core network, and UE applications can be started through
the commands of Listing 1.

1 #!/bin/bash
2 cd radio_api/
3 python3 scope_start.py --config-file

radio.conf

Listing 1: Commands to start the SCOPE applications.

At run-time, the SCOPE APIs can be leveraged to fine-tune the
onfiguration of the base station, e.g., to modify the scheduling policy
f each slice, or to set the amount of RBGs of each slice (see [11,
ection 3.3]). Relevant KPMs from the RAN are automatically logged by
he SCOPE base stations while traffic is exchanged among base stations
nd UEs. These KPMs are saved in CSV-formatted files that can be either
sed on-the-fly (e.g., for online AI/ML model training or inference),
r retrieved for offline processing after the experiment ends (e.g., to
erform offline AI/ML model training).

. O-RAN control architecture

The O-RAN control architecture leveraged by OpenRAN Gym is
ased on ColO-RAN, an open-source framework to develop, design,
rototype, and test O-RAN-ready solutions at scale [8]. This framework
rovides a lightweight implementation of the OSC near-RT RIC—which
as been adapted to run on the Colosseum system as a set of standalone
ocker containers—as well as automated pipelines for the deployment
f the various services of the RIC. The main components implemented
y ColO-RAN are shown in Fig. 1, left. They are services in charge of
verseeing the interactions with the RAN (e.g., the E2 termination, E2
anager, and E2 routing manager), a Redis database that keeps records

of the connected RAN nodes (e.g., the base stations), and an xApp SDK
with tools to prototype and test AI/ML-based xApp for run-time RAN
inference and/or control.

A high-level diagram of a ColO-RAN xApp is shown in Fig. 2. This
is formed of two main parts: (i) the Service Model (SM) connector, in
harge of handling the messages between the xApp and the near-RT
IC (e.g., the control messages for the RAN), and (ii) the data-driven
ogic unit, which processes KPMs received from the RAN base stations,
nd performs tasks based on AI/ML models (e.g., traffic prediction
nd/or control of the functionalities of the base stations). The data-
riven logic unit hosts two sub-components, namely the AI/ML model
nd the data processing module. The former consists of the specific data-
riven model (e.g., Deep Reinforcement Learning (DRL) agent, Deep
eural Network (DNN), Long Short Term Memory (LSTM), to name a

4 When running on Colosseum, SCOPE automatically derives the role of the
ode, and the UE identifier based on the allocated SRNs.

5 An example of configuration file can be found at https://tinyurl.com/
s3pvw83 (for Colosseum), and at https://tinyurl.com/35t7s97a (for testbeds
ther than Colosseum).
 i
Fig. 2. ColO-RAN xApp. Source: Adapted from [8].

few) used to perform inference and/or control tasks. The latter, instead,
executes data processing functionalities to convert the input KPMs into
data that can be fed to the AI/ML model. For instance, the majority
of AI/ML models are designed to receive inputs with a fixed size and
format (e.g., a two-dimensional array of a specific length, an image,
or a time-series). However, the KPMs received over the E2 termination
might have a different format, or might contain more data than what is
required by the AI/ML model. In this case, the data processing module
performs the necessary operations to convert the input data in the
correct format. In some cases, the data processing module can also host
some AI/ML models that execute advanced data processing operations.
Examples of these are autoencoders to extract latent data representation
and to perform dimensionality reduction [8,25].

In the remainder of this section, we detail how to instantiate the
ColO-RAN near-RT RIC (Section 4.1), how to interface it with the
SCOPE base station through the O-RAN E2 termination (Section 4.2),
and how to start a sample xApp that controls the base station (Sec-
tion 4.3). ColO-RAN has been open-sourced and made available to the
research community,6 and also provided to the Colosseum users in the
form of a ready-to-use LXC container (namely coloran-near-rt-
ric). In Section 6, we will show how ColO-RAN can be seamlessly
ported to different testbeds (e.g., the Arena testbed, and the POWDER
and COSMOS platforms of the PAWR program).

4.1. Starting the ColO-RAN near-RT RIC

The ColO-RAN near-RT RIC can be built and instantiated as a set
of Docker containers by running the setup-ric.sh script and the
commands of Listing 2.7 This script, adapted from [27], takes as input
he network interface the RIC uses to receive and exchange messages
ith the RAN (e.g., the col0 interface in Colosseum). As a first step,

he base Docker images that will be used to build the RIC are imported.
hen, the actual Docker images of the ColO-RAN near-RT RIC are built.
hese images include: (i) the e2term, which is the endpoint of the
IC E2 messages; (ii) the e2mgr, which is in charge of managing

he messages to/from the E2 interface; (iii) the e2rtmansim, which
ses the RIC Message Router (RMR) protocol to route the E2 messages
ithin the RIC; and (iv) the db, which implements a Redis database
ith records of the RAN nodes connected to the RIC (e.g., the base

tations). During this step, the IP addresses and ports that will be
sed by the Docker containers are also configured as set up in the
etup-lib.sh file. After the Docker images have been built, the RIC
ontainers, listening for incoming connections from the RAN through
he E2 termination endpoint, are spawned. The logs of the various
ontainers can be accessed through the docker logs command,
.g., docker logs -f e2term shows the run-time logs of the E2
ermination (e2term) container.

6 The ColO-RAN source code is available at https://github.com/wineslab/
olosseum-near-rt-ric.

7 A pre-built version of ColO-RAN, named coloran-near-rt-ric-
rebuilt, is also provided to the Colosseum users. The pre-built Docker

mages are also hosted on Docker Hub at https://hub.docker.com/u/wineslab.

https://tinyurl.com/2s3pvw83
https://tinyurl.com/2s3pvw83
https://tinyurl.com/35t7s97a
https://github.com/wineslab/colosseum-near-rt-ric
https://github.com/wineslab/colosseum-near-rt-ric
https://hub.docker.com/u/wineslab

L. Bonati et al.

4

i
u
t
t
t

t
s
s
t

b
i
L

c
t
s
r
f
m
o
d
o

b
o
t
a
o
t
C
t
c

m

1 #!/bin/bash
2 cd setup-scripts/
3 ./setup-ric.sh col0

Listing 2: Commands to set up the ColO-RAN near-RT RIC.

.2. Connecting the SCOPE base station to ColO-RAN

After setting up and starting ColO-RAN through the steps described
n Section 4.1, the cellular base station—provided by SCOPE and set
p in Section 3.1—can be connected to it through the O-RAN E2
ermination, which has been adapted from the OSC DU implemen-
ation [26]. To this aim, the RAN-side E2 termination can be used
o: (i) receive RIC Subscription messages from the xApps; (ii) transmit

periodic KPM reports to the xApps through RIC Indication messages,
and receive control actions from them through RIC Control messages,
and (iii) interact with the APIs provided by SCOPE to modify the
configuration of the base station at run time (e.g., the scheduling and
slicing policies) based on the control messages received from the xApps.
The steps to initialize the E2 termination at the SCOPE base station
are shown in Listing 3. First, the E2 termination is built through the
build_odu.sh script (line 3). This script also specifies the IP address
and port of the near-RT RIC to connect to, as well as the local network
interface used for the connection. Then, the E2 termination process is
started through the run_odu.sh script (line 4), which establishes the
initial connection between the base station and the near-RT RIC. The
successful outcome of this connection can be verified in the logs of the
e2term container (via the docker logs -f e2term command, see
Section 4.1), which reports the identifier of the connected base station
(e.g., gnb:311-048-01000501).

1 #!/bin/bash
2 cd colosseum -scope-e2/
3 ./build_odu.sh clean
4 ./run_odu.sh

Listing 3: Commands initialize the SCOPE E2 termination process.

4.3. Initializing a sample xApp

After the SCOPE base station has been connected to the near-RT RIC,
the xApps can be started. To facilitate the design of novel xApps, we
provide a ready-to-use sample xApp template in which researchers and
practitioners can plug-in their custom AI/ML models. This sample xApp
can be started through the setup-sample-xapp.sh script and the
commands shown in Listing 4. This script takes as input the identifier
of the base station the xApp should subscribe to (see Section 4.2), and
builds the Docker image of the sample xApp. Then, the script starts the
xApp Docker container—dubbed sample-xapp—on the near-RT RIC.

1 #!/bin/bash
2 cd setup-scripts/
3 ./setup-sample-xapp.sh gnb:311-048-01000501

Listing 4: Commands to build the ColO-RAN sample xApp Docker
image, and to start and configure the xApp container.

After the container has started, the xApp processes can be run
hrough the commands of Listing 5. These commands trigger the xApp
ubscription to the targeted RAN nodes (e.g., one or multiple base
tations connected to the RIC) through RIC Subscription messages, and
he periodic reports of RAN KPMs from such nodes. Starting from
 t
the provided template, OpenRAN Gym users can build xApps running
custom solutions (e.g., with custom AI/ML agents).

1 #!/bin/bash
2 docker exec -it sample-xapp

/home/sample-xapp/run_xapp.sh

Listing 5: Commands to run the ColO-RAN sample xApp process.

5. xApp development workflow on Colosseum

The main steps to develop a data-driven xApp using OpenRAN Gym
on Colosseum are shown in Fig. 3.

(1) Data collection. This step involves collecting the data that
will be used to train and test the AI/ML model to embed in the
xApp. In Colosseum, this can be done by combining the data-collection
capabilities of SCOPE with the automated experiments of Colosseum.
This allows to automatically run experiments with several base stations
and users in a set of heterogeneous scenarios, and to collect the
RAN KPMs—saved in CSV-formatted files—from Colosseum Network
Attached Storage (NAS) once the experiment ends [11].

(2) Model design, training and testing. After data collection cam-
paigns have been performed in heterogeneous wireless environments
and scenarios, the AI/ML model can be designed. This step includes
the selection of the AI/ML algorithm that the model will use, along
with the data used as input, the reward function, and the set of output
actions (e.g., to perform inference or control of the RAN). After this
design phase, the model is first trained offline using the data collected
in step 1, and then tested at scale.8 Being computationally-intensive,
this step may benefit from Graphics Processing Unit (GPU)-enabled
environments. As such, these operations can be carried out either lo-
cally (i.e., on the user’s own GPU-enabled machines), or on Colosseum’s
GPU-enabled SRNs or NVIDIA A100 DGXs.

(3) Deploy the model as an xApp. After the model has been tested
(step 2), it can be deployed as an xApp on the ColO-RAN near-RT RIC by
following the procedures of Section 4.3. Specifically, the AI/ML model
is included in the data-driven logic unit of ColO-RAN xApp (see Fig. 2)
y modifying the provided xApp template. Finally, the modified xApp
s built and instantiated on the near-RT RIC through the commands of
istings 4 and 5.

(4) Online model fine-tuning. At run-time, the xApp communi-
ates with the SCOPE base station through the near-RT RIC and the E2
ermination. To this aim, the xApp first subscribes to the base station by
ending it a RIC Subscription message. Then, it triggers periodic KPMs
eports—with periodicity tunable based on the needs of the users [8]—
rom the base station. These reports are sent through RIC Indication
essages, and they may be used by the xApp to fine-tune the model

nline, allowing it to adapt to varying wireless conditions and traffic
emand. Once the model has been fine-tuned online, the Docker image
f the xApp can be updated with the trained weights.

(5) Perform RAN control/inference. At this stage, the xApp can
e used in the live infrastructure to perform inference and/or control
f the RAN. This entails the xApp transmitting the actions computed by
he model to the SCOPE base station through RIC Control messages. Ex-
mple of these are actions to modify the parameters and configuration
f the base station, e.g., to modify the resources allocated to the slices of
he network, or their scheduling policies. At the base station, these RIC
ontrol messages—received through the O-RAN E2 interface—trigger
he SCOPE control APIs of Fig. 3, which apply the new policies to the
onfiguration of the base station at run time. At this point, the xApps

8 It is worth mentioning that the O-RAN specifications forbid the deploy-
ent of models that have not been trained offline beforehand. This is to shield

he RAN from poor performance or outages [7].

L. Bonati et al.

o
s
i
t
(
a
d
p
i

t
s
(
o
(
t
c
r

o
C
b
c
(
n

Fig. 3. OpenRAN Gym xApp design and testing workflow on Colosseum.
o
m
t
t
d
w
r

o
b
s
w

t

Fig. 4. The architecture of the xApps used in Section 5.1. Source: Adapted from [28].

can be tested and validated on Colosseum. In Sections 6 and 7, we will
show how these newly developed xApps can be ported and instantiated
on external wireless testbeds.

5.1. Example of xApps

For the sake of completeness, we now provide an example of two
xApps designed, trained and tested with OpenRAN Gym on Colosseum.
These xApps are used to control a cellular network with 7 base stations
and 42 UEs instantiated on the Colosseum network emulator. Base
stations adopt a Frequency Division Duplexing (FDD) configuration
with 50 Physical Resource Blocks (PRBs) (corresponding to 10 MHz
f bandwidth). Each base station is implemented through SCOPE and
erves 6 UEs with different traffic requirements. The UEs are divided
nto two classes of traffic, allocated to different slices of the network:
ime-sensitive (e.g, Ultra Reliable and Low Latency Communications
URLLC)) and broadband (e.g., Enhanced Mobile Broadband (eMBB)
nd Machine-type Communications (MTC)). Further examples of xApps
eveloped with OpenRAN Gym and used to optimize the network
erformance of a softwarized RAN instantiated on a general-purpose
nfrastructure are discussed in details in [8,21,25,28].

The xApp structure used in this section is shown in Fig. 4. Although
he general architecture stems from that depicted in Fig. 2, in this
pecific example, the data-driven logic unit consists of two elements:
i) an encoder for data dimensionality reduction, which is in charge
f converting KPM reports received on the E2 interface into a latent
and low dimension) representation of the data, and (ii) a DRL agent
hat converts the latent representation into a state of the network and
omputes the optimal control action that maximizes an agent-specific
eward according to the current state.
Agent Design. DRL agents are trained on a dataset with 3.4 GB

f RAN traces (and more than 73 h of experiments) collected on
olosseum—that make control decisions on the configuration of the
ase station based on the received RAN KPMs (see [8]). The DRL agents
onsidered in this paper implement a Proximal Policy Optimization
PPO) architecture that leverages an actor-critic structure. The actor

etwork is trained to take actions according to the current state of 2
the system, while the critic network is used during the training phase
to evaluate the reward obtained by selecting a specific action in a
certain state. Then, the critic network instructs the actor network on
how valuable the action was, in this way steering the actor network
toward actions that bring the highest reward for each state. Both actor
and critic networks consist of fully-connected neural networks with 5
layers, where each layer has 30 neurons.

Actions. To showcase the impact of different design choices on the
overall performance of the network, we trained two xApps with differ-
ent action spaces. One xApp (named sched) controls the scheduling
policies that a base station uses for specific classes of traffic. Another
xApp (sched-slicing) is instead operating over a larger action
space as it controls both scheduling policies, and the resource allocated
to each slice (i.e., the number of RBGs assigned to each class of traffic).

Reward. In this example, both xApps aim at maximizing the amount
f transmitted data belonging to the broadband traffic class (in this case
easured by the number of downlink TBs transmitted successfully by

he base station to the UEs), and minimizing the end-to-end latency of
he time-sensitive traffic class. As the protocol stack of the base station
oes not have a direct measurement of the end-to-end system latency,
e use the buffer occupancy metric as our proxy for latency, which

eflects how much time packets spend in the transmission buffer queue.
To capture these objectives, the reward of the DRL agents consists

f a reward function that jointly maximizes the throughput for the
roadband slice and minimizes the downlink buffer size for the time-
ensitive slice. These two elements are combined with a weighted sum,
hose details can be found in [8,28].

Fig. 5. Comparison of xApps developed with OpenRAN Gym.
Fig. 5 shows the Cumulative Distribution Function (CDF) of some

RAN metrics measured at the base stations when the two xApps are
instantiated on the ColO-RAN near-RT RIC and used to control the RAN.
Specifically, Fig. 5(a) shows the transmitted TBs for the broadband
slice, while Fig. 5(b) displays the downlink buffer occupancy of the
time-sensitive slice. By acting on a large action set (i.e., the slice
resource allocation), the sched-slicing xApp achieves superior
performance by delivering a higher number of transmitted packets and
reducing the occupancy of the downlink buffer.9

9 A detailed evaluation of OpenRAN Gym xApps, including their orches-
ration, and control of large-scale experimental networks can be found in [8,
1].

L. Bonati et al.

w
t
I
a
c

s
c
a
(

c

b

c
c
(
t
o
c
U

Table 1
Compute node and radio setups used across the different testbeds.

Testbed Compute node Processor CPU cores RAM [GB] Software-defined Radio

Base Station (BS)/UE

Arena Dell PowerEdge R340 Intel Xeon E–2146G 6 32 NI USRP X310
Colosseum Dell PowerEdge R730 Intel Xeon E5–2650 48 128 NI USRP X310
COSMOS Asus server (model undisclosed) Intel i7–4790 4 16 NI USRP B210
POWDER (BS) Dell PowerEdge R740 Intel Xeon Gold 6126 24 98 NI USRP X310
POWDER (UE) Intel NUC 8559 Intel 7–8559U 4 32 NI USRP B210

Near-RT RIC

Arena Dell PowerEdge R340 Intel Xeon E–2146G 6 32 N/A
Colosseum Dell PowerEdge R730 Intel Xeon E5–2650 48 128 N/A
COSMOS Supermicro 1028U-TRT+ Intel Xeon E5–2698 16 251 N/A
POWDER Dell PowerEdge R740 Intel Xeon Gold 6126 24 98 N/A
o

6. Traveling containers

In this section, we illustrate how the OpenRAN Gym containerized
applications, including the xApps developed and pre-trained on Colos-
seum, can be transferred to other testbeds, and describe the necessary
adjustments (if any) to run these applications on each experimental
platform. Although the above procedure may seem trivial in the case
of self-contained applications, in our case this is challenging due to
the fact that our traveling OpenRAN Gym containers need to interact

ith the underlying network resources and be able to properly control
he potentially diverse set of SDRs available in the different testbeds.
n some cases, the firmware of the SDRs requires specific tools only
vailable on certain operating systems versions or distributions. In such
ases, the containers may need to be updated or rebuilt.

1 #!/bin/bash
2 lxc image import scope-with-e2.tar.gz --alias

scope-e2

Listing 6: Commands to import the SCOPE LXC image with the E2
termination module.

To facilitate these tasks, we developed some tools to automatically
tart the OpenRAN Gym LXC containers on the different platforms
onsidered in this work, and to properly interface them with the
vailable radio resources. After the LXC images have been transferred
e.g., through the scp or rsync utilities) in a running instance of

the testbed of interest, the image can be imported with the com-
mands shown in Listing 6. These commands import the scope-with-
e2.tar.gz LXC image transferred from Colosseum (i.e., the SCOPE
image with the module for the E2 termination) to the compute machine
of the remote testbed. After the above operation completes successfully,
the new image, named scope, is visible by running the following
ommand: lxc image list.

The LXC container can be, then, created from the imported image
y running the commands shown in Listing 7. After creating the

1 #!/bin/bash
2 lxc init local:scope-e2 scope

Listing 7: Commands to create the SCOPE LXC container with the E2
termination module from the image imported in Listing 6.

ontainer, additional operations may be required based on the spe-
ific OpenRAN Gym image, and SDR available in the remote testbed
e.g., USRP B210 or X310). As an example, if running the SCOPE con-
ainer with an USRP B210, it is necessary to perform an USB passthrough
peration to allow the container to use the USB interfaces and devices
onnected to the physical host (e.g., the USB interface to control the
SRP). If using an USRP X310, instead, the container needs access to
the network interface the host machine uses to communicate with the
SDR, to set the right Maximum Transmission Unit (MTU) for it, and pos-
sibly to flash the FPGA of the USRP with the appropriate image. In both
these cases, the container may require some additional permissions
to be able to use the passed devices and interfaces (e.g., read/write
permissions on the USB devices).

In the case of ColO-RAN—which can be imported and started with
commands analogous to those shown in Listings 6 and 7—it is necessary
to configure the Network Address Translation (NAT) rules of the host
machine for it to forward the messages directed to the RIC to the ColO-
RAN container (e.g., the E2 Setup Request message used by the base
station to subscribe to the RIC, and the RIC Indication messages used
to send the KPMs to the xApps). Similarly to the previous case, the
LXC container may require some additional permissions (e.g., to run
the Docker containers of the ColO-RAN near-RT RIC in a nested manner
inside the ColO-RAN LXC container).

1 #!/bin/bash
2 lxc start scope

Listing 8: Commands to start the SCOPE LXC container created in
Listing 7.

After these operations have been executed, the LXC container
(e.g., the SCOPE LXC container created in Listing 7) can be started with
the commands of Listing 8. Now, the OpenRAN Gym applications can
be executed by following the procedures detailed in Sections 3 and 4.

To simplify and automate the above setup operations, and to allow
OpenRAN Gym users to swiftly configure and run the transferred
containers, we developed and open-sourced a set of scripts that take
care of (i) passing the right radio interface to the containers; (ii) giving
them the required permissions; (iii) setting up the NAT rules of the host
machine, and, finally, (iv) starting the OpenRAN Gym LXC containers
from the imported images.10 These scripts, which are supposed to be
run after the commands of Listing 6, i.e., after the LXC image has been
imported, are described in Listings 9 and 10.

1 #!/bin/bash
2 ./start-lxc-scope.sh testbed usrp_type [flash]

Listing 9: Commands to start the SCOPE LXC container.

Specifically, Listing 9 creates, sets up, and starts the SCOPE LXC
container starting from the image imported in Listing 6. After creating
the container on the testbed of interest (i.e., arena, powder,
r cosmos), the script configures the USRP specified through the

10 https://github.com/wineslab/openrangym-pawr

https://github.com/wineslab/openrangym-pawr

L. Bonati et al.

o

u
d
w
t
o

C
w
c
p
T
r
b
(

7

f
e
R
M
u
t
d
c

U
t

b

S
v
d
s
C
i

I
o
S
t

o
s
o
P
S

7

f
t
s
c
f
s
n
c

a
s
a
i
s
7

Fig. 6. Overall slice throughput varying the percentage of RBGs allocated to each slice
ver time according to the configuration reported in Table 2.

srp_type parameter (i.e., b210 or x310) following the procedures
escribed above (i.e., passing to the container the devices to interface
ith the USRP, and assigning the appropriate permissions to the con-

ainer). The optional flash parameter also allows to flash the FPGA
f the USRP X310 with the UHD image used by the container.11

1 #!/bin/bash
2 ./start-lxc-ric.sh

Listing 10: Commands to start the ColO-RAN LXC container.

The script of Listing 10 can be used to create, setup, and start the
olO-RAN near-RT RIC container starting from the image imported
ith commands analogous to the ones shown in Listing 6. This script

reates the ColO-RAN near-RT RIC container, assigns it the required
ermissions (e.g., to run the nested Docker containers), and starts it.
hen, it sets the NAT rules of the host machine (where the container is
unning) for it to forward the messages intended for the RIC. Finally, it
uilds and starts the Docker containers of the ColO-RAN near-RT RIC
see Section 4) inside the created LXC container.

. Experimental results

In this section, we showcase some experimental results obtained
rom running OpenRAN Gym and its components across a set of het-
rogeneous testbeds. We ported the SCOPE and ColO-RAN near-RT
IC containers from Colosseum to the Arena, POWDER, and COS-
OS testbeds (see Sections 2 and 6). A description of the setups

sed in these testbeds (also summarized in Table 1) follows. Since
he capabilities offered by the different testbeds can be substantially
ifferent (e.g., number of available over-the-air nodes), for the sake of
onsistency, and to fairly compare results, we run experiments with

11 Please note that after the FPGA has been flashed with a new image, the
SRP may need to be rebooted. We refer to the documentation of the various

estbeds for the instructions on how to achieve this.
Table 2
Slicing configuration, expressed as percentage of RBGs, used in Figs. 6 and 7.

Figure Slice First minute Second minute Third minute

Fig. 6 Slice A 75% RBGs 50% RBGs 25% RBGs
Slice B 25% RBGs 50% RBGs 75% RBGs

Fig. 7 Slice A 75% RBGs 25% RBGs 75% RBGs
Slice B 25& RBGs 75% RBGs 25% RBGs

one cellular base station and up to three UEs, and one near-RT RIC
node. In all cases, we use a FDD configuration with 50 PRBs, corre-
sponding to 10 MHz of bandwidth. We divide the spectrum of the base
stations into up to three network slices, and statically assign the UEs to
them (e.g., based on the Service Level Agreement (SLA) between users
and their network operator). Downlink User Datagram Protocol (UDP)
traffic generated through the iPerf3 tool is leveraged to evaluate the
network performance. Finally, the base stations—implemented through
SCOPE—connect to ColO-RAN near-RT RIC through the E2 interface
standardized by O-RAN.

POWDER. We instantiated both the ColO-RAN near-RT RIC and the
SCOPE base station on Dell PowerEdge R740 compute nodes, while the
UEs were instantiated on Intel NUC 8559 nodes. The radio front-end of
the base station was implemented through a USRP X310, while USRP
B210 were used for the UEs. As this testbed does not natively support
the LXC virtualization technology, the OpenRAN Gym container im-
ages were transferred from Colosseum to the compute nodes through
the scp utility, instantiated on Ubuntu Linux images loaded on the
are-metal servers of the testbed.
COSMOS. In this case, the near-RT RIC was instantiated on a

upermicro 1028U-TRT+ server. Base station and UE, instead, were
irtualized on Asus servers driving USRP B210 SDRs. Similarly to what
one for POWDER, as the LXC virtualization technology is not directly
upported by this testbed, the container images were transferred from
olosseum through the scp utility, and instantiated on Ubuntu Linux

mages loaded on the bare-metal nodes available on the testbed.
Arena. All applications were run on Dell PowerEdge R340 servers.

n this case, the OpenRAN Gym LXC containers are instantiated directly
n the bare-metal nodes of the testbed, which leverage USRP X310
DRs as radio front-ends. On this testbed, the UEs are implemented
hrough commercial smartphones.
Colosseum. To mimic the same deployment scenario used in the

ther testbeds, in Colosseum we considered cellular nodes deployed in a
tatic RF scenario without user mobility. In this case the LXC containers
f RIC, base station, and UEs directly run on Colosseum bare-metal Dell
owerEdge R730 servers. All the cellular nodes leverage USRP X310
DRs as radio-front ends.

.1. Results

To showcase the flexibility of OpenRAN Gym in dynamically recon-
iguring the spectrum allocated to the network slices across different
estbeds, Figs. 6 and 7 show the overall throughput of each network
lice varying the resources allocated to them, in terms of RBGs. 95%
onfidence intervals are also represented by the shaded areas in the
igures. For both figures, the percentage of RBGs allocated to each
lice of the base station—which uses a 10 MHz configuration—is dy-
amically changed through the SCOPE APIs according to the following
onfiguration (also summarized in Table 2).

In Fig. 6, the two network slices, i.e., slice A and B in the figure, are
llocated the following RBGs percentage: (i) 75% to slice A and 25% to
lice B in the first minute; (ii) 50% to each slice in the second minute,
nd (iii) 25% to slice A and 75% to slice B in the third minute. In Fig. 7,
nstead they are allocated the following RBGs percentage: (i) 75% to
lice A and 25% to slice B in the first minute; (ii) 25% to slice A and
5% to slice B in the second minute, and (iii) 75% to slice A and 25% to

L. Bonati et al.

o

s
p
s
t
t
v
t
u
c

i
L
m
F
n
b
n
x
i
S
a
t
a
a
s
t
t
r

t
t
w
c
t
u
o
P

Fig. 7. Overall slice throughput varying the percentage of RBGs allocated to each slice
ver time according to the configuration reported in Table 2.

lice B in the third minute. In both these figures, the throughput varies
roportionally to the specific allocation of slice resources, in which
lices with more RBGs achieve higher throughput values. These values
hen change during the experiment as RBGs are dynamically reallocated
o the slices. We notice that even if the throughput differs across the
arious testbeds because of the different capabilities and environments
hey offer—with Arena achieving the highest performance due to the
se of commercial smartphones as the UEs—the overall trends are
onsistent across the different setups.

We now showcase an instance in which the ColO-RAN near-RT RIC
s leveraged to control a softwarized RAN implemented through SCOPE.
XC containers for both applications are deployed on the testbeds
entioned above, whose specifications are summarized in Table 1.

ig. 8 shows the evolution in time of the throughput of the three
etwork slices (namely, slice A, B, and C) implemented by the SCOPE
ase station. Initially, we consider the baseline configuration where
o control is performed by the RIC. Then, at around second 150, an
App that prioritizes one of the network slices (slice A in the figure)
s instantiated on the near-RT RIC. Following the O-RAN RAN slicing
M, this is done by reconfiguring at run time the number of RBGs that
re assigned exclusively to each slice, and can be used to schedule
ransmissions for users belonging to that slice [29]. This, for example,
llows slice A to transmit across many RBGs, as shown in Fig. 8. As
result, the xApp dynamically reallocates the amount of RBGs of each

lice, which reflects on the performance of the slices of the RAN. Similar
o the previous case, slices with a larger amount of RBGs allocated
o them achieve higher throughput values. Overall, even in this case
esults are consistent across the different testbeds.

Now we show some timing statistics on the average amount of time
aken to transfer the SCOPE and ColO-RAN LXC images from Colosseum
o the Arena, COSMOS, and POWDER platforms. All the image transfers
ere performed through the scp utility, while the LXC containers were

reated following the procedures detailed in Section 6. In both cases,
hese timing statistics were derived using the hardware of Table 1. We
sed the compute nodes listed in the ‘‘base station (BS)/UE’’ section
f the table for the SCOPE LXC image/container (in the case of the

OWDER platform, in which different compute nodes were are listed
Fig. 8. Slice throughput when the SCOPE RAN is controlled by ColO-RAN near-RT RIC.
At around second 150, xApp to prioritize the amount of resources (i.e., RBGs) allocated
to slice A is instantiated on the near-RT RIC.

Table 3
Average time to transfer the LXC images from Colosseum to specific testbeds. The size
of each image is listed in brackets.

Testbed SCOPE w/ E2
(1.7 GB)

ColO-RAN near-RT RIC,
prebuilt (6.5 GB)

ColO-RAN near-RT RIC,
to build (1.6 GB)

Arena 1 m 27.413 s 5 m 41.487 s 1 m 25.002 s
COSMOS 1 m 28.631 s 5 m 39.704 s 1 m 27.352 s
POWDER 1 m 30.787 s 5 m 43.704 s 1 m 28.546 s

Table 4
Average time to start as a container the LXC image exported from Colosseum on specific
testbeds. The size of each image is listed in brackets.

Testbed SCOPE w/ E2
(1.7 GB)

ColO-RAN near-RT RIC,
prebuilt (6.5 GB)

ColO-RAN near-RT RIC,
to build (1.6 GB)

Arena 0.887 s 1 m 11.483 s 46 m 18.110 s
COSMOS 25.463 s 2 m 34.905 s 26 m 4.410 s
POWDER 30.139 s 2 m 55.654 s 21 m 11.220 s

for base station and UE, the base station node was used), and the
compute nodes in ‘‘near-RT RIC’’ section of the table for ColO-RAN. In
the tables that will be described next, we consider the following LXC
images:

• SCOPE w/ E2: this is the SCOPE LXC image with the O-RAN E2
termination to interface with the near-RT RIC.

• ColO-RAN near-RT RIC, prebuilt : this is the ColO-RAN LXC image
in which the Docker containers of the RIC, and sample xApp
(described in Section 4) have been built a priori.

• ColO-RAN near-RT RIC, to build: this is the ColO-RAN LXC image
with the scripts to build the Docker containers of the RIC and
sample xApp from scratch.

Table 3 shows the average time required to transfer the LXC im-
ages from Colosseum to the other platforms. Times span from as low
as ∼1.5 min to as high as almost 6 min, depending on the size of
each image—also listed in the table—and capabilities of the testbeds.
However, transfer times are consistent across the different testbeds.

Finally, Table 4 shows the times taken to instantiate LXC containers

from the images transferred from Colosseum. In this case, we notice

L. Bonati et al.

p
u
r
t
a
t
f
t
o
t
1
l
c
e
1

8

p
g
f
t
O
R
d
s
a
O
c
C
a
r
C
a
c

D

c
i

D

R

some difference among the times achieved on the different testbeds.
For instance, Arena is significantly faster than COSMOS and POWDER
in instantiating the SCOPE container—completing the instantiation in
less than 1 s—and the prebuilt ColO-RAN container (instantiation in ap-
roximately 1 minute). This is mainly due to the fact that Arena allows
sers to instantiate applications on the bare-metal nodes directly. This
emoves the latency of the extra virtualization layer of the other two
estbeds, in which the LXC containers are nested inside the virtualized
rchitecture the users are given access to. When it comes to building
he Docker containers of the ColO-RAN near-RT RIC (see Section 4)
rom scratch, instead, POWDER and COSMOS are significantly faster
han Arena, taking approximately half the time to complete the same
perations. This is mainly due to the superior compute capabilities of
he nodes of these two testbeds (24-core CPU server on POWDER, and
6-core server on COSMOS vs. 6-core CPU server on Arena). Nonethe-
ess, this building operation needs to be completed only once, as the
ompiled ColO-RAN LXC image can be saved to be used in subsequent
xperiments, with instantiation times sensibly lower (slightly above
minute for Arena, and below 3 min for POWDER and COSMOS).

. Conclusions

We presented OpenRAN Gym, the first publicly-available research
latform for data-driven O-RAN experimentation at scale on hetero-
eneous wireless testbeds. Building on, and extending, frameworks
or data collection and RAN control, OpenRAN Gym enables the end-
o-end design and testing of data-driven xApps instantiated on the
-RAN infrastructure. We described the core components of Open-
AN Gym—including frameworks and experimental platforms—and
etailed procedures and configuration options for experimenting at
cale on a softwarized RAN instantiated on Colosseum. Then, we gave
n overview of the xApp design and testing workflow enabled by
penRAN Gym, also showcasing an example of two xApps used to
ontrol a large-scale O-RAN managed softwarized RAN deployed on
olosseum. Finally, we demonstrated how OpenRAN Gym solutions
nd experiments can be transitioned from Colosseum to heterogeneous
eal-world platforms, such as the Arena testbed, and the POWDER and
OSMOS platforms of the PAWR program. OpenRAN Gym is publicly-
vailable to the research community, and opened up for community
ontributions and additions.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data is available at https://openrangym.com.

eferences

[1] L. Bonati, M. Polese, S. D’Oro, S. Basagni, T. Melodia, OpenRAN Gym: An
open toolbox for data collection and experimentation with AI in O-RAN, in:
Proceedings of IEEE WCNC Workshop on Open RAN Architecture for 5G
Evolution and 6G, Austin, TX, USA, 2022.

[2] L. Bonati, M. Polese, S. D’Oro, S. Basagni, T. Melodia, Open, programmable, and
virtualized 5G networks: State-of-the-art and the road ahead, Comput. Netw. 182
(2020) 1–28.

[3] O-RAN Working Group 1, O-RAN Architecture Description 5.00, 2021,
O-RAN.WG1.O-RAN-Architecture-Description-v05.00 Technical Specification.

[4] M. Polese, L. Bonati, S. D’Oro, S. Basagni, T. Melodia, Understanding O-RAN:
Architecture, interfaces, algorithms, security, and research challenges, 2022,
arXiv:2202.01032 [cs.NI].

[5] O-RAN Working Group 3, O-RAN near-RT RAN intelligent controller near-RT RIC

architecture 2.00, 2021, O-RAN.WG3.RICARCH-v02.00.
[6] O-RAN Working Group 2, O-RAN Non-RT RIC Architecture 1.0, 2021,
O-RAN.WG2.Non-RT-RIC-ARCH-TS-v01.00 Technical Specification.

[7] O-RAN Working Group 2, O-RAN AI/ML workflow description and requirements
1.03, 2021, O-RAN.WG2.AIML-v01.03 Technical Specification.

[8] M. Polese, L. Bonati, S. D’Oro, S. Basagni, T. Melodia, ColO-RAN: Developing ma-
chine learning-based xApps for open RAN closed-loop control on programmable
experimental platforms, IEEE Trans. Mob. Comput. (2022) 1–14.

[9] S. D’Oro, M. Polese, L. Bonati, H. Cheng, T. Melodia, dApps: Distributed
applications for real-time inference and control in O-RAN, IEEE Commun. Mag.
(2022) 1–7, in print; preprint available at https://arxiv.org/pdf/2203.02370.pdf.

[10] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-Moayyed,
D. Villa, S. Shrivastava, C. Tassie, K. Yoder, A. Bagga, P. Patel, V. Petkov,
M. Seltser, F. Restuccia, A. Gosain, K.R. Chowdhury, S. Basagni, T. Melodia,
Colosseum: Large-scale wireless experimentation through hardware-in-the-loop
network emulation, in: Proceedings of IEEE DySPAN, 2021.

[11] L. Bonati, S. D’Oro, S. Basagni, T. Melodia, SCOPE: An open and softwarized
prototyping platform for NextG systems, in: Proceedings of ACM MobiSys, 2021.

[12] L. Bertizzolo, L. Bonati, E. Demirors, A. Al-Shawabka, S. D’Oro, F. Restuccia, T.
Melodia, Arena: A 64-antenna SDR-based ceiling grid testing platform for sub-6
GHz 5G-and-beyond radio spectrum research, Comput. Netw. 181 (2020) 1–17.

[13] Platforms for Advanced Wireless Research (PAWR). https://www.
advancedwireless.org. (Accessed December 2021).

[14] J. Breen, A. Buffmire, J. Duerig, K. Dutt, E. Eide, A. Ghosh, M. Hibler, D.
Johnson, S.K. Kasera, E. Lewis, et al., POWDER: Platform for open wireless
data-driven experimental research, Comput. Netw. 197 (2021) 1–18.

[15] D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen, J.
Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Maheshwari,
P. Skrimponis, C. Gutterman, Challenge: COSMOS: A city-scale programmable
testbed for experimentation with advanced wireless, in: Proceedings of ACM
MobiCom, London, United Kingdom, 2020.

[16] M. Dryjanski, L. Kulacz, A. Kliks, Toward modular and flexible open RAN
implementations in 6G networks: Traffic steering use case and O-RAN xApps,
Sensors 21 (24) (2021) 1–14.

[17] D. Johnson, D. Maas, J. Van Der Merwe, Open source RAN slicing on POWDER:
A top-to-bottom O-RAN use case, in: Proceedings of ACM MobiSys, 2021.

[18] H. Lee, J. Cha, D. Kwon, M. Jeong, I. Park, Hosting AI/ML workflows on O-RAN
RIC platform, in: Proceedings of IEEE GLOBECOM Workshops, 2020.

[19] A.S. Abdalla, P.S. Upadhyaya, V.K. Shah, V. Marojevic, Toward next generation
open radio access network–what O-RAN can and cannot do!, 2021, ArXiv
Preprint arXiv:2111.13754 [cs.NI].

[20] O-RAN Alliance Conducts First Global Plugfest to Foster Adoption of Open and
Interoperable 5G Radio Access Networks. https://tinyurl.com/f48auynf. 2019.

[21] S. D’Oro, L. Bonati, M. Polese, T. Melodia, Orchestran: Network automation
through orchestrated intelligence in the open RAN, in: Proceedings of IEEE
INFOCOM, 2022, arXiv:2201.05632 [cs.NI].

[22] I. Gomez-Miguelez, A. Garcia-Saavedra, P. Sutton, P. Serrano, C. Cano, D. Leith,
srsLTE: An open-source platform for LTE evolution and experimentation, in:
Proceedings of ACM WiNTECH, 2016.

[23] F. Kaltenberger, A. P. Silva, A. Gosain, L. Wang, T.-T. Nguyen, OpenAirInterface:
Democratizing innovation in the 5G era, Comput. Netw. (107284) (2020).

[24] M. Kohli, T. Chen, M.B. Dastjerdi, J. Welles, I. Seskar, H. Krishnaswamy, G.
Zussman, Open-access full-duplex wireless in the ORBIT and COSMOS testbeds,
Comput. Netw. (2021).

[25] L. Bonati, S. D’Oro, M. Polese, S. Basagni, T. Melodia, Intelligence and learning
in O-RAN for data-driven NextG cellular networks, IEEE Commun. Mag. 59 (10)
(2021) 21–27.

[26] O-RAN Software Community. O-DU L2 Repository. https://github.com/o-ran-
sc/o-du-l2. (Accessed December 2021).

[27] D. Johnson, POWDER RIC Profile Repository. https://gitlab.flux.utah.edu/
johnsond/ric-profile. (Accessed December 2021).

[28] L. Bonati, M. Polese, S. D’Oro, S. Basagni, T. Melodia, Intelligent Closed-loop
RAN Control with xApps in OpenRAN Gym, in: Proceedings of European Wireless
2022, Dresden, Germany, 2022.

[29] O-RAN Working Group 3, O-RAN near-real-time RAN intelligent controller E2
service model 2.00, 2021, ORAN-WG3.E2SM-v02.00 Technical Specification.

Leonardo Bonati is an Associate Research Scientist at the
Institute for the Wireless Internet of Things, Northeast-
ern University, Boston, MA. He received the Ph.D. degree
in Computer Engineering from Northeastern University in
2022. His main research focuses on softwarized approaches
for the Open Radio Access Network (RAN) of the next gen-
eration of cellular networks, on O-RAN-managed networks,
and on network automation and orchestration. He served
multiple times on the technical program committee of the
ACM Workshop on Wireless Network Testbeds, Experimental
evaluation & Characterization, and as guest editor of the
special issue of Elsevier’s Computer Networks journal on
Advances in Experimental Wireless Platforms and Systems.

https://openrangym.com
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb3
http://arxiv.org/abs/2202.01032
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb5
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb5
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb5
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb6
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb6
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb6
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb8
https://arxiv.org/pdf/2203.02370.pdf
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb12
https://www.advancedwireless.org
https://www.advancedwireless.org
https://www.advancedwireless.org
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb18
http://arxiv.org/abs/2111.13754
https://tinyurl.com/f48auynf
http://arxiv.org/abs/2201.05632
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb22
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb22
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb22
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb22
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb22
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb23
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb23
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb23
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb25
https://github.com/o-ran-sc/o-du-l2
https://github.com/o-ran-sc/o-du-l2
https://github.com/o-ran-sc/o-du-l2
https://gitlab.flux.utah.edu/johnsond/ric-profile
https://gitlab.flux.utah.edu/johnsond/ric-profile
https://gitlab.flux.utah.edu/johnsond/ric-profile
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb28
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb28
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb28
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb28
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb28
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb29
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb29
http://refhub.elsevier.com/S1389-1286(22)00536-9/sb29

L. Bonati et al.
Michele Polese is a Principal Research Scientist at the
Institute for the Wireless Internet of Things, Northeastern
University, Boston, since March 2020. He received his Ph.D.
at the Department of Information Engineering of the Uni-
versity of Padova in 2020. He also was an adjunct professor
and postdoctoral researcher in 2019/2020 at the University
of Padova, and a part-time lecturer in Fall 2020 and 2021
at Northeastern University. During his Ph.D., he visited New
York University (NYU), AT&T Labs in Bedminster, NJ, and
Northeastern University. His research interests are in the
analysis and development of protocols and architectures for
future generations of cellular networks (5G and beyond),
in particular for millimeter-wave and terahertz networks,
spectrum sharing and passive/active user coexistence, open
RAN development, and the performance evaluation of end-
to-end, complex networks. He has contributed to O-RAN
technical specifications and submitted responses to multiple
FCC and NTIA notice of inquiry and requests for comments,
and is a member of the Committee on Radio Frequency
Allocations of the American Meteorological Society (2022–
2024). He collaborates and has collaborated with several
academic and industrial research partners, including AT&T,
Mavenir, NVIDIA, InterDigital, NYU, University of Aalborg,
King’s College, and NIST. He was awarded with several
best paper awards, is serving as TPC co-chair for WNS3
2021–2022, as an Associate Technical Editor for the IEEE
Communications Magazine, and has organized the Open 5G
Forum in Fall 2021. He is a Member of the IEEE.

Salvatore D’Oro is a Research Assistant Professor at North-
eastern University. He received his Ph.D. degree from the
University of Catania in 2015. Salvatore is an area editor
of Elsevier Computer Communications journal and serves
on the Technical Program Committee (TPC) of multiple
conferences and workshops such as IEEE INFOCOM, IEEE
CCNC, IEEE ICC and IFIP Networking. Dr. D’Oro’s research
interests include optimization, artificial intelligence, secu-
rity, network slicing and their applications to 5G networks
and beyond. He is a Member of the IEEE.
Stefano Basagni is with the Institute for the Wireless
Internet of Things and a professor at the ECE Department at
Northeastern University, in Boston, MA. He holds a Ph.D. in
electrical engineering from the University of Texas at Dallas
(2001) and a Ph.D. in computer science from the University
of Milano, Italy (1998). Dr. Basagni’s current interests
concern research and implementation aspects of mobile net-
works and wireless communications systems, wireless sensor
networking for IoT (underwater, aerial and terrestrial), and
definition and performance evaluation of network protocols.
Dr. Basagni has published over twelve dozen of highly cited,
refereed technical papers and book chapters. His h-index
is currently 49 (November 2022). He is also co-editor of
three books. Dr. Basagni served as a guest editor of multiple
international ACM/IEEE, Wiley and Elsevier journals. He has
been the TPC co-chair of international conferences. He is a
distinguished scientist of the ACM, a senior member of the
IEEE, and a member of CUR (Council for Undergraduate
Education).

Tommaso Melodia is the William Lincoln Smith Chair
Professor with the Department of Electrical and Computer
Engineering at Northeastern University in Boston. He is also
the Founding Director of the Institute for the Wireless In-
ternet of Things and the Director of Research for the PAWR
Project Office. He received his Ph.D. in Electrical and Com-
puter Engineering from the Georgia Institute of Technology
in 2007. He is a recipient of the National Science Founda-
tion CAREER award. Prof. Melodia has served as Associate
Editor of IEEE Transactions on Wireless Communications,
IEEE Transactions on Mobile Computing, Elsevier Computer
Networks, among others. He has served as Technical Pro-
gram Committee Chair for IEEE Infocom 2018, General
Chair for IEEE SECON 2019, ACM Nanocom 2019, and ACM
WUWnet 2014. Prof. Melodia is the Director of Research
for the Platforms for Advanced Wireless Research (PAWR)
Project Office, a $100M public–private partnership to estab-
lish 4 city-scale platforms for wireless research to advance
the US wireless ecosystem in years to come. Prof. Melodia’s
research on modeling, optimization, and experimental evalu-
ation of Internet-of-Things and wireless networked systems
has been funded by the National Science Foundation, the
Air Force Research Laboratory the Office of Naval Research,
DARPA, and the Army Research Laboratory. Prof. Melodia
is a Fellow of the IEEE and a Senior Member of the
ACM.

	OpenRAN Gym: AI/ML development, data collection, and testing for O-RAN on PAWR platforms
	Introduction
	OpenRAN Gym
	Data Collection and Control Framework
	Starting SCOPE

	O-RAN Control Architecture
	Starting the ColO-RAN near-RT RIC
	Connecting the SCOPE base station to ColO-RAN
	Initializing a Sample xApp

	xApp Development Workflow on Colosseum
	Example of xApps

	Traveling Containers
	Experimental Results
	Results

	Conclusions
	Declaration of Competing Interest
	Data availability
	References

