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Abstract—Given their independence from operators and poten-
tially unrestricted range of operations, Autonomous Underwater
Vehicles (AUVs) are considered key enablers of a host of
applications of the Blue Economy. A critical requirement for
AUVs is that of being able to self-localize so that the data they
collect are clearly marked with position information. Localization
is challenging underwater, as GPS and other technologies that
use radio frequencies do not work in water. This has brought to
the development of solutions that often involve costly technology
and operations that are impractical to use in many situations,
such as when swift and affordable localization is required. In this
paper, we present a method for localizing AUVs that lends itself
to be used in such situations, while providing localization that is
as accurate as that from more expensive methods. Our method
is based on pre-deployed acoustic beacons (whose coordinates do
not need to be known by the AUV) and on mainstream sensors
usually available onboard most AUVs. It employs an adaptive
Extended Kalman Filter (EKF) that exploits statistical techniques
to overcome the inaccuracies of baseline EKF when the noise of
the environment or of the instrumentation is time-varying or
unknown. We demonstrate the effectiveness of our method for
accurate AUV localization through simulations and experiments
at sea with an AUV and commercial acoustic transducers.
Our results show swift determination of the beacon positions
and meter-level localization, suggesting that our method can be
effectively used in most underwater applications.

Keywords-Adaptive Kalman Filter, Autonomous Underwater
Vehicles (AUVs), long baseline (LBL) localization.

I. INTRODUCTION

Advances in technologies for real-time monitoring and con-
trol of underwater environments have provided unprecedented
interest in deploying devices that enable the sustainable ex-
ploitation of oceans and waterways and meet the requirements
of applications for the Blue Economy [1]. This is certainly the
case of Autonomous Underwater Vehicles (AUVs) [2], which
are increasingly used in critical missions in a wide variety of
sectors. A fundamental requirement of each application is that
the AUV should be aware of its position, so as to be precisely
guided to loci of interests and to report the location of sensed
events and data sources accurately. As radio frequency-based
communication and navigation systems (e.g., GPS) cannot be
used to communicate and guide vehicles in water, underwater
devices have been provided with alternative technologies, e.g.,
acoustic transducers, which afford them robust communication
and sensing with levels of accuracy previously unthinkable.

Over the years, AUV localization and navigation systems
have been devised that can be divided into those based on

dead-reckoning and Inertial Navigation Systems, and those
based on external interaction with other devices. The first type
of systems uses proprioceptive detection from sensors such as
accelerometers and gyroscopes; the second type assists the
vehicle by supplementing additional information, usually by
means of acoustic communications. The latter include Long
Baseline (LBL) acoustic positioning systems, which allow
an AUV to self-localize by determining its position with
respect to pre-deployed acoustic transceivers (beacons), whose
coordinates are known or can be estimated by the AUV [3].
Although systems of this kind are usually more precise, a
trade-off is to be made between accuracy and both cost (of
devices and their deployment) and time (for deployment and
calibration). Accurate LBL systems offer a clear example:
setting the beacons up, and providing them with accurate ways
to keep up-to-date coordinates can be costly, especially when
their use is requested only for a limited period of time. This
is why, when cost is an issue, and whenever a localization
system is needed swiftly or temporarily, new methodologies
are sought after that provide acceptable accuracy “on the fly,”
possibly using off-the-shelf components.

One of such methodologies uses optimized statistical pro-
cessing of sensed data to cope with the nonlinear dynamics of
the environment. Kalman filtering [4] and its variants play an
essential role in these scenarios by aggregating the measures
and the bias associated to the system components into a
comprehensive estimate of the system state. However, the
accuracy of the estimates obtained by using Kalman filters
is highly dependent on the a priori knowledge of the noise
statistics of the model. The use of incorrect statistics can lead
to substantial estimation errors or even to filter divergence,
especially if the noise is time-varying, as it is often the case
underwater. Adaptive noise estimation techniques allow such
issues to be obviated by estimating the error statistics of
the vehicle state or of its sensors while moving. It follows
that systems that are able to adapt to the time-varying noise
conditions of the environment or of the instrumentation are less
dependent on expensive sensor suites and costly equipment
(that are more accurate and noise-resilient by design) if they
favor, instead, active noise compensation strategies.

In this work, we aim at devising a technique of this
kind to show that even for AUVs carrying common sens-
ing equipment, remarkably accurate localization is possible.
Specifically, we present an LBL system for localizing an AUV
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that only relies on an Inertial Measurement Unit (IMU) to
determine its orientation, a pressure sensor to measure its
depth, and an acoustic modem to communicate with the acous-
tic beacons deployed in the surveyed area. The estimation
of the dynamic state of the system, comprehensive of the
measurements from the beacons, relies on an adaptive EKF.
Our proposed methodology enables the AUV to autonomously
estimate the coordinates of the beacons and the statistical
noise of the IMU data before starting the mission. As such,
the beacon coordinates do not need to be known a priori.
The AUV then self-localizes while moving, by constantly
adapting its knowledge of the noise of the measures received
from the beacons. We show that our methodology is more
accurate than non-adaptive solutions [5]–[8] via simulation
and tests at sea, where our solution can estimate the previously
unknown coordinates of the beacons in about 3 minutes and
can achieve meter-level mean localization accuracy, obtaining
a 60% improvement over a similar non-adaptive version.

The rest of this paper is organized as follows. Work on
adaptive filtering in AUV and beacon localization is described
in Section II. In Section III we define our adaptive localization
method. Its performance is evaluated and benchmarked in
Section IV. Lastly, we draw our conclusions in V.

II. PREVIOUS WORK

Several works exist in the literature on adaptive solutions
to tackle the time-varying noise characteristics of both ter-
restrial [9]–[12] and underwater [13]–[17] dynamic systems.
Among those concerning AUV localization in the underwater
domain, the work by Wang et al. proposes an adaptive Sage-
Husa-based Unscented KF (UKF) that allows estimating the
process noise and measurement covariance matrices [13].
Instead of using an AUV, the method is validated by localizing
a body that is towed by a vessel equipped with a costly
suite of navigation sensors. While they report sub-meter Root
Mean Square Error (RMSE) their setting is quite different
from ours, which is concerned with actual low-cost AUVs and
instruments. Xu et al. propose an Ultra-Short Baseline (USBL)
positioning system based on adaptive Kalman Filtering to
adjust the process noise and the measurement covariance ma-
trices using the residuals of the latest measurement data [14].
An adaptive method is suggested by Shao et al. to adapt the
process noise and measurement covariance matrices of an EKF
and an AUV performing dead reckoning using measurements
from a Doppler Velocity Log (DVL) and from an Attitude and
Heading Reference Systems (AHRS) [15]. The comparison
between the GPS ground truth and the filter estimates of
these two works suggests a localization error higher than
that from our approach. However, no localization error metric
has been reported by the authors, which makes it difficult to
compare their work to ours. In order to adapt the process noise
covariance matrix to possibly varying process noise, Hajiyev
et al. propose a UKF in which an adaptive process noise
scale factor is put into the covariance matrix of the innovation
sequence [16]. Their method is evaluated via simulations. As
the authors do not apply adaptive strategies to the measurement

covariance matrix and do not provide experiments at sea, a
comparison with our method would be scarcely informative.
Sun et al. propose a modified version of a Sage-Husa filter with
an adaptive forgetting factor for an AUV using dead reckoning
navigation [17]. They test their solution at sea, reporting a
localization error up to 9 m, which we improve in this work.

Estimating unknown beacon coordinates is performed ex-
tensively in terrestrial applications and in Simultaneous Local-
ization and Mapping (SLAM) [18]. It has also been attempted
in the context of underwater localization. Vaganai et al., for
instance, use the Least Squares method to home an AUV
to a single beacon of unknown coordinates [19]. Instead
of using GPS (as we do), the AUV uses dead reckoning
while diving in a circular motion to disambiguate possibly
collinear positions. Such approach is not directly comparable
to ours, as no tests on localization accuracy are presented.
Olson et al. use a voting scheme to determine the most
likely beacon coordinates after filtering out outliers in range
measurements [20]. They test their approach against a baseline
EKF with knowledge of the beacon positions. The work
concerns only beacon localization, and does not report on
the accuracy of localizing AUVs. As such, a comparison
with our work is not directly possible. Teixeira et al. propose
an EKF-based estimation technique aimed at maximizing the
determinant of the innovation covariance matrix to determine
the most likely beacon coordinates. The authors do not provide
direct localization accuracy metrics for comparison but they
plot the mean euclidean error in time. It can be seen that, using
an optimized AUV trajectory, they are able to converge to a
localization error comparable to ours. However, their method is
only tested by simulations and requires initial estimates of the
beacon positions. Newman et al. propose a range-only based
scheme to enable an AUV to determine the coordinates of the
beacons while moving [21]. Their approach is tested against
an EKF with knowledge of the true beacon positions. The
authors provide error metrics concerning the lengths of the
respective inter-beacon baselines (comprised between 3.7 m
and 10 m) and a plot of the estimated vs. EKF “ground-truth”
trajectories, which suggests that their localization accuracy is
lower than ours. The latter two works consider the problem as
a SLAM problem, i.e., they include the beacon coordinates in
the state of the EKF.

III. ADAPTIVE AUV LOCALIZATION

Our localization method operates in marine scenarios
where N > 0 LBL beacons have been statically deployed.
The coordinates of the beacons do not need to be known. Each
beacon has a unique ID. An AUV navigates in such scenario,
with no knowledge about the beacon coordinates or of their
IDs. We stipulate that the AUV uses data from its onboard
IMU and pressure sensor, which provides depth information.

The aim of the AUV is to compute its approximate location
through inertial navigation, using yaw measures computed
through the IMU. In order to offset the inaccuracies due to
accumulating integration errors (drift), which is common for
inertial navigation, the AUV periodically calculates its distance



from the beacons (range). The AUV relies on an EKF to fuse
the approximate estimates of inertial navigation and the range
measurements, in order to compute an estimate of its location.
The EKF is assumed to have no knowledge of the true noise
statistics related to the yaw and range measurements.

For the AUV to self-localize, we need to estimate the
accurate coordinates of the beacons, the noise statistics of the
IMU and those of the range measures. To this purpose, we
divide our localization method operations into two phases.
• GPS-aided Phase. This phase occurs at the very beginning
of the AUV mission, when the AUV has no knowledge of the
beacon locations and no accurate belief on the accuracy of its
IMU. The AUV (on the surface) will only rely on the accuracy
of the GPS measurements to estimate the unknown coordinates
of the beacons, derive the error on the yaw measures and
embed it into the EKF formulation. These procedures are
described in Sections III-B and III-C, respectively.
• Inertial LBL Localization Phase. After the location of
at least n ≤ N beacons and the noise statistics of the IMU
have been estimated, the AUV can start its actual underwater
mission. From this point on, the location information from the
GPS is no longer used, and the AUV only relies on the inertial
navigation and range measures to estimate the evolution of
its state in time in accordance with the model described in
Section III-A. During this phase the AUV keeps estimating
the noise statistics on the range measures (Section III-D).

A. Localization System Model

We define the state of the AUV at time k as xk = [pk, vk],
where pk = (px,k, py,k) is the position on the North and East
relative coordinates of a North East Down (NED) reference
frame,1 and vk is the speed of the AUV. We indicate the planar
position of beacon i with pi = (pix, p

i
y).

The AUV dynamics are modelled as a constant velocity
model, formalized by the following recursive equation:

xk = f(xk−1, θk, q) =

=

1 0 ∆t · cos(θk + qθ)
0 1 ∆t · sin(θk + qθ)
0 0 1 + qv


︸ ︷︷ ︸

F

xk−1,

where q = [qθ, qv] is a zero mean Gaussian random variable
with covariance matrix Q, and θk is the yaw value obtained
by integrating the angular velocity reading from the IMU at
time k.

At a frequency of 1
∆t Hz a new yaw reading is performed

and the AUV computes a new estimate xk|k−1, Pk|k−1 through
the Predict Equations of the EKF:

xk|k−1 = F · xk−1|k−1

Pk|k−1 = F · Pk−1|k−1 · FT + Lk ·Q · LT
k .

1 The high accuracy and low cost of pressure sensors, allow the navigation
problem to be reduced to the 2D plane.

where Lk = ∂f
∂q

∣∣∣xk=xk|k−1,
q=0

is the Jacobian of f with respect

to the error.
Asynchronously with respect to the time-evolution of the

dynamics model, the AUV polls the beacons by broadcasting
a range request packet (rg pkt). Upon reception of a rg pkt,
the beacons reply with a packet containing their ID (ID pkt).
The AUV can calculate its distance (range) from beacon i
using the two-way Time of Flight (ToF) as follows:

dik =
(trgj − tID

i

j′ )c

2
, j < j′,

where trgj and tID
i

j′ are the times at which the rg pkt packet
and the ID pkt packet from beacon i are sent and received,
respectively, and c is the speed of sound in water. The
distance dik from beacon i is related to the AUV state through
the Measure Equation:

dik = h(pk, p
i, rb) + rr =

=
∣∣∣∣ [pk − pi + rb, pz,k − piz

] ∣∣∣∣
2
+ rr ,

where rb and rr are Gaussian random variables representing
the error of the beacon position and the ranging error, respec-
tively. We indicate the overall error with r = [rb, rr] and its
covariance matrix with R. The depth measured by the AUV
depth sensor and that of beacon i are indicated, respectively, as
pz,k and piz . Each time a range measure is computed, the AUV
updates the state and covariance matrix estimates accordingly,
through the Update Equations of the EKF:

Sk = Hk · Pk|k−1 ·HT
k +Mk ·R ·MT

k

Kk = Pk|k−1 ·HT
k · S−1

k

xk|k = xk|k−1 +Kk · (dik − h(xk|k−1, p
i, 0)) (1)

Pk|k = (I −KkHk) · Pk|k−1.

Here Hk = ∂h
∂xk

∣∣∣xk=xk|k−1

r=0

is the Jacobian of h with respect

to the state, and Mk = ∂h
∂r

∣∣xk=xk|k−1

r=0
is the Jacobian of h with

respect to the error.

B. GPS-aided Beacon Localization

During the GPS-aided phase, the planar coordinates and
depth of the AUV are determined using GPS and the pressure
sensor. Using the ranges computed during this phase, the
estimation of the unknown coordinates of the beacons becomes
a Least Squares optimization problem. Let p∗i be the unknown
true position of beacon i, pG0,k and ri0,k the collections of AUV
positions measured using GPS and of range measurements,
respectively, up until time k and relative to beacon i. Then:

p∗i = (xi
∗, yi

∗) = argmin
p̂i

(ri0,k − ||p̂i − pG0,k||2).

Since the number of steps needed for the above formulation
to converge to an exact solution is inversely proportional to the
accuracy of the GPS measures, p̂i might not converge to p∗i
in a reasonable amount of steps. Because of this, we impose
that ∆i

p = ||p∗i − p̂i||2 ≤ τ , where τ is a predefined threshold,



that can be interpreted as an upper bound of the uncertainty
on the position of the beacons. Thus, we use ∆i

p as the initial
value for the covariance term σ2

b,i on beacon i. Once n = 3
beacons have been localized, the AUV can start the actual
mission. If subsequent ranges from previously unseen beacons
are received, the procedure we just described is carried out
using the position estimates of the EKF without GPS.

C. Initial Process Noise Covariance Estimation

The Process Noise Covariance Matrix Q is defined as:

Q =

(
σ2
θ 0
0 σ2

v

)
,

where σ2
θ and σ2

v are the covariance on the yaw measures and
on the speed estimates, respectively. We wish to leverage the
precise location measurements during the GPS-aided phase, to
calibrate the covariance term σ2

θ of the Q matrix of the EKF.
Here, the aim is to find an initial fixed value for σ2

θ that is as
close as possible to the real intrinsic time-invariant noise on
the yaw readings from the IMU.

The following reasoning holds under a few assumptions:
(I) the trajectory between pairwise subsequent GPS-acquired
positions pGk−1 and pGk , k ≥ 1 is approximable as linear with
sufficient confidence (i.e., the frequency of GPS measurements
sufficiently high and is directly proportional to the speed of the
AUV) and (II) noise factors (e.g., water currents) other than
the time-invariant sensor noise are absent, known or estimated.

The yaw θk measured at time k, expresses the rotation
of the AUV heading with respect to the z-axis of its own
reference frame. Such rotation can also be derived using
pairwise subsequent positions acquired by the GPS, as:

θ̂k = atan2(pGy,k − pGy,k−1, p
G
x,k − pGx,k−1), k ≥ 1

i.e., θ̂k is the angle in the Euclidean plane between the positive
x-axis of the NED-referenced frame in position pGk−1 and the
ray from the origin of the same frame to the point pGk . Suppose
the IMU was totally unbiased, then θ̂k and θk would be
basically identical: the difference between them expresses how
much θk deviates from the estimate of θ̂k, which is supposed
to be more accurate. Let ∆θ

κ = |θi − θ̂i|, 1 ≤ i ≤ κ, be the
collection of yaw residuals from the start to the end (at time
κ) of the GPS-aided phase. The adjusted new value for the
process noise σ2

θ relative to the yaw measures will be set as
the covariance computed on ∆θ

κ.

D. Adaptive Measurement Noise Covariance
The Process Noise Covariance Matrix R ∈ R(3N×3N) is

composed as such:

R =



σ2
r,0 0 0 · · · 0 0 0
0 σ2

b,0 0 · · · 0 0 0
0 0 σ2

b,0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · σ2
r,N 0 0

0 0 0 · · · 0 σ2
b,N 0

0 0 0 · · · 0 0 σ2
b,N



where σ2
r,i and σ2

b,i are the variance on the range measure-
ments and on the position of beacon i, respectively. In practice,
since the kth Update step of the filter is only computed with
the subset of beacons whose measurements are received at time
k, R is treated as N disjoint (3× 3) matrices, each uniquely
associated to a beacon. This grants the double advantage
of both easing the computational burden of the algebraic
calculations of the EKF, and being able to connotate the noise
statistics of each beacon independently and with finer grain,
since different noise levels could characterize them, depending
on the environmental conditions at their location.

At time k, let the innovation ρk = dik −h(xk|k−1, p
i, 0) (in

Equation 1), be the difference between the received range dik
and the distance h(·) only computed using the a priori belief
of the filter about the position of the AUV and of beacon i. Let
ρ(k−m,k), k ≥ m the collection of the last m innovations, and
σρ
k the covariance between its elements. Such quantity captures

the variations of the behavior of the innovation within a sliding
window of size m across the entire mission time. To avoid the
overestimation of error contributions relative to measurements
that are less trusted by the filter (i.e., that cause an increase
of the Innovation Covariance S), we allow the measurement
noise to be considered only as much as the filter values the
measurements themselves. Thus, we weigh σρ

k by the Kalman
Gain K, i.e., the confidence that the EKF puts in the incoming
range measures. The adapted measurement covariance on the
range measures at time k, will then be:

σ2
r,i = σρ

k K.

IV. PERFORMANCE EVALUATION

To evaluate our method, we performed two different sets of
experiments using synthetically simulated (Section IV-A) and
real data from field tests at sea (Section IV-B).

The aim of the simulations is that of individually validating
the effectiveness of each of the optimizations proposed in Sec-
tions III-B, III-C and III-D. A separate simulation is carried out
for each optimization, in which no bias on the measurements
has been introduced, except on the measurements concerning
the evaluated optimization. We then evaluate the accuracy of
the overall method by using it on data collected in actual
measurement campaigns at sea [8]. To do so, we compute
the MSE between the estimated location and a GPS ground
truth (localization error).

Both simulation and field experiments model a similar
scenario, which is described in the following. After the GPS-
aided phase, the AUV computes the Predict step of the EKF
each time a yaw measure is derived from the IMU, at a
frequency of 10 Hz. Once every 2 s, the AUV polls the beacons
broadcasting a rg pkt and executes the Update step of the
EKF every time that an ID pkt is received from the beacons,
to compute range.

Table I shows the values of the threshold on beacon position
accuracy τ , the size m of the sliding window for range
noise estimation, and the initial values of the process and
measurement noise covariance matrices, for both simulations
and tests at sea.



TABLE I
SIMULATION AND FIELD TESTS PARAMETERS.

Simulations Field Tests

τ 0.2 m 0.2 m
m 20 20
σ2
v 0.1 m2/s2 0.1 m2/s2

initial σ2
θ 0.01 rad2 0.1 rad2

initial σ2
r 0.5 m2 1.5 m2

initial σ2
b 1 m2 2 m2

A. Simulation Experiments

The simulated scenario consists of three beacons and an
AUV moving on the surface according to a lawnmower path
at a median speed of about 0.2 m/s, in an area of about
30 m× 60 m. We evaluate each of the proposed optimization
techniques in such a scenario.

a) Unknown Beacon Coordinates Estimation: We arti-
ficially shift each beacon location by about 5 m North West.
For the first t seconds, the AUV gets its position using GPS
measurements arriving at 10 Hz. Its state at time k, k < t
will then be xk = [pGx,k−1, p

G
y,k−1, vk]. The procedure can be

seen as a multilateration in which each computed range is
the radius of the circumference with the estimated AUV GPS
position (pG(x,k−1), p

G
(y,k−1)) as the center. The intersection of

such circumferences (with a tolerance of τ m) is the estimated
position of the beacon. In the considered scenario, this method
can successfully localize all the beacons after about t = 200s.

Fig. 1 shows the estimated trajectory of the AUV after the
completion of the beacon localization phase, annotated with
the estimated beacon locations (in green), versus the trajectory
(light blue) estimated by the same filter with biased beacon
location beliefs. As can be seen from the trajectory plot, the
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Fig. 1. Estimated trajectory after beacon localization (black solid) vs.
estimated trajectory with biased beliefs about the beacon locations (light blue).

trajectory estimate that relies on biased beacon coordinates is
significantly shifted with respect to the ground truth, while
a proper beacon location belief ensures a correct trajectory
estimation (black line).

b) Adaptive Process Noise Covariance: In this exper-
iment, the simulated yaw measures used during the predict
step of the EKF have been perturbed with random normal
noise ∼ N (0, 0.2). At the end of the GPS-aided phase, the
AUV computes the new estimate for σ2

θ using the collected
residuals, as seen in Section III-C. Fig. 2 (main plot) shows
the comparison between the artificially induced Gaussian noise
on the yaw measures and the noise estimated by our method.
The estimated additive noise on yaw measures throughout the
GPS-aided phase (yellow) closely follows the distribution of
the artificial noise induced in simulation (green). In fact, the
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Fig. 2. Comparison between the artificially induced Gaussian noise perturb-
ing the yaw measures (green) and the noise estimated by our method (orange).

estimated value of σθ (0.18 rad) is very close to the standard
deviation of the artificially induced noise on the yaw measures
(0.2 rad). Consequently, we can conclude that σ2

θ closely
describes the noise that the yaw measures underwent during
the experiment.2

c) Adaptive Measurement Noise Covariance: In this
experiment, each ranging value received by the AUV from
the beacons has been artificially perturbed with additive noise
following a Half-Normal distribution. This kind of induced
noise has been selected to reflect the fact that the only range-
related noise that could affect the localization of the AUV,
once the beacons have been localized, is that affecting the
range measures themselves, i.e., rr. Specifically, assuming
the beacons do not move around more than τ m,3 a range
measure can never be lower than the direct path we are trying
to estimate. In fact, while multipath and reflections can cause
ranges to overestimate the actual distance, the ToF used to
compute them can never be lower than the speed of sound.
Thus, in cases (like ours) where the noise on range measures is

2 In case of non-negligible water dynamics effects (e.g., currents), this
method would incorporate them in σ2

θ . In that case, estimating water dynamics
would help in ruling out noises that are independent of the instrument.

3 If they do, σ2
r would also be affected by the uncertainty that should be

attributed to σ2
b . However, the noise estimations would still ensure proper

adaptation.



zero-mean Gaussian, the Half-Normal distribution well models
the possible errors.

Fig. 3 shows the comparison between the artificially induced
half-normal noise and the noise estimated by our method,
relative to each of the involved beacons. The estimated noise
on range measures throughout the mission (yellow), closely
follows the distribution of the artificial noise that has been
induced in simulation (green) for all the beacons, confirming
the effectiveness of the proposed solution.
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Fig. 3. Comparison between the artificially induced half-normal noise
perturbing the range measures (green) and the noise estimated by our method
(orange) on each beacon (top to bottom).

B. Experiments with Data Collected at Sea

We have evaluated the accuracy of our localization method
using data collected in July 2021 in the shallow waters of
the Mediterranean Sea [8]. We conducted a campaign where
the Zeno AUV [22], [23] was operated from a boat, moving
randomly in an area of 80 m× 100 m. The total time of the
AUV mission, including the GPS-aided phase (which lasted
about 3 minutes) was about 40 minutes. The system consisted
of four WSense’s LBL beacons whose coordinates have been
measured with a low precision handheld GPS (± 4 m) during
deployment (however, the AUV does not use this information).
Each beacon is attached to a buoy by a rope long 1.5 m
(i.e., the approximate depth of the beacons is known), and is
anchored to the seabed.

All system elements were programmed with the described
system logic before being deployed. The proposed localization
approach was compared against a baseline, namely a non-
adaptive EKF with the same initial model of the noise statistics
and parameters (Table I). Fig. 4 shows the trajectory estimate
and the localization error of the baseline EKF.

In the baseline setting, the AUV only knows the biased
beacon locations measured with an imprecise GPS and adopts
a fixed initial belief of the noise statistics of range and
yaw measures. These assumptions cause the whole trajectory
estimate to be subject to some shifting and inaccuracies,
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Fig. 4. Trajectory estimate (top) and mean localization error (bottom) of the
baseline method.

similar to what we have observed in Section IV-A. The overall
mean localization error with the baseline approach is 2.85 m.

Fig. 5 shows the estimated trajectory and the localization
error obtained instead by the solution proposed in this paper.
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Fig. 5. Trajectory estimate (top) and mean localization error (bottom) of our
method.

Some irregularities in the overall trajectory estimates by the
filter can be noticed compared to the baseline. We attribute
this to the fact that the noise statistics of the measurement
noise covariance matrix are constantly updated in real time
as the AUV moves. Our method allows the AUV to self-
localize with an error of 1.18 m, a 60% improvement over
the baseline EKF. As our method includes the initial GPS-
aided phase, the computation of the localization error does
not include the transient state, i.e., the data collected during
the first 3 minutes (time needed to localize the first 3 beacons),
for fair comparison against the baseline, whose first 3 minutes
of trajectory were therefore not considered.



V. CONCLUSIONS

We design and evaluate the performance of a set of adaptive
techniques to overcome the limitations of the classical EKF in
LBL localization scenarios, allowing an AUV to independently
estimate the unknown location of beacons and the noise
statistics related to the yaw and range measurements. We show
that the proposed method allows accurate localization of an
AUV that only relies on a minimal set of low-cost sensors,
namely on an IMU for orientation information, a depth sensor,
and acoustic ranging information, without the need for costly
or time-consuming calibrations. We evaluate the performance
of our approach both by means of simulations and field tests
at sea, evaluating the effectiveness of the noise and beacon
location estimation techniques, and comparing the accuracy
of the AUV location estimates against a GPS ground truth.
We show that our method allows the AUV to localize the
LBL beacons in around 3 minutes and to self-localize with a
mean localization error of 1.18 m, a 60% improvement over
a non-adaptive method in a similar configuration.
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