
ColO-RAN: Developing Machine Learning-Based
xApps for Open RAN Closed-Loop Control on

Programmable Experimental Platforms
Michele Polese ,Member, IEEE, Leonardo Bonati , Student Member, IEEE,

Salvatore D’Oro ,Member, IEEE, Stefano Basagni , Senior Member, IEEE,

and Tommaso Melodia , Fellow, IEEE

Abstract—Cellular networks are undergoing a radical transformation toward disaggregated, fully virtualized, and programmable

architectures with increasingly heterogeneous devices and applications. In this context, the open architecture standardized by the

O-RAN Alliance enables algorithmic and hardware-independent Radio Access Network (RAN) adaptation through closed-loop control.

O-RAN introduces Machine Learning (ML)-based network control and automation algorithms as so-called xApps running on RAN

Intelligent Controllers . However, in spite of the new opportunities brought about by the Open RAN, advances in ML-based network

automation have been slow, mainly because of the unavailability of large-scale datasets and experimental testing infrastructure. This

slows down the development and widespread adoption of Deep Reinforcement Learning (DRL) agents on real networks, delaying

progress in intelligent and autonomous RAN control. In this paper, we address these challenges by discussing insights and practical

solutions for the design, training, testing, and experimental evaluation of DRL-based closed-loop control in the Open RAN. To this end,

we introduce ColO-RAN, the first publicly-available large-scale O-RAN testing framework with software-defined radios-in-the-loop.

Building on the scale and computational capabilities of the Colosseum wireless network emulator, ColO-RAN enables ML research at

scale using O-RAN components, programmable base stations, and a “wireless data factory.” Specifically, we design and develop three

exemplary xApps for DRL-based control of RAN slicing, scheduling and online model training, and evaluate their performance on a

cellular network with 7 softwarized base stations and 42 users. Finally, we showcase the portability of ColO-RAN to different platforms

by deploying it on Arena, an indoor programmable testbed. The lessons learned from the ColO-RAN implementation and the extensive

results from our first-of-its-kind large-scale evaluation highlight the importance of experimental frameworks for the development of

end-to-end intelligent RAN control pipelines, from data analysis to the design and testing of DRL agents. They also provide insights on

the challenges and benefits of DRL-based adaptive control, and on the trade-offs associated to training on a live RAN. ColO-RAN and

the collected large-scale dataset are publicly available to the research community.

Index Terms—O-RAN, network intelligence, 5G/6G, deep reinforcement learning, Colosseum

Ç

1 INTRODUCTION

IN addition to providing traditional voice and data connec-
tivity services, cellular systems are becoming increasingly

pervasive in industrial and agricultural automation, intercon-
necting millions of sensors, vehicles, airplanes, and drones,
and providing the nervous system for a plethora of smart sys-
tems [1], [2]. These diverse use cases, however, often come
with heterogeneous—possibly orthogonal—network con-
straints and requirements [3]. For instance, autonomous driv-
ing applications require Ultra Reliable and Low Latency
Communications (URLLC) to allow vehicles to promptly
react to sudden events and changing traffic conditions.
Instead, high-quality multimedia content requires high data

rates, but can tolerate a higher packet loss and latency. There-
fore, the future generations of cellular networks need to be
flexible and adaptive to many different application and user
requirements.

To achieve these goals, future Radio Access Networks
(RANs) will need to combine three key ingredients [4]:
(i) programmable and virtualized protocol stacks with clearly
defined, open interfaces; (ii) closed-loop network control; and
(iii) data-driven modeling and Machine Learning (ML). Program-
mability will allow swift adaptation of the RAN to provide
bespoke services able to satisfy the requirements of specific
deployments. Closed-loop control will leverage telemetry
measurements from the RAN to reconfigure cellular nodes,
adapting their behavior to current network conditions and traf-
fic. Last, data-driven modeling will exploit recent develop-
ments inML and Big Data to enable real-time, closed-loop, and
dynamic decision-making based, for instance, on Deep Rein-
forcement Learning (DRL) [5]. These are the very same princi-
ples at the core of theOpenRANparadigm,which has recently
gained traction as a practical enabler of algorithmic and hard-
ware innovation in future cellular networks [6], [7], [8].

To promote the evolution toward open RAN architectures,
3GPP has standardized disaggregated base stations that are

� The authors are with the Institute for the Wireless Internet of Things,
Northeastern University, Boston, MA 02115 USA. E-mail: {m.polese,
l.bonati, s.doro, s.basagni, t.melodia}@northeastern.edu.

Manuscript received 17 December 2021; revised 13 May 2022; accepted 22 June
2022. Date of publication 4 July 2022; date of current version 31 August 2023.
This work was supported in part by the U.S. National Science Foundation under
Grants CNS-1923789, CNS-1925601, CNS-2120447, and CNS-2112471, and
in part by the U.S.Office of Naval Research under Grant N00014-20-1-2132.
(Corresponding author: Michele Polese.)
Digital Object Identifier no. 10.1109/TMC.2022.3188013

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023 5787

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9740-134X
https://orcid.org/0000-0002-9740-134X
https://orcid.org/0000-0002-9740-134X
https://orcid.org/0000-0002-9740-134X
https://orcid.org/0000-0002-9740-134X
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-7690-0449
https://orcid.org/0000-0002-7690-0449
https://orcid.org/0000-0002-7690-0449
https://orcid.org/0000-0002-7690-0449
https://orcid.org/0000-0002-7690-0449
https://orcid.org/0000-0003-2667-1008
https://orcid.org/0000-0003-2667-1008
https://orcid.org/0000-0003-2667-1008
https://orcid.org/0000-0003-2667-1008
https://orcid.org/0000-0003-2667-1008
https://orcid.org/0000-0002-2719-1789
https://orcid.org/0000-0002-2719-1789
https://orcid.org/0000-0002-2719-1789
https://orcid.org/0000-0002-2719-1789
https://orcid.org/0000-0002-2719-1789
mailto:m.polese@northeastern.edu
mailto:Institute for the Wireless Internet of ThingsNortheastern University1848BostonMA02115USA
mailto:s.doro@northeastern.edu
mailto:s.basagni@northeastern.edu
mailto:t.melodia@northeastern.edu

split into different functional units: Central Unit (CU), Distrib-
uted Unit (DU), and Radio Unit (RU). The O-RAN Alliance,
an industry consortium, is standardizing open interfaces that
connect the various disaggregated functional units to a com-
mon control overlay, the RAN Intelligent Controller (RIC),
capable of executing custom control logic via so-called xApps.
Ultimately, these efforts will render the monolithic RAN
“black-box” obsolete, favoring open, programmable and virtual-
ized solutions that expose status and offer control knobs
through standardized interfaces [4].

Intelligent, dynamic network optimization via add-on
software xApps is clearly a key enabler for future network
automation. However, it also introduces novel practical
challenges concerning, for instance, the deployment of data-
driven ML control solutions at scale. Domain-specific chal-
lenges stem from considering the constraints of standard-
ized RANs, the very nature of the wireless ecosystem and
the complex interplay among different elements of the net-
working stack. These challenges, all yet to be addressed in
practical RAN deployments, include:

1) Collecting datasets at scale. Datasets for ML training at
scale need to be collected and curated to accurately repre-
sent the intrinsic randomness and behavior of real-
world RANs.

2) Testing ML-based control at scale. Even if ML algorithms
are trained on properly collected data, it is necessary to
assess their robustness at scale, especially when considering
closed-loop control, to prevent poorly-designed data-driven
solutions from causing outages or sub-optimal performance.

3) Designing efficient ML agents with unreliable input and
constrained output. In production systems, real-time collec-
tion of data from the RAN may be inconsistent (e.g., with
varying periodicity) or incomplete (e.g., missing entries),
and control actions may be constrained by standard
specification.

4) Designing ML agents capable of generalizing. Agents
should be able to generalize and adapt to unseen deploy-
ment configurations not part of the training set.

5) Selecting meaningful features. Features should be accu-
rately selected to provide a meaningful representation of
the network status without incurring into dimensionality
issues.

Contributions. To address these key challenges, in this
paper we describe the design of DRL-based xApps for
closed-loop control in O-RAN and their testing with ColO-
RAN, a first-of-its-kind softwarized pipeline for large-scale
experimental platforms. Based on this experience, we
review and discuss key insights in the domain of ML design
for O-RAN networks. Our contributions are as follows:

�We introduce ColO-RAN, a first-of-its-kind open, large-
scale, experimental O-RAN framework for training and test-
ing ML solutions for next-generation RANs. It combines O-
RAN components, a softwarized RAN framework [9], and
Colosseum, the world’s largest, open, and publicly-avail-
able wireless network emulator based on Software-defined
Radios (SDRs) [10]. ColO-RAN leverages Colosseum as a
wireless data factory to generate large-scale datasets for ML
training in a variety of Radio Frequency (RF) environments,
taking into account propagation and fading characteristics
of real-world deployments. The ML models are deployed
as xApps on the near-real-time RIC, which connects to

RAN nodes through O-RAN-compliant interfaces for data
collection and closed-loop control. ColO-RAN is the first
platform that enables wireless researchers to deploy ML
solutions on a full-stack, fully virtualized O-RAN environ-
ment which integrates large-scale data collection and DRL
testing capabilities with SDRs. Moreover, the lightweight,
containerized implementation of ColO-RAN is easily por-
table to other experimental platforms. ColO-RAN and the
dataset created for this paper are publicly available to the
research community.1

� We develop three xApps for closed-loop control of
RAN scheduling and slicing policies, and for the online
training of DRL agents on live production environments.
We propose an innovative xApp design based on the combi-
nation of a unified interface to the near-real-time RIC for
data and control messaging, and a data-driven unit with an
autoencoder with the DRL agent. This simplifies the design
and prototyping of xApps, which share the same interface
but are equipped with different intelligent logic. In addi-
tion, the combination of the autoencoder and of the DRL
agents based on an actor-critic setup with Proximal Policy
Optimization (PPO) improves the resilience and robustness
to real, imperfect network telemetry, as well as the effective-
ness of the policy selection, and the training convergence.
We then utilize ColO-RAN to provide insights on the per-
formance of the DRL agents for adaptive RAN control at
scale. We train the autoencoders and agents over a 3.4 GB
dataset with more than 73 hours of live RAN performance
traces, and perform one of the first evaluations of DRL
agents autonomously driving a programmable, software-
defined RAN with 49 nodes. The results of our large-scale
experimental evaluation include new understandings of
data analysis, feature selection, and modeling of control
actions for DRL agents, and insights on design strategies to
train ML algorithms that generalize and operate even with
unreliable data.

� We analyze the trade-offs of training of DRL agents on
live networks using Colosseum and Arena (a publicly-avail-
able indoor testbed for spectrum research [11]) with com-
mercial smartphones. We profile the RAN performance
during the DRL exploration phase and after the training,
showing how an extra online training step adapts a pre-
trained model to deployment-specific parameters, fine-tun-
ing its weights at the cost of a temporary performance deg-
radation in the online exploration phase.

� We discuss and review the lessons learned on multiple
levels. First, we consider the system-level insights that we gath-
ered while building the ColO-RAN framework and while
defining the data and control pipelines that support DRL-
based control on a live RAN. Second, we summarize the take-
aways on the design of effective machine-learning-based RAN
control, spanning from the design to the deployment of
DRL agents for RAN control. Lessons learned from our work
highlight (i) the importance of end-to-end experimental
frameworks for the data collection, training, and testing of
intelligent RAN control solutions; (ii) the effectiveness of

1. The ColO-RAN source code is available at https://github.com/
wineslab/colosseum-near-rt-ric and https://github.com/wineslab/
colosseum-scope-e2. The dataset is available at https://github.com/
wineslab/colosseum-oran-coloran-dataset.

5788 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

https://github.com/wineslab/colosseum-near-rt-ric
https://github.com/wineslab/colosseum-near-rt-ric
https://github.com/wineslab/colosseum-scope-e2
https://github.com/wineslab/colosseum-scope-e2
https://github.com/wineslab/colosseum-oran-coloran-dataset
https://github.com/wineslab/colosseum-oran-coloran-dataset

adaptive control policies over static configurations, even if the
latter are optimized; (iii) the impact of different design choices
of DRL agents on end-to-end network performance; and (iv)
the trade-offs associated to online DRL training in wireless
environments.

We believe that these insights and the research infra-
structure developed in this work can catalyze, promote and
further the deployment of ML-enabled control loops in next
generation networks.

The rest of this paper is organized as follows. Section 2
describes the development of ML solutions in O-RAN-
based networks. Section 3 introduces ColO-RAN, and Sec-
tion 4 presents the xApp, DRL agent design, and the data
collection campaign for offline training. Large-scale evalua-
tion and lessons learned are discussed in Sections 5 and 6.
Section 7 reviews related work. Finally, Section 8 concludes
the paper and reviews the main lessons learned.

2 MACHINE LEARNING FOR THE OPEN RAN

The deployment of machine learning models in wireless
networks is a multi-step process (Fig. 1). It involves a data
collection step, the design of the model, its offline or online
training and deployment for runtime inference and control.
The O-RAN architecture, also shown in Fig. 1, has been
developed to aid the overall deployment process, focusing
on open interfaces for data collection and deployment steps.
In the following, we describe the O-RAN architecture, and
discuss how it facilitates training and deploying ML models
in the RAN.

2.1 O-RAN Overview

The O-RAN Alliance, a consortium of academic and indus-
try members, has been pushing forward the concept of an
open and programmable cellular ecosystem since its incep-
tion in 2018. O-RAN-compliant equipment is based on
open and standardized interfaces that enable interopera-
bility of equipment from different vendors and interaction
with RAN controllers, which manage the RAN itself. The
O-RAN specifications introduce two RICs that perform
network control procedures over different time scales, i.e.,
near-real-time and non-real-time, respectively [12]. The non-
real-time RIC performs operations at time scales larger
than 1 s and can involve thousands of devices. Examples
include Service Management and Orchestration (SMO),
policy management, training and deployment of ML mod-
els. The near-real-time RIC, instead, implements tight con-
trol loops that span from 10 ms to 1 s, involving hundreds

of CUs/DUs. Procedures for load balancing, handover,
RAN slicing policies [13] and scheduler configuration are
examples of near-real-time RIC operations [14]. The near-
real-time RIC can also host third-party applications, i.e.,
xApps. xApps implement control logic through heuristics
or data-driven control loops, as well as collect and ana-
lyze data from the RAN. At this time, real-time loops are
left as future work in the O-RAN Alliance specifica-
tions [5], [15], [16].

The components of the O-RAN architecture are con-
nected via open and standardized interfaces. The non-real-
time RIC uses the O1 interface to collect data in bulk from
RAN nodes and to provision services and network func-
tions. The near-real-time RIC connects to CUs and DUs
through the E2 interface, which supports different Service
Models (SMs), i.e., functionalities like reporting of Key Per-
formance Measurements (KPMs) from RAN nodes and the
control of their parameters [17]. The two RICs connect
through the A1 interface for the deployment of policies and
xApps on the near-real-time RIC.

2.2 ML Pipelines in O-RAN

The O-RAN specifications include guidelines for the man-
agement of ML models in cellular networks. Use cases and
applications include Quality of Service (QoS) optimization
and prediction, traffic steering, handover, and radio fin-
gerprinting [5]. The specifications describe the ML work-
flow for O-RAN through five steps (Fig. 1): (1) data
collection; (2) model design; (3) model training and testing;
(4) model deployment as xApp, and (5) runtime inference
and control.

First, data is collected for different configurations and
setups of the RAN (e.g., large/small scale, different traffic,
step 1). Data is generated by the RAN nodes, i.e., CUs, DUs
and RUs, and streamed to the non-real-time RIC through
the O1 interface, where it is organized in large datasets.
After enough data has been collected, a ML model is
designed (step 2). This entails the following: (i) identifying
the RAN parameters to input to the model (e.g., through-
put, latency, etc.); (ii) identifying the RAN parameters to
control as output (e.g., RAN slicing and scheduling poli-
cies); and (iii) the actual ML algorithm implementation.
Once the model has been designed and implemented, it is
trained and tested on the collected data (step 3). This
involves selecting the model hyperparameters (e.g., the
depth and number of layers of the neural network) and
training the model on a portion of the collected data until a
(satisfactory) level of convergence of the model has been
reached. After the model has been trained, it is tested on an
unseen portion of the collected data to verify that it is able
to generalize and react to potentially unforeseen situations.
Then, the model is packaged into an xApp ready to run on
the near-real-time RIC (step 4). After the xApp has been cre-
ated, it is deployed on the O-RAN infrastructure. In this
phase, the model is first stored in the xApp catalogue of the
non-real-time RIC, and then instantiated on demand on the
near-real-time RIC, where it is interfaced with the RAN
through the E2 interface to perform runtime inference and
control based on the current network conditions (step 5).

Fig. 1. The O-RAN architecture and the workflow for the design, devel-
opment and deployment of ML applications in next generation wireless
networks.

POLESE ETAL.: COLO-RAN: DEVELOPING MACHINE LEARNING-BASED XAPPS FOR OPEN RAN CLOSED-LOOP CONTROLON... 5789

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

3 COLO-RAN: ENABLING LARGE-SCALE ML
RESEARCH WITH O-RAN AND COLOSSEUM

The ML pipeline described in Section 2.2 involves a number
of critical steps whose execution requires joint access to com-
prehensive datasets and testing facilities at scale, still largely
unavailable to the research community. In fact, even major
telecom operators or infrastructure owners might not be
able to dedicate (parts of) their extensive commercial net-
works to training and testing of ML algorithms. This stems
from the lack of adequate solutions to separate testing from
commercial service and to prevent performance degrada-
tion. As a consequence, researchers and innovators are con-
strained to work with small ad hoc datasets collected in
contained lab setups, resulting in solutions that hardly gen-
eralize to real-world deployments [18].

To address this limitation, this section introduces ColO-
RAN, a large-scale research infrastructure built upon the
Colosseum network emulator to train, deploy, and test
state-of-the-art wireless ML solutions. We first review the
main features of Colosseum and describe its use as a wire-
less data factory for ColO-RAN (Section 3.1). Then, we intro-
duce the implementation of the ColO-RAN virtualized O-
RAN infrastructure on Colosseum (Section 3.2) and of the
xApps we designed (Section 4). We finally describe the sce-
nario for data collection that we use to illustrate the usage
of ColO-RAN (Section 4.3).

3.1 Colosseum as a Wireless Data Factory

Colosseum is the world’s largest wireless network emula-
tor [10]. It was developed by DARPA for the Spectrum Col-
laboration Challenge and then transitioned to the U.S.
National Science Foundation PAWR program to be available
for the research community. Colosseum includes 256 USRP
X310 SDRs. Half of the SDRs can be controlled by the users,
while the other half is part of the Massive Channel
Emulator (MCHEM), which uses 64 Virtex-7 FPGAs to emu-
late wireless channels. MCHEM processes the signals trans-
mitted by radio nodes—called Standard Radio Nodes
(SRNs) in Colosseum—through a set of complex-valued
finite impulse response filter banks. These filter banks model
the propagation characteristics and multi-path scattering of
user-definedwireless environments—namely, “scenarios”—
as shown in the right part of Fig. 2. Colosseum scenarios can
be designed in a variety of different ways. For instance, they
can be created from the tap data obtained through field mea-
surement with real radio devices, or from the emulated envi-
ronment derived from ray-tracing software [10], [19]. In this

work, we used scenarios created as part of [9] that feature
base stations positioned according to the location of real-
world cellular deployments. These locations are derived
from the OpenCelliD database [20] by querying it for the cel-
lular deployments in the city of interest, e.g., Rome, Italy in
our case. The users are randomly distributed in the sur-
roundings of the base stations. Finally, the channel between
any pair of nodes of the network is derived through wireless
channel propagation models, and converted into a Colos-
seum scenario [9], [10]. In this way, MCHEM provides high-
fidelity emulation of wireless signals with the same character-
istics of those traveling through a real environment. Colos-
seum also features a user-controlled source Traffic Generator
(TGEN), based on MGEN [21], and compute capabilities that
make it a full-fledged specialized data center with over 170
high-performance servers.

The combination of programmable software-defined
hardware with RF and traffic scenarios uniquely positions
Colosseum as a wireless data factory, namely, as a tool
that can be used to effectively collect full-stack datasets in
heterogeneous and diverse scenarios. With respect to
other large testbeds such as the PAWR platforms, Colos-
seum offers scale and a more controlled and customizable
environment that researchers can use to collect data and
to test ML algorithms on different RF scenarios and fre-
quencies, without changing the protocol stack or experi-
mental procedures. Compared to a production network,
Colosseum is flexible, with programmable radios that can
run different software-defined stacks, and the possibility
to test closed-loop control without affecting commercial
deployments.

3.2 O-RAN-Based Colosseum ML Infrastructure

Besides enabling large-scale data collection, Colosseum also
provides a hybrid RF and compute environment for the
deployment of ColO-RAN, a complete end-to-end ML infra-
structure. ColO-RAN provides researchers with a ready-to-
use environment to develop and test ML solutions, following
the steps of Fig. 1 (Section 2.2). These include the deployment
on a 3GPP-compliant RAN, testing in heterogeneous emu-
lated environments, and an O-RAN-compliant infrastructure.
With respect to other open source implementations of the O-
RAN infrastructure, ColO-RAN features a more lightweight
footprint (e.g., it does not require a full Kubernetes deploy-
ment, contrary to the O-RAN Software Community (OSC)
RIC), and it can be ported to other testbeds, e.g., Arena [11],
with minimal changes, thanks to its virtualized and con-
tainer-based implementation. As a further contribution, this

Fig. 2. Integration of the O-RAN infrastructure in Colosseum.

5790 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

platform has been made openly available to the research
community.

The software, compute and networking components of
our end-to-end infrastructure are shown in Fig. 2. The SMO
(left) features three compute nodes to train largeMLmodels,
64 Terabyte of storage for models and datasets, and the
xApp catalogue. The near-real-time RIC (Fig. 2, center) pro-
vides E2 connectivity to the RAN and support for multiple
xApps interacting with the base stations. It is implemented
as a standalone Linux Container (LXC) that can be deployed
on aColosseumSRN.2 It includesmultipleDocker containers
for the E2 termination and manager, the E2 message routing to
handle messages internal to the RIC, a Redis database, which
keeps a record of the nodes connected to the RIC, and the
xApps (Section 4). The implementation of the near-real-time
RIC is based on the Bronze release of the OSC [22]. The OSC
near-real-time RIC was adapted into a minimal version,
which does not require a Kubernetes cluster, and can fit in a
lightweight LXC container. We also extended the OSC code-
base to support concurrent connections from multiple base
stations and xApps, and to provide improved support for
encoding, decoding and routing of control messages.

The near-real-time RIC connects to the RAN base stations
through the E2 interface (Fig. 2, right). The base stations
leverage a joint implementation of the 3GPP DUs and CUs.
These nodes run the publicly available SCOPE frame-
work [9] co-located with srsRAN [23]. Specifically, SCOPE
can tune certain capabilities of the srsRAN base stations at
run-time, thus modifying their configuration. Examples of
this are the amount of resources, expressed as number of
Physical Resource Blocks (PRBs), to allocate to each slice, or
the scheduling policy that each base stations should adopt
on each slice. Additionally, we extended SCOPE to access
relevant network KPMs and forward them to the near-real-
time RIC through a custom, standard-compliant E2 termina-
tion. The latter extends the capabilities of the E2 termination
in [24], making it possible to reconfigure base stations
directly from the near-real-time RIC and to perform an auto-
matic and periodic data reporting and collection.3 The E2
termination allows the setup procedure and registration of
the base stations with the near-real-time RIC. Our imple-
mentation also features two custom SMs (as discussed next)
for trigger-based or periodic reporting, and control events
in the base stations. This effectively enables data-driven
real-time control loops between the base stations and the
xApps. The RAN supports network slicing with 3 slices for
different QoS: (i) Enhanced Mobile Broadband (eMBB), rep-
resenting users requesting video traffic; (ii) Machine-type
Communications (MTC) for sensing applications; and
(iii) URLLC for latency-constrained applications. Hence, we
characterize our slices based on the type of traffic requested
by its users, rather than based on a feature of the RAN itself.
Slicing is implemented in the SCOPE framework by applying
PRB masks during the scheduling process, and it is possible
to control the number of PRBs for each slice [9]. As slices rep-
resent a specific type of service the operators agree to pro-
vide to their subscribers (e.g., as part of Service Level
Agreements (SLAs)), they are pre-instantiated on the base

stations, and users are statically assigned to one of such slices
based on the purchased service level. For each slice, the base
stations can adopt 3 different scheduling policies indepen-
dently of that of the other slices, namely, the Round
Robin (RR), the Waterfilling (WF), and the Proportional
Fair (PF) scheduling policies. These policies were selected as
they represent popular scheduling strategies in wireless
deployments [25]. It is worth noticing that we do not directly
control the scheduling of the users (i.e., which specific user
should be scheduled), for which we would need tighter con-
trol loops implemented directly at the base stations [15].
Instead, our control involves the type of scheduling policy
run by the base stations for each slice of the network. Finally,
the base stations connect to the RF frontends (USRPs X310)
that perform signal transmission and reception.

4 XAPP DESIGN FOR DRL-BASED CONTROL

The xApps deployed on the near-real-time RIC are the heart
of the O-RAN-based RAN control loops. We developed
three xApps to evaluate the impact of different ML strate-
gies for closed-loop RAN control (Table 1). Each xApp can
receive data and control RAN nodes with two custom SMs,
which resemble the O-RAN KPM and RAN control
SMs [17]. The control actions available to the xApps are the
selection of the slicing policy (the number of PRB allocated
to each slice) and of the scheduling policy (which scheduler
is used for each slice).

The xApps have been developed by extending the OSC
basic xApp framework [26], and include two components
(Fig. 3). The first is the interface to the RIC, which imple-
ments the SM and performs ASN.1 encoding/decoding of
RAN data and control. The second is the ML infrastructure
itself, which includes one or more autoencoders and DRL
agents. For these, we used TensorFlow 2.4 [27] and the TF-
Agents library [28], and we used the neural network archi-
tectures described in Section 4.2.

4.1 DRL Agent Design

Agent Architecture. The DRL agents considered in this paper
have been trained using the PPO algorithm [29]. PPO is a
well-established on-policy DRL architecture that uses an
actor-critic configuration where the actor network takes
actions according to current network state, and the value
network (or critic) scores the actions taken by the actor net-
work by observing the reward obtained when taking an
action in a specific state of the environment. By leveraging
this architecture, the PPO algorithm decouples the action
taking process from the evaluation of achieved rewards.
This is extremely important to ensure that the actor network
can learn an unbiased policy (i.e., a mapping between state
and actions) where the actor network selects an action
because it is effective in the long run and not only because it
occasionally results in high instantaneous rewards that are
instead inefficient in the majority of cases.

It is worth mentioning that the actor-critic setup is also
important because PPO is an on-policy architecture, which
means that the training procedure uses a memory buffer that
contains data that is collected by using actions that are taken
with the most current version of the actor network. If com-
pared to off-policy algorithms (such as Deep Q-Networks

2. https://github.com/wineslab/colosseum-near-rt-ric
3. https://github.com/wineslab/colosseum-scope-e2

POLESE ETAL.: COLO-RAN: DEVELOPING MACHINE LEARNING-BASED XAPPS FOR OPEN RAN CLOSED-LOOP CONTROLON... 5791

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

https://github.com/wineslab/colosseum-near-rt-ric
https://github.com/wineslab/colosseum-scope-e2

(DQNs)), which use a memory buffer that store experience
collected at any time by the DRL agent, PPO only uses data
that is fresh and does not contain experiences from the past,
meaning that the memory buffer is emptied every time the
actor network is updated during the training phase. This
approach is usually slower then others, but together with the
actor-critic setup it has been shown to be one of the most effi-
cient and reliable DRL architectures in the literature [29].

Pre-Processing Observations via Autoencoders. One of the
main causes of slow training of DRL agents is the use of
observations with high dimensionality that result in actor
and critic networks with many parameters and large state
space. Indeed, the RAN produces an extremely large
amount of data which not always provide meaningful
insights on the actual state of the system due to redundant
information and outliers. To reduce the size of the observa-
tion fed to the DRL agent, mitigate outliers and provide a
high-quality yet high-level representation of the state of the
system, we resort to autoencoders, as also shown in Fig. 3.
Specifically, before being fed to the DRL agents, the data
produced by the RAN is processed by the encoding portion
of an autoencoder for dimensionality reduction (whose
impact on DRL-based control is investigated in Section 5.2).

Although autoencoders might have several implementa-
tions according to the specific applications, autoencoders
for dimensionality reduction have an hourglass architecture
with an encoder and a decoder components. The former
produces a lower dimension representation of the input
data (i.e., latent representation) which - if trained properly -
can be accurately reconstructed by the decoder portion of
the autoencoder with negligible error. The decoder is the
specular image of the encoder and the goal of this architec-
ture is to create a reduced version of the input data that con-
tains only relevant information, yet it is accurate enough to
be able to reconstruct the original data without any loss. To
further reduce the complexity of the DRL agents, we per-
form feature selection on the metrics that are observed by
the agents (see Section 5 for more details).

Observations, Actions, and Rewards for Each Agent. As men-
tioned before, although our xApps share the same high-
level architecture shown in Fig. 3, each xApp embeds a dif-
ferent DRL agent whose configuration varies according to
the specific goal of the xApp. Specifically, each DRL agent
observes different metrics of the RAN, takes diverse actions
and aims at maximizing different rewards. The configura-
tions considered in this paper are summarized in Table 1
and discussed in the following:

� sched-slicing xApp: this xApp is designed to simul-
taneously select slicing and scheduling policies for a single
base station and all slices (eMBB, MTC, and URLLC). For this
xApp we trained three DRL models: a baseline model (DRL-
base) able to select any feasible actions (i.e., slicing and sched-
uling policies), an agent that explores a reduced set of actions
(DRL-reduced-actions) and an agent where input data is not
processed by the autoencoder but is fed directly to the agent
(DRL-no-autoencoder). In this case, the reward of the DRL
agent is configured to jointly maximize the rate of the eMBB
slice, maximize the number of transmitted packets of the
MTC slice, and minimize the buffer size (i.e., a proxy for the
data transmission latency) of the URLLC slice.

� sched xApp: this xApp includes three DRL agents that
act in parallel and are responsible for selecting the schedul-
ing policy for each individual slice (DRL-slice). Each agent
has been trained using slice-specific rewards. Specifically,
the eMBB and MTC agents aim at maximizing the data rate
of the controlled slice, while the URLLC agents aims at max-
imizing the ratio between the number of PRBs being
requested by each user and how many are effectively allo-
cated by the scheduler (i.e., the higher the ratio, the faster a
user is served, and the lower the latency).

� online-training xApp: this xApp represents a vari-
ation of the above two xApps where the embedded DRL
agents are fine-tuned in an online fashion by updating the
pre-trained weights according to live data from the RAN by
performing exploration steps on the online RAN infrastruc-
ture itself. While this is not recommended by O-RAN [5], it
specializes the trained model to the specific deployment.

It is worth noticing that while agents for the eMBB and
MTC slices respectively optimize the user throughput and
transmitted packets—which can be measured at the base
stations directly—the URLLC slice aims at maintaining the
transmission buffer queues of the base stations as low as
possible, or transmit as many URLLC packets as possible.
These metrics are a proxy for the latency of the service pro-
vided to the users in practice, for which we do not have a
direct measure at base station protocol stack.Fig. 3. Structure of a ColO-RAN xApp.

TABLE 1
Catalogue of the Three Developed Xapps

xApp Functionality Input (Observation) Output (Action) MLModels Utility (Reward)

sched-

slicing

Single-DRL-agent
for joint slicing and
scheduling control

Rate, buffer size,
PHY TBs (DL)

PRB and scheduling
policy for each slice

DRL-base, DRL-reduced-
actions, DRL-no-
autoencoder

Maximize rate for eMBB,
PHY TBs for MTC, minimize
buffer size for URLLC

sched Multi-DRL-agent
per-slice scheduling
policy selection

Rate, buffer size,
PRB ratio (DL)

Scheduling policy
for each slice

DRL-sched Maximize rate for eMBB and
MTC, PRB ratio for URLLC

online-

training

Train DRL agents
with online
exploration

Rate, buffer size,
PHY TBs (DL)

Training action
(PRB and
scheduling)

Trained online by the
xApp itself

Based on specific training
goals

5792 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

4.2 Training the DRL Agents

DRL agents are trained on the dataset described in Section 4.3,
where at each training episode we select RAN data from dif-
ferent base stations to remove dependence on a specific wire-
less environment (Section 6) and facilitate generalization.

Following O-RAN specifications, training is performed
offline on the dataset. In our case, this is achieved by ran-
domly selecting instances in which the network reaches the
state s1 that results from the combination of the previous
state s0 and the action to explore a0.

In our experiments, the actor and critic networks of all
DRL agents have been implemented as two fully-connected
neural networks with 5 layers with 30 neurons each and an
hyperbolic tangent activation function. The encoder consists
of 4 fully-connected layers with 256, 128, 32 and 3 neurons
and a rectified linear activation function. Moreover, the
input size of the autoencoder is a matrix of size (10,3), where
3 represents the input KPMs relevant to the specific DRL
agent (as specified in Table 1) and 10 represents the number
of independent measurements of such KPMs. For all mod-
els, the learning rate is set to 0.001.

With respect to the online-training xApp, we lever-
age TensorFlow CheckPoint objects to save and restore a
pre-trained model for multiple consecutive rounds of train-
ing. In this way, the training services in the xApp can
restore an agent trained on an offline dataset using it as
starting point for the online, live training on the RAN. We
discuss the trade-offs involved in this operation in Section 6.

4.3 Large-Scale Data Collection for ColO-RAN

To train the DRL agents for the ColO-RAN xApps we per-
formed large-scale data collection experiments on Colos-
seum. The parameters for the scenario are summarized in
Table 2.

The large-scale RF scenario mimics a real-world cellular
deployment in downtown Rome, Italy, with the positions of
the base stations derived from the OpenCelliD database [20].
We instantiated a softwarized cellular network with 7 base
stations through the SCOPE framework. Each base station
operates on a 10MHz channel (50 PRBs)which can be dynam-
ically assigned to the 3 slices (i.e., eMBB, MTC, URLLC).
Additionally, we considered two different TGEN traffic sce-
narios: slice-based traffic and uniform traffic. In slice-based
traffic, users are distributed among different traffic profiles
(4 Mbit/s constant bitrate traffic to eMBB users, and
44.6 kbit/s and 89.3 kbit/s Poisson traffic to MTC and
URLLC, respectively). The uniform traffic is configured

with 1.5 Mbit/s for all users. The training of the DRL agents
on the offline dataset has been performed with slice-based
traffic. Finally, the base stations serve a total of 42 users
equally divided among the 3 slices.

In our data collection campaign, we gathered 3.4 GB of
data, for a total of more than 73 hours of experiments. In
each experiment, the base stations periodically report RAN
KPMs to the non-real-time RIC. These include metrics such
as throughput, buffer queues, number of PHY Transport
Blocks (TBs) and PRBs. The complete dataset features more
than 30 metrics that can be used for RAN analysis and ML
training.4

5 DRL-BASED XAPP EVALUATION

Learning strategies for RAN control are coded as xApps on
ColO-RAN. This section presents their comparative perfor-
mance evaluation. Feature selection based on RAN KPMs is
described in Section 5.1. The experimental comparison of
the different DRL models is reported in Section 5.2.

5.1 RAN KPM and Feature Selection

O-RAN is the first architecture to introduce a standardized
way to extract telemetry and data from the RAN to drive
closed-loop control. However, O-RAN does not indicate
which KPMs should be considered for the design of ML
algorithms. The O-RAN E2SM KPM specifications [17]
allow the generation of more than 400 possible KPMs, listed
in [30], [31]. More vendor-specific KPMs may also be
reported on E2. These KPMs range from physical layer met-
rics to base station monitoring statistics. Therefore, the bulk
set of data may not be useful to represent the network state
for a specific problem. Additionally, reporting or collecting
all the metrics via the E2 or O1 interfaces introduces a high
overhead, and a highly dimensional input may lead to sub-
optimal performance for ML-driven xApps [32].

Therefore, a key step in the design process of ML-driven
xApps is the selection of the features that should be
reported for RAN closed-loop control. In this context, the
availability of large-scale, heterogeneous datasets and wire-
less data factories is key to enable feature selection based on
a combined expert- and data-driven approach. To better
illustrate this, in Figs. 4 and 5 we report a correlation analy-
sis for several metrics collected in the dataset described in
Section 4.3. The correlation analysis helps us identify the
KPMs that provide a meaningful description of the network
state with minimal redundancy.

Correlation Analysis. Fig. 4a shows the correlation matrix
of 9 among the 30 UE-specific metrics in the dataset for the
eMBB slice. While downlink and uplink metrics exhibit a low
correlation, most downlink KPMs positively or negatively
correlate with each other (the same holds for uplink KPMs).
For example, the downlink Modulation and Coding Scheme
(MCS) and buffer occupancy have a negative correlation
(�0:56). This can also be seen in the scatter plot of Fig. 4b: as
the MCS increases, it is less likely to have a high buffer occu-
pancy, and vice versa. Similarly, the number of TBs and sym-
bols in downlink have a strong positive correlation (0.998), as

TABLE 2
Configuration Parameters for the Considered Scenario

Parameter Value

Number of
nodes

NBS ¼ 7, NUE ¼ 42

RF parameters DL carrier fd ¼ 0:98 GHz, UL carrier fu ¼ 1:02 GHz,
bandwidth B ¼ 10MHz (50 PRBs)

Schedulers RR, WF, PF
Slices eMBB, MTC, URLLC (2 UEs/BS/slice)
Traffic profiles Slice-based: 4 Mbit/s/UE for eMBB, 44.6 kbit/s/UE

for MTC, 89.3 kbit/s/UE URLLC
Uniform: 1.5 Mbit/s/UE for eMBB, MTC, URLLC

4. The dataset is available at https://github.com/wineslab/coloss
eum-oran-coloran-dataset.

POLESE ETAL.: COLO-RAN: DEVELOPING MACHINE LEARNING-BASED XAPPS FOR OPEN RAN CLOSED-LOOP CONTROLON... 5793

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

https://github.com/wineslab/colosseum-oran-coloran-dataset
https://github.com/wineslab/colosseum-oran-coloran-dataset

also shown in Fig. 4d. Two downlink metrics that do not cor-
relate well, instead, are the number of TBs and the buffer
occupancy. Indeed, the amount of data transmitted in each
TB varies with the MCS and therefore cannot be used as indi-
cator of how much the buffer will empty after each transmis-
sion. Additionally, as shown in Fig. 4c, the three scheduling
policies have a different quantitative behavior, but they all
show a low correlation.

eMBB versus URLLC. The correlation among metrics also
depends on the RAN configuration and slice traffic profile.
This can be seen by comparing Fig. 4, which analyzes the
eMBB slice with 36 PRBs, and Fig. 5, which uses telemetry
for the URLLC slice with 11 PRBs. With the slice-based traf-
fic, the URLLC users receive data at a rate that is an order of
magnitude smaller than that of the eMBB users. As a conse-
quence, the load on the URLLC slice (represented by the
buffer occupancy of Fig. 5b) is lower, and the buffer is
quickly drained even with lower MCSs. Consequently, the
correlation among the buffer occupancy and the MCS
(�0:2) is lower with respect to the eMBB slice. This further
makes the case for collecting datasets that are truly repre-
sentative of a wireless RAN deployment, including hetero-
geneous traffic and diverse applications.

Summary. Figs. 4 and 5 provide insights on which metrics
can be used to describe the RAN status. Since the number of
downlink symbols and TBs, or the MCS and the buffer occu-
pancy for the eMBB slice are highly correlated, using them to
represent the state of the network only increases the
dimensionality of the state without introducing additional
information. Conversely, the buffer occupancy and the num-
ber of TBs enrich the representation with low redundancy.
Therefore, the DRL agents for the xApps in this paper

consider as input metrics the number of TBs, the buffer occu-
pancy (or the ratio of PRB granted and requested, which has
a high correlation with the buffer status), and the downlink
rate.

5.2 Comparing Different DRL-Based RAN Control
Strategies

Once the input metrics have been selected, the next step in
the design of ML applications involves the selection of the
proper modeling strategy [5]. In this paper, we consider ML
models for sequential decision making, and thus focus on
DRL algorithms.

Control Policy Selection. In this context, it is clearly crucial
to properly select the control knobs, i.e., the RANparameters
that need to be controlled and adapted automatically, and
the action space, i.e., the support on which these parameters
can change. To this end, Fig. 6 compares the performance for
the sched and sched-slicing xApps, which perform dif-
ferent control actions. The first assumes a fixed slicing profile
and includes three DRL agents that select the scheduling pol-
icy for each slice, while the second jointly controls the slicing
(i.e., number of PRBs allocated to each slice) and scheduling
policies with a single DRL agent. For this comparison, the
slicing profile for the sched xApp evaluation matches the
configuration that is chosenmost often by the sched-slic-
ing agent, and the source traffic is slice-based. The Cumula-
tive Distribution Functions (CDFs) of Fig. 6 show that the
joint control of slicing and scheduling improves the relevant
metric for each slice, with themost significant improvements
in the PRB ratio and in the throughput for the users below
the 40th percentile. This shows that there exist edge cases in
which adapting the slicing profile further improves the

Fig. 4. Correlation analysis for the eMBB slice with 36 PRBs and the slice-based traffic profile. The solid line is the linear regression fit of the data.

Fig. 5. Correlation analysis for the URLLC slice with 11 PRBs and the
slice-based traffic profile. The solid line is the linear regression fit of the
data.

Fig. 6. Comparison between the sched and sched-slicing xApps,
with the slice-based traffic profile. The slicing for the sched xApp is fixed
and based on the configuration chosen with highest probability by the
sched-slicing xApp (36 PRBs for eMBB, 3 for MTC, 11 for URLLC).

5794 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

network performance with respect to adaptive schedulers
with a static slice configuration, even if the fixed slicing con-
figuration is the one that is chosenmost often by the sched-
slicing xApp.

DRL Agent Design. To further elaborate on the capabilities
of sched-slicing, in Fig. 7 we compare results for differ-
ent configurations of the DRL agent of the xApp, as well as
for a static baseline without slicing or scheduling adapta-
tion, using the slice-based traffic. The slicing profile for the
static baseline is the one chosen most often by the sched-

slicing xApp. The results of Fig. 7 further highlight the
performance improvement introduced by adaptive, closed-
loop control, with the DRL-driven control outperforming all
baselines.

Additionally, this comparison spotlights the importance
of careful selection of the action space for the DRL agents.
By constraining or expanding the action space that the DRL
agents can explore, the xApp designer can bias the selected
policies. Consider the DRL-base and DRL-reduced-actions
agents (see Table 1), whose difference is in the set of actions
that the DRL agent can explore. Notably, the DRL-reduced-
actions agent lacks the action that results in the policy cho-
sen most often by the DRL-base agent. Compared to the
most common action chosen by the DRL-reduced-actions
agent (36 PRB for eMBB, 9 for MTC, 5 for URLLC), the most
likely policy of DRL-base agent favors the URLLC over the
MTC slice (11 versus 3 PRBs). This is reflected in the perfor-
mance metrics for the different slices. Notably, DRL-
reduced-actions fails to maintain a small buffer and high
PRB ratio for the URLLC slice (Figs. 7c and 7d), but achieves
the smallest buffer occupancy for the MTC traffic.

Autoencoder. Finally, the results of Fig. 7 show the benefit of
using an autoencoder, as the DRL-base and DRL-reduced-
actions agents generally outperform the DRL-no-autoencoder

agent. The autoencoder decreases the dimensionality of the
input for the DRL agent, improving the mapping between the
network state and the actions. Specifically, the autoencoder
used in this paper reduces a matrix of T ¼ 10 input vectors
with N ¼ 3 metrics each to a single N-dimensional vector.
Second, it improves the performance with online inference on
real RAN data. One of the issues of operating ML algorithms
on live RAN telemetry is that some entries may be reported
inconsistently or may be missing altogether. To address this,
we train the autoencoder simulating the presence of a random
number of zero entries in the training dataset. This allows the
network to be able to meaningfully represent the state even if
the input tensor is not fully populatedwith RANdata.

Control Loop Performance. ColO-RAN is able to perform
control loops compliant with the OSC specifications, i.e.,
between 10ms and 1s. As an example, the average round-
trip-time from when the base stations transmit the KPM
reports to the RIC to when they receive the control actions
computed by the DRL-based xApps equals to 114:27ms,
with a variance of 2:653ms.

6 ONLINE TRAINING FOR DRL-DRIVEN XAPPS

The last set of results presents an analysis of the trade-offs
associated with training DRL agents on a live network in an
online fashion. These include the evaluation of the time
required for convergence, the impact of the exploration pro-
cess on the RAN performance, and the benefits involved
with this procedure. To do this, we load on the online-

training xApp a model pre-trained on the offline dataset
with the slice-based traffic profile. The same model is used
in the DRL-reduced-actions agent. We deploy the online-

training xApp on a ColO-RAN base station and further
continue the training with online exploration, using the uni-
form traffic profile (with the same constant bitrate traffic for
each user). Additionally, we leverage the containerized
nature of ColO-RAN to deploy it on Arena [11], a publicly
available indoor testbed, and perform training with one
SDR base station and three smartphones.

Convergence. Figs. 8 and 9 show how quickly the pre-
trained agent adapts to the new environment. Fig. 8a reports
the entropy regularization loss as a function of the training
step of the agent. This metric correlates with the convergence
of the training process: the smaller the absolute value of the
entropy, the more likely the agent has converged to a set of
actions that maximize the reward in the long run [33]. We
stop the training when this metric (and the average reward,
Fig. 8b) plateaus, i.e., at step 17460 for the offline training and
step 29820 for the online training on Colosseum. The loss
remains stable when transitioning from the Colosseum to
the Arena online training, while it increases (in absolute
value) when switching traffic profile at step 17460. This
shows that the agent generalizes better across different chan-
nel conditions than source traffic profiles. The same trend is
observed for the average reward (Fig. 8b), although the tran-
sition from Colosseum to Arena halves the reward (as this
configuration features 3 instead of 6 users for each base sta-
tion). While Colosseum online training requires 30% fewer
steps than the initial offline training, it also comes with a
higher wall-clock time as offline exploration allows the
instantiation of multiple parallel learning environments.

Fig. 7. Comparison between the different models of the sched-slic-

ing xApp and baselines without DRL-based adaptation. For the latter,
the performance is based on the slicing configuration chosen with high-
est probability by the best-performing DRL agent, and the three sched-
uler policies.

POLESE ETAL.: COLO-RAN: DEVELOPING MACHINE LEARNING-BASED XAPPS FOR OPEN RAN CLOSED-LOOP CONTROLON... 5795

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

Because of this, the Colosseum DGX supports the simulta-
neous exploration of 45 network configurations. Instead,
online training can explore one configuration at a time, lead-
ing to a higher wall-clock time.

Fig. 9 reports the evolution of the distribution of the
actions chosen by the DRL agent for the Colosseum offline
and online training. Three histograms for steps 2,260, 17,460
(end of offline training) and 29,820 (end of online training)
are also highlighted in the plot on the right. During training,
the distribution of the actions evolves from uniform (in yel-
low) to more skewed, multi-modal distributions at the end
of the offline training (in orange) and online training (in
red). Additionally, when the training on the new environ-
ment begins, the absolute value of the entropy regulariza-
tion loss increases (Fig. 8a), and, correspondingly, the
distribution starts to change, until convergence to a new set
of actions is reached again.

Impact of Online Training on RAN Performance. Achieving
convergence with a limited number of steps is particularly
important for online training, as the performance of the RAN
may be negatively affected during the training process.
Fig. 10 reports the CDF for the user throughput during train-
ing and after, when the agent trained online is deployed on
the sched-slicing xApp. The performance worsens when
comparing the initial training step, which corresponds to the
agent still using the actions learned during offline training,
with an intermediate step, in which it is exploring random
actions. Once the agent identifies the policies that maximize
the reward in the new environment (in this case, with the uni-
form source traffic profile), the throughput improves. The
best performance, however, is achieved with the trained
agent, which does not perform any exploration. Fig. 11

further elaborates on this by showing how the online training
process increases the throughput variability for the two
eMBB users. Therefore, performing online training on a pro-
duction RAN may be something a telecom operator cannot
afford, as it may temporarily lead to disservices or reduced
quality of service for the end users. In this sense, testbeds
such as Colosseum can be an invaluable tool for two reasons.
First, they provide the infrastructure to test pre-trained ML
algorithms—and ColO-RAN enables any RAN developer to
quickly onboard and test their xApps in a standardized O-
RAN platform. Second, they allow online training without
affecting the performance of production environments.

Adaptability. The main benefit of an online training phase
is to allow the pre-trained agent to adapt to updates in the
environment that are not part of the training dataset. In this
case, the agent trained by the online-training xApp
adapts to a new configuration in the slice traffic, i.e., the uni-
form traffic profile. Fig. 12 compares the cell throughout for
the agent before/after the online training, with the slice-
based (Fig. 12a) and the uniform traffic (Fig. 12b). Notably,
the online agent achieves a throughput comparable with
that of the agent trained on the offline dataset with slice-
based traffic, showing that—despite the additional training
steps—it is still capable of selecting proper actions for this
traffic profile. This can also be seen in Fig. 13, which shows
that the action selected most often grants the most PRBs to
the eMBB slice (whose users have a traffic one order of mag-
nitude higher than MTC and URLLC).

The online agent, however, outperforms the offline-
trained agent with the uniform traffic profile, with a gap of
2Mbit=s in the 80th percentile, demonstrating the effective-
ness of the online training to adapt to the updated traffic.
The action profile also changes when comparing slice-based
and uniform traffic, with a preference toward more bal-
anced PRB allocations.

Summary. These results show how online training can
help pre-trained models evolve and meet the demands of
the specific environment in which they are deployed, at the
cost, however, of reduced RAN performance during train-
ing. This makes the case for further research in this area, to

Fig. 8. Metrics for the training on the offline dataset and the online train-
ing on Colosseum and Arena. The Arena configuration uses LTE
band 7. Notice that the Arena deployment considers three users per
base station, contrary to the six users per base station of Colosseum,
thus the absolute average reward decreases.

Fig. 9. Distribution of the actions during the training on the offline dataset
and the online training on Colosseum. The offline training stops at step
17460.

Fig. 10. CDF of the throughput for the eMBB slice during the online train-
ing (OT) and with the trained agent (TR) with the uniform traffic profile.

Fig. 11. eMBB slice throughput during training and with the trained
model.

5796 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

develop, for example, smart scheduling algorithms that can
alternate training and inference/control steps according to
the needs of the network operator. Additionally, we showed
that models pre-trained on Colosseum can be effective also
in over-the-air deployments, making the case for ColO-
RAN as a platform to train and test O-RAN ML solutions in
a controlled environment.

7 RELATED WORK

The application of ML to wireless networks has received
considerable attention in recent years. Existing works span
the full protocol stack, with applications to channel model-
ing, PHY and MAC layers, ML-based routing and transport,
and data-driven applications [34], [35], [36].

Several papers review the potential and challenges of ML
for wireless networks, discussing open issues and potential
solutions. Kibria et al. highlight different areas in which ML
and Big Data analytics can be applied to wireless net-
works [36]. Sun et al. [37] and Gunduz et al. [38] review the
key learning techniques that researchers have applied to
wireless, together with open issues. Similarly, Chen et al.
focus on artificial neural network algorithms [39]. Other
reviews can be found in [18], [40]. While these papers pres-
ent a clear overview of open problems associated with
learning in wireless networks, and sometimes include some
numerical evaluations [3], [41], they do not provide results
based on an actual large-scale deployment, as this paper
does, thus missing key insights on using real data, with
imperfections, and on using closed-loop control on actual
radios.

When it comes to cellular networks, ML has been applied
throughout the 3GPP protocol stack. Perenda et al. automat-
ically classify modulation and coding schemes [42]. Their
approach is robust with respect to modulation parameters
that are not part of the training set—a typical problem in
wireless networks. Again, at the physical layer, Huang et al.
investigate learning-based link adaptation schemes for the
selection of the proper MCS for eMBB in case of preemptive
puncturing for URLLC [43]. Others apply ML to 5 G net-
work management and KPM prediction [44], [45], [46].
These papers, however, do not close the loop through the
experimental evaluation of the control action or classifica-
tion accuracy on real testbeds and networks. Chuai et al.
describe a large-scale, experimental evaluation on a produc-
tion network, but the evaluation is limited to a single perfor-
mance metric [47].

DRL has recently entered the spotlight as a promising
enabler of self-adaptive RAN control. Nader et al. consider a

multi-agent setup for centralized control in wireless net-
works, but not in the context of cellular networks [48]. Wang
et al. use DRL to perform handover [49]. Other papers ana-
lyze the theoretical performance of DRL agents for medium
access [50] and user association [51]. Mollahasani et al. eval-
uate actor-critic learning for scheduling [52], and Zhou et al.
applies Q-learning to RAN slicing [8]. Chinchali et al. apply
DRL to user scheduling at the base station level [53]. Differ-
ently from these papers, we analyze the performance of
DRL agents with a closed loop, implementing the control
actions on a software-defined testbed with an O-RAN com-
pliant infrastructure to provide insights on how DRL agents
impact a realistic cellular network environment. Finally, [6],
[7] consider ML/DRL applications in O-RAN, but provide a
limited evaluation of the RAN performance without specific
insights and results on using ML.

8 CONCLUSION AND LESSONS LEARNED

The paper presents the first large-scale evaluation of ML-
driven O-RAN xApps for managing and controlling a cellu-
lar network. To this purpose, we introduce ColO-RAN, the
implementation of the O-RAN architecture in the Colos-
seum network emulator. ColO-RAN features a RAN E2 ter-
mination, a near-real-time RIC with three different xApps,
and a non-real-time RIC for data storage and ML training.

Lessons Learned. The design of ColO-RAN and of its
xApps has allowed us to collect a number of key insights
into the development of end-to-end ML and Artificial
Intelligence (AI) pipelines for O-RAN and next-generation
wireless networks. The lessons learned include (i) system-
level takeaways, related to the practical implementation of
the end-to-end ML pipeline described in Section 2 in multi-
ple large scale experimental testbeds (i.e., Colosseum and
Arena); and (ii) insights on the design of ML algorithms for
wireless network control and on their online adaptation. The
main lessons learned are summarized as follows:

� The overall framework—combined with the capabili-
ties of Colosseum and Arena—makes it possible to collect
datasets, and to test ML routines, at scale. This has required
the integration and adaptation of multiple components,
including open source software developed by different (and

Fig. 12. Throughput comparison between the offline- and online-trained
models with two source traffic patterns. The offline agent is the DRL-
base for the sched-slicing xApp.

Fig. 13. Probability of selecting a slicing/scheduling combination for the
online-trained agent with two different source traffic patterns. For each
tuple, the first element refers to the PRB (scheduling) for the eMBB slice,
the second for the MTC slice, and the third for the URLLC slice.

POLESE ETAL.: COLO-RAN: DEVELOPING MACHINE LEARNING-BASED XAPPS FOR OPEN RAN CLOSED-LOOP CONTROLON... 5797

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

often siloed) projects, such as the OSC and srsRAN, and
custom components such as the xApps developed for ColO-
RAN. The implementation of ColO-RAN bridges the gap
among multiple projects, providing a streamlined tool for
AI/ML-based RAN control.

� End-to-end ML integration requires open interfaces for
the data collection and the connectivity between the RIC
and the RAN, which need to comply with O-RAN specifica-
tions while at the same time adapt to the specific use case
(i.e., slicing and scheduling selection). To this end, we
equipped ColO-RAN with an O-RAN-compliant E2 inter-
face at the RAN, and developed custom SMs on top, which
can be easily extended to study and demonstrate other use
cases.

� ColO-RAN strikes a balance between portability and
performance. The interfaces and the closed-loop control
need to comply with the near-real-time time scale, thus the
RAN reporting loop and xApp inference need to be tuned
to align to such constraints. At the same time, however, the
ColO-RAN RIC has been adapted to be instantiated in a
constrained environment (i.e., a single Colosseum SRN or
Arena server with LXC containers) and to be an easy-to-
deploy solution that can simplify and accelerate research in
the O-RAN space.

� The processing and inference based on near-real-time
live RAN data requires a careful design of the data ingestion
pipelines at the ColO-RAN RIC. Notably, we leveraged
autoencoders to aggregate metrics from multiple reporting
periods and/or users in a slice, and to handle the lack of
data for users which may disconnect or move in the sce-
nario. The autoencoders are trained to handle different
zero-padding configurations, thus they accurately represent
the RAN state even with missing data. This also makes it
possible to provide the DRL agent with a fixed and limited
input size, independent on events in the RAN.

� The collection and sharing of data among different
components of a networked system, including AI-based
xApps, also requires a proper design of the state for each
control application. We showed with a large scale wireless
dataset that a proper data analysis helps identifying correla-
tion among RAN KPMs and avoid unnecessarily increase
the ML algorithm input space. ColO-RAN has been de-
signed to support data collection and analysis across differ-
ent testbeds and scenarios, thus simplifying the end-to-end
ML design process.

� ColO-RAN demonstrates the effectiveness of intelligent
control for the RAN through results from a large-scale com-
parative performance evaluation of multiple xApps. Adap-
tive policies effectively improve the performance of tenants
with different (and often orthogonal) traffic requirements, a
key element for next-generation cellular networks.

� Finally, ColO-RAN makes it possible to train and test
the same xApps on different wireless environments, e.g.,
Colosseum and Arena. This allowed us to evaluate online
training steps, which make it possible to adapt and fine-tune
the performance of a pre-trained ML algorithm to new
events and conditions, not part of the training set. We
showed however that this has a cost in terms of degraded
RAN performance during the exploration phase, prompting
the study and development of smart scheduling solutions. In
addition, the performance evaluation indicated that models

pre-trained on Colosseum data are effective also when
deployed on an over-the-air testbed, making hardware-
based emulation a viable and powerful step toward the crea-
tion of large-scale wireless experimental datasets.

ColO-RAN and the dataset collected for this work are
publicly available and will enable O-RAN-based experi-
ments in Colosseum. We believe that this end-to-end experi-
mental infrastructure, together with the insights and lessons
summarized here, will enable further research and develop-
ment in AI and ML solutions for the Open RAN.

REFERENCES

[1] Ericsson, “Ericsson mobility report,” 2021. [Online]. Available:
https://www.ericsson.com/en/mobility-report

[2] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Toward 6G networks: Use cases and technologies,” IEEE Com-
mun. Mag., vol. 58, no. 3, pp. 55–61, Mar. 2020.

[3] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L. -C. Wang,
“Deep reinforcement learning for mobile 5G and beyond: Funda-
mentals, applications, and challenges,” IEEE Veh. Technol. Mag.,
vol. 14, no. 2, pp. 44–52, Jun. 2019.

[4] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
programmable, and virtualized 5G networks: State-of-the-art and
the road ahead,” Comput. Netw., vol. 182, pp. 1–28, Dec. 2020.

[5] O-RANWorking Group 2, “O-RAN AI/ML workflow description
and requirements–v1.01,” O-RAN.WG2.AIML-v01.01 Technical
Specification, Apr. 2020.

[6] S. Niknam et al., “Intelligent O-RAN for beyond 5G and 6G wire-
less networks,” May 2020, arXiv:2005.08374.

[7] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia,
“Intelligence and learning in O-RAN for data-drivenNextG cellular
networks,” IEEECommun.Mag., vol. 59, no. 10, pp. 21–27, Oct. 2021.

[8] H. Zhou, M. Elsayed, and M. Erol-Kantarci, “RAN resource slic-
ing in 5G using multi-agent correlated Q-learning,” in Proc. IEEE
Int. Symp. Pers., Indoor Mobile Radio Commun., 2021, pp. 1179–1184.

[9] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An open
and softwarized prototyping platform for NextG systems,” in
Proc. ACM Int. Conf. Mobile Syst. Appl. Serv., 2021, pp. 415–426.

[10] L. Bonati et al., “Colosseum: Large-scale wireless experimentation
through hardware-in-the-loop network emulation,” in Proc. IEEE
Int. Symp. Dynamic Spectr. Access Netw., 2021, pp. 105–113.

[11] L. Bertizzolo et al., “Arena: A 64-antenna SDR-based ceiling grid
testing platform for sub-6 GHz 5G-and-beyond radio spectrum
research,” Comput. Netw., vol. 181, pp. 1–17, Nov. 2020.

[12] O-RANWorkingGroup 1, “O-RANArchitectureDescription - v2.00,”
O-RAN.WG1.O-RAN-Architecture-Description-v02.00 Technical
Specification, Jul. 2020.

[13] S. D’Oro, L. Bonati, F. Restuccia, and T. Melodia, “Coordinated 5G
network slicing: How constructive interference can boost network
throughput,” IEEE/ACM Trans. Netw., vol. 29, no. 4, pp. 1881–1894,
Aug. 2021.

[14] O-RANAlliance White Paper, “O-RAN use cases and deployment
scenarios,” Feb. 2020. [Online]. Available: https://tinyurl.com/
8cmtxmyp

[15] S. D’Oro, M. Polese, L. Bonati, H. Cheng, and T. Melodia, “dApps:
Distributed applications for real-time inference and control in O-
RAN,” 2022, arXiv:2203.02370.

[16] A. S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic,
“Toward next generation open radio access network–what o-ran
can and cannot do!,” 2022, arXiv:2111.13754.

[17] O-RAN Working Group 3, “O-RAN near-real-time RAN intelli-
gent controller E2 service model (E2SM) KPM 1.0,” ORAN-WG3.
E2SM-KPM-v01.00.00 Technical Specification, Feb. 2020.

[18] J. Wang, C. Jiang, H. Zhang, Y. Ren, K. -C. Chen, and L. Hanzo,
“Thirty years of machine learning: The road to pareto-optimal
wireless networks,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 1472–1514, Jul.–Sep. 2020.

[19] M. Tehrani-Moayyed, L. Bonati, P. Johari, T. Melodia, and S.
Basagni, “Creating RF scenarios for large-scale, real-time wireless
channel emulators,” in Proc. 19th Mediterranean Commun. Comput.
Netw. Conf., 2021, pp. 1–8.

[20] Unwired Labs. OpenCelliD, 2022. Accessed: Apr. 2022. [Online].
Available: https://opencellid.org

5798 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

https://www.ericsson.com/en/mobility-report
https://tinyurl.com/8cmtxmyp
https://tinyurl.com/8cmtxmyp
https://opencellid.org

[21] U. S. Naval Research Laboratory, “MGEN traffic emulator.”
Accessed: 2022. [Online]. Available: https://tinyurl.com/beexe8yc

[22] O-RAN software community. Bronze release, 2020. Accessed: Jul.
2021. [Online]. Available: https://wiki.o-ran-sc.org/pages/
viewpage.action?pageId¼14221635

[23] I. Gomez-Miguelez et al., “srsLTE: An open-source platform for LTE
evolution and experimentation,” in Proc. 10th ACM Int. Workshop
Wireless Netw. Testbeds, Exp. Eval. Characterization, 2016, pp. 25–32.

[24] O-RAN software community. O-DU-L2 documentation, 2021.
Accessed: Jul. 2021. [Online]. Available: https://docs.o-ran-sc.
org/projects/o-ran-sc-o-du-l2/en/latest/index.html

[25] F. Capozzi, G. Piro, L. Grieco, G. Boggia, and P. Camarda,
“Downlink packet scheduling in LTE cellular networks: Key
design issues and a survey,” IEEE Commun. Surveys Tuts., vol. 15,
no. 2, pp. 678–700, Apr.–Jun. 2013.

[26] O-RAN software community. xApp framework, 2020. Accessed:
Jul. 2021. [Online]. Available: https://wiki.o-ran-sc.org/display/
ORANSDK/xAppFramework

[27] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015. [Online]. Available: https://www.
tensorflow.org/

[28] S. Guadarrama et al., “TF-Agents: A library for reinforcement
learning in TensorFlow,” 2018. Accessed: Jun. 25, 2019. [Online].
Available: https://github.com/tensorflow/agents

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” Jul. 2017, arXiv:1707.06347.

[30] 3GPP, “5G performance measurements,” Technical Specification
(TS) 28.552, Jun. 2021, version 17.3.1.

[31] 3GPP, “Performance measurements Evolved Universal Terrestrial
Radio Access Network (E-UTRAN)” Technical Specification (TS)
32.425, Jun. 2021, version 17.1.0.

[32] M. Sakurada and T. Yairi, “Anomaly detection using autoen-
coders with nonlinear dimensionality reduction,” in Proc. 2nd
Workshop Mach. Learn. Sensory Data Anal., 2014, pp. 4–11.

[33] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
learning with deep energy-based policies,” in Proc. 34th Int. Conf.
Mach. Learn., 2017, pp. 1352–1361.

[34] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communi-
cate: Channel auto-encoders, domain specific regularizers, and
attention,” in Proc. IEEE Int. Symp. Signal Process. Inf. Technol.,
2016, pp. 223–228.

[35] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Wanna make your TCP
scheme great for cellular networks? Let machines do it for you!,”
IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 265–279, Jan. 2021.

[36] M. G. Kibria, K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and F.
Kojima, “Big data analytics, machine learning, and artificial intel-
ligence in next-generation wireless networks,” IEEE Access, vol. 6,
pp. 32 328–32 338, 2018.

[37] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of
machine learning in wireless networks: Key techniques and open
issues,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3072–3108,
Oct.–Dec. 2019.

[38] D. Gunduz, P. de Kerret, N. D. Sidiropoulos, D. Gesbert, C. R. Mur-
thy, and M. van der Schaar, “Machine learning in the air,” IEEE J.
Sel. Areas Commun., vol. 37, no. 10, pp. 2184–2199, Oct. 2019.

[39] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial
neural networks-based machine learning for wireless networks: A
tutorial,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3039–3071,
Oct.–Dec. 2019.

[40] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. -C. Chen, and L. Hanzo,
“Machine learning paradigms for next-generation wireless
networks,” IEEE Wireless Commun., vol. 24, no. 2, pp. 98–105,
Apr. 2017.

[41] Y. Fu, S. Wang, C.-X. Wang, X. Hong, and S. McLaughlin,
“Artificial intelligence to manage network traffic of 5G wireless
networks,” IEEE Netw., vol. 32, no. 6, pp. 58–64, Nov./Dec. 2018.

[42] E. Perenda, S. Rajendran, G. Bovet, S. Pollin, and M. Zheleva,
“Learning the unknown: Improving modulation classification per-
formance in unseen scenarios,” in Proc. IEEE Conf. Comput. Com-
mun., 2021, pp. 1–10.

[43] Y. Huang, T. Hou, andW. Lou, “A deep-learning-based link adap-
tation design for eMBB/URLLC multiplexing in 5G NR,” in Proc.
IEEE Conf. Comput. Commun., 2021, pp. 1–10.

[44] M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi,
“Machine learning at the edge: A data-driven architecture with
applications to 5G cellular networks,” IEEE Trans. Mobile Comput.,
vol. 20, no. 12, pp. 3367–3382, Dec. 2021.

[45] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Cognitive network management in sliced 5G networks
with deep learning,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 280–288.

[46] J. Wang et al., “Spatiotemporal modeling and prediction in cellular
networks: A Big Data enabled deep learning approach,” in Proc.
IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[47] J. Chuai et al., “A collaborative learning based approach for
parameter configuration of cellular networks,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 1396–1404.

[48] N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour,
“Resource management in wireless networks via multi-agent
deep reinforcement learning,” IEEE Trans. Wireless Commun.,
vol. 20, no. 6, pp. 3507–3523, Jun. 2021.

[49] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover control in
wireless systems via asynchronous multiuser deep reinforcement
learning,” IEEE Internet Things J., vol. 5, no. 6, pp. 4296–4307, Dec.
2018.

[50] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep rein-
forcement learning for dynamic multichannel access in wireless
networks,” IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2,
pp. 257–265, Jun. 2018.

[51] N. Zhao, Y. -C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang,
“Deep reinforcement learning for user association and resource
allocation in heterogeneous cellular networks,” IEEE Trans. Wire-
less Commun., vol. 18, no. 11, pp. 5141–5152, Nov. 2019.

[52] S. Mollahasani, M. Erol-Kantarci, M. Hirab, H. Dehghan, and R.
Wilson, “Actor-critic learning based QoS-aware scheduler for
reconfigurable wireless networks,” IEEE Trans. Netw. Sci. Eng.,
vol. 9, no. 1, pp. 45–54, Jan./Feb. 2022.

[53] S. Chinchali et al., “Cellular network traffic scheduling with deep
reinforcement learning,” in Proc. 32nd AAAI Conf. Artif. Intell.,
2018, pp. 766–774.

Michele Polese (Member, IEEE) received the
PhD degree from the Department of Information
Engineering, University of Padova, in 2020. He is
currently a principal research scientist with the
Institute for theWireless Internet of Things, North-
eastern University, Boston, since March 2020. He
also was an adjunct professor and postdoctoral
researcher in 2019/2020 with the University of
Padova, and a part-time lecturer in Fall 2020 and
2021 with Northeastern University. During his
PhD, he visited New York University (NYU), AT&T

Labs in Bedminster, New Jersey, and Northeastern University. His
research interests are in the analysis and development of protocols and
architectures for future generations of cellular networks (5G and beyond),
in particular for millimeter-wave and terahertz networks, spectrum shar-
ing and passive/active user coexistence, open RAN development, and
the performance evaluation of end-to-end, complex networks. He has
contributed to O-RAN technical specifications and submitted responses
to multiple FCC and NTIA notice of inquiry and requests for comments,
and is a member of the Committee on Radio Frequency Allocations of the
American Meteorological Society (2022-2024). He collaborates and has
collaborated with several academic and industrial research partners,
including AT&T, Mavenir, NVIDIA, InterDigital, NYU, University of Aalborg,
King’s College, and NIST. He was awarded with several best paper
awards, is serving as TPC co-chair forWNS3 2021-2022, as an associate
technical editor for the IEEE Communications Magazine, and has orga-
nized theOpen 5G Forum in Fall 2021.

Leonardo Bonati (Student Member, IEEE) rec-
eived the BS degree in information engineering
and the MS degree in telecommunication engin-
eering from University of Padova, Italy, in 2014 and
2016, respectively. He is currently working toward
the PhD degree in computer engineering with
Northeastern University, Boston, Massachusetts.
His research interests include 5G and beyond
cellular networks, network slicing, and software-
defined networking for wireless networks.

POLESE ETAL.: COLO-RAN: DEVELOPING MACHINE LEARNING-BASED XAPPS FOR OPEN RAN CLOSED-LOOP CONTROLON... 5799

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

https://tinyurl.com/beexe8yc
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=14221635
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=14221635
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=14221635
https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-l2/en/latest/index.html
https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-l2/en/latest/index.html
https://wiki.o-ran-sc.org/display/ORANSDK/xAppFramework
https://wiki.o-ran-sc.org/display/ORANSDK/xAppFramework
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/tensorflow/agents

SalvatoreD’Oro (Member, IEEE) received the PhD
degree from theUniversity of Catania, in 2015.He is
currently a research assistant professor with North-
eastern University. He is an area editor of Elsevier
Computer Communications Journal and serves on
the Technical ProgramCommittee (TPC) ofmultiple
conferences and workshops such as IEEE INFO-
COM, IEEECCNC, IEEE ICCand IFIPNetworking.
His research interests include optimization, artificial
intelligence, security, network slicing and their appli-
cations to 5G networks and beyond.

Stefano Basagni (Senior Member, IEEE) received
the PhD degree in electrical engineering from the
University of Texas at Dallas, in 2001, and the PhD
degree in computer science from the University of
Milano, Italy, in 1998. He is currently with the Insti-
tute for the Wireless Internet of Things and a pro-
fessor with the ECE Department, Northeastern
University, Boston, Massachusetts. His current
interests concern research and implementation
aspects of mobile networks and wireless communi-
cations systems, wireless sensor networking for

IoT (underwater, aerial and terrestrial), and definition and performance
evaluation of network protocols. He has published more than ten dozen of
highly cited, refereed technical papers and book chapters. His h-index is
currently 46 (May 2022). He is also co-editor of three books. He served as
a guest editor of multiple international ACM/IEEE, Wiley and Elsevier jour-
nals. He has been the TPC co-chair of international conferences. He is a
distinguished scientist of the ACM, and amember of the Council for Under-
graduate Education (CUR).

Tommaso Melodia (Fellow, IEEE) received the
PhD degree in electrical and computer engineer-
ing from the Georgia Institute of Technology, in
2007. He is currently the William Lincoln Smith
chair professor with the Department of Electrical
and Computer Engineering, Northeastern Univer-
sity in Boston. He is also the founding director of
the Institute for the Wireless Internet of Things
and the director of research for the PAWR Project
Office. He is a recipient of the National Science
Foundation CAREER Award. He has served as

associate editor of IEEE Transactions on Wireless Communications,
IEEE Transactions on Mobile Computing, Elsevier Computer Networks,
among others. He has served as Technical Program Committee chair for
IEEE Infocom 2018, general chair for IEEE SECON 2019, ACM Nano-
com 2019, and ACM WUWnet 2014. He is the director of research for
the Platforms for Advanced Wireless Research (PAWR) Project Office, a
$100 M public-private partnership to establish four city-scale platforms
for wireless research to advance the US wireless ecosystem in years to
come. His research on modeling, optimization, and experimental evalua-
tion of Internet-of-Things and wireless networked systems has been
funded by the National Science Foundation, the Air Force Research Lab-
oratory the Office of Naval Research, DARPA, and the Army Research
Laboratory. He is a senior member of the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

5800 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 19:33:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

