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Abstract—Accurate channel modeling in real-time
faces remarkable challenge due to the complexities of
traditional methods such as ray tracing and field mea-
surements. AI-based techniques have emerged to address
these limitations, offering rapid, precise predictions of
channel properties through ground truth data. This pa-
per introduces an innovative approach to real-time, high-
fidelity propagation modeling through advanced deep
learning. Our model integrates 3D geographical data
and rough propagation estimates to generate precise path
gain predictions. By positioning the transmitter centrally,
we simplify the model and enhance its computational
efficiency, making it amenable to larger scenarios. Our
approach achieves a normalized Root Mean Squared
Error of less than 0.035 dB over a 37,210 square meter
area, processing in just 46 ms on a GPU and 183 ms on
a CPU. This performance significantly surpasses tradi-
tional high-fidelity ray tracing methods, which require
approximately three orders of magnitude more time.
Additionally, the model’s adaptability to real-world data
highlights its potential to revolutionize wireless network
design and optimization, through enabling real-time
creation of adaptive digital twins of real-world wireless
scenarios in dynamic environments.

Index Terms—Deep Learning, Propagation Modeling,
Channel Modeling, Ray Tracing, Digital Twin.

I. INTRODUCTION

Real-time channel modeling is a cornerstone for
modern and future wireless communication systems. It
allows for network design and optimization in a risk-
free Digital Twin (DT) environment to dynamically
adapt to changing conditions of a real-world wireless
network deployment. This enables better algorithmic
designs and decision-making in a virtual environment,
ultimately improving performance, efficiency, and user
experience in real-world deployment. However, real-
time modeling faces challenges due to the complex-
ity of modern environments, including user mobility
and varying conditions. Traditional methods like field
measurements, ray tracing, and stochastic models fall
short. Field measurements are accurate but costly,
ray tracing is detailed but computationally intensive
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(e.g., in large Radio Frequency (RF) scenarios with
mobility [1]), and stochastic models are less resource-
demanding but sacrifice accuracy [2]. Attempts to
address these shortcomings have provided limited re-
sults. For instance, efforts to accelerate ray tracing,
such as parallelizing algorithms and using GPUs,
have not yet achieved real-time capabilities due to
lengthy computation times. Consequently, real-time
support for mobility models and optimization remains
impractical [1]. Ray tracing also lacks flexibility:
Scenario changes necessitate rerunning the process,
complicating adaptation to dynamic environments with
new transmitters or receivers in real-time.

To address these limitations, advanced Artificial In-
telligence (AI)-based techniques have been proposed.
These methods leverage ground truth data from mea-
surements or simulations to train data-driven models,
enabling rapid and precise predictions of channel prop-
erties. By establishing a mapping function between the
wireless environment and channel parameters, AI tools
facilitate proactive network design. They effectively
tackle challenges such as resource allocation, user
mobility analysis, localization, and radio propagation
modeling. AI-based techniques offer greater flexibil-
ity, scalability, and reduced computational complex-
ity, thus enabling real-time propagation modeling in
complex urban environments [3]–[9].

Leveraging AI for real-time modeling has multifold
key motivations, including the need for advanced DT
technology [10], [11] and enhanced telecommunica-
tion system design. Real-time DTs provide dynamic
digital replicas of real-world network environments,
enabling safe testing and evaluation of new configura-
tions without impacting real-world performance [12].
They also facilitate data collection to train AI/Machine
Learning (ML) models [13]. However, real-time DTs
for telecommunication networks face challenges due to
increased deployment density, complex architectures,
and high-frequency communications. Accurate real-
time propagation modeling is crucial for enhancing the
physical layer of these DTs, ensuring they accurately
reflect real-world conditions. Utilizing AI for this pur-
pose can significantly improve network optimization



and performance management in dynamic telecommu-
nication environments [14]. AI-assisted propagation
modeling enhances telecommunication system design
by optimizing base station deployments, particularly
RRHs or O-RUs, and visualizing signal propagation
characteristics. When site conditions differ from the
design, real-time modeling identifies discrepancies,
enabling rapid adjustments to cell sites and sectors for
optimal coverage and service.

Early efforts in AI-based channel modeling uti-
lized conventional ML techniques like Random Forest,
KNN, and SVM to model channel path loss, with Ran-
dom Forest showing the best performance [15]. The
introduction of Convolutional Neural Network (CNN)
advanced the field by leveraging spatial correlations in
images to enhance model accuracy using propagation
features like distance and building maps [16]. Fully
connected layers were used for regression, incorporat-
ing additional features such as frequency and antenna
tilt. Further advancements included the use of satel-
lite and aerial images as input channels, significantly
improving prediction accuracy [17], [18]. Hybrid ap-
proaches combining rough estimates from physics-
based models with Neural Network (NN) models also
improved prediction performance [19].

Recent works have focused on incorporating more
comprehensive input information and predicting chan-
nel parameter heat maps in one shot. CNN-based Auto
Encoders and U-Net networks have shown promising
results for fast and accurate predictions, with U-Net
providing better performance at the cost of increased
computational demands [3]–[9]. These advancements
in AI-based channel modeling highlight its potential
to revolutionize wireless network design by enabling
real-time, accurate propagation modeling across var-
ious scenarios and environments. However, despite
their promising performance, questions remain regard-
ing the generalizability of these models and their
evaluation with real-world measurements.

In this paper we address these concerns with the aim
of enhancing the reliability of AI-based approaches
in diverse and dynamic wireless environments. To
achieve this, we employ a U-Net structure inspired
by Lee and Molish [7], which allows the model to
cover an entire area with a single inference while
capturing spatial features effectively. We leverage two
key inputs: an elevation map to accurately convey
3D geographical information to the model, and a
rough estimation of the propagation model to maintain
generalizability (Fig. 1).

This rough estimation is subsequently upsampled
and refined into a high-fidelity propagation model. Un-
like other approaches, we place the Transmitter (TX)
at the center to reduce the model’s complexity. This
improves model performance compared to using an ad-
ditional channel for the TX location. By implementing
these changes, we address the generalizability issues of
previous works, enabling real-time propagation model-
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Fig. 1: Training process, data calibration, and model
validation.

ing for any environment with available 3D geograph-
ical data. Our approach significantly improves both
accuracy and computational efficiency. Specifically,
we achieve a normalized Root Mean Squared Error
(RMSE) of less than 0.035 dB over a 37,210 square
meter area, with processing times of just 46 ms on a
GPU. These results demonstrate the model’s ability to
rapidly provide high-fidelity propagation predictions,
surpassing traditional ray tracing methods that require
over 387.6 seconds. Additionally, refining the model
with a small amount of measurement data shows
an Root Mean Squared Error (RMSE) of 0.0113,
demonstrating its adaptability to real-world data. The
remarkable performance and efficiency of AI-driven
techniques underscore their potential to revolutionize
wireless network design and optimization, enabling
real-time adaptation to dynamic and complex telecom-
munication environments.

The paper is organized as follows. Section II de-
scribes data collection for training the model. Sec-
tion III details the architecture and components of
the Deep Learning (DL) model. Section IV presents
performance results and an evaluation of the model.
Finally, Section V concludes the paper.

II. TRAINING THE MODEL: DATA COLLECTION

To construct a comprehensive and precise dataset
for predicting path gain (expressed in dB throughout
this study), we utilized both ray tracing simulations
and empirical measurements. Our objective is to fore-
cast the Path Gain (PG), as delineated in equation (1),
by leveraging the received power at the receiver (PRX)
and the transmitted power (PTX).

PG(t) = PRX(t)− PTX(t), (1)



The Channel Impulse Response (CIR) can be defined
as:

h(t, τ) =

N∑
i=1

αi(t)δ (τ − τi(t)) , (2)

where αi(t) is the time-varying complex amplitude of
the i-th path and τi(t) is the time-varying delay of the
i-th path.

To extract the received power from the channel, we
use the CIR as shown in (3)

PRX(t) = 10 log10

(∫ ∞

−∞
|h(t, τ)|2dτ

)
= 10 log10

(∑
i

|αi(t)|2
)
.

(3)

In a stationary environment with a mobile receiver,
PG(t) and PG(qRX), where qRX is the location of
Receiver (RX) can be considered equivalent since
the position qRX of the receiver varies with time
t. Thus, modeling PG(qRX) effectively captures the
time-varying nature of the path gain PG(t) as the
receiver moves through different locations qRX.

A. Ray Tracing

Urban environments pose challenges for conven-
tional channel models, which often fail to accurately
characterize channel properties. Ray tracing methods
offer a potential solution for these complex scenarios.
To build a comprehensive dataset, we employed Wire-
less InSite Ray Tracing software [20] by RemCom to
collect high-fidelity data. The ray tracing model is con-
figured by one diffraction and four reflections. In the
scenario described below, simulating one transmitter
takes 1:25:12 using CPU or 0:03:16 using GPU on a
machine with two Intel Xeon E5-2660 processors with
28 cores and one Nvidia Tesla K40c GPU with 2880
CUDA cores.

In this study, we focus on the Northeastern Univer-
sity campus in Boston shown in Fig. 2, as an urban
use case scenario to train and test the model. We
consider a grid of potential RX locations, comprising
7,569 points (red points) spread over a 435 × 435
square meters area, and 61 TX locations (green points)
situated at the corners of building rooftops for po-
tential Base Station (BS). Additionally, we examine
Fenway Park (42°20’26”N 71°05’38”W), as a separate
location with a lower density of buildings (and not
seen in the DL training phase) with another 16 TXs
to evaluate the model’s generalization capabilities. To
ensure accuracy, we import a precise 3D model of
the area using data gathered by Boston Planning and
Developing Agency [21].

To prepare the input data for the model, we sim-
ulate ray tracing for all transmitter locations in the
Northeastern University scenario, as shown in Fig. 2,
to obtain path gain heat maps. These heat maps
serve as the ground truth for training the model, with
Fig. 3 presenting an example. We convert these maps

Transmitter
Receiver

Fig. 2: Northeastern University, Boston Campus, used
for generating the main dataset consisting of 61 TX
and 7,569 RX. Location: 42°20’22”N, 71°05’14”W.

into gray-scale single-channel images to reduce the
data requirements and mitigate overfitting. Since DL
models require fixed input sizes, we crop the images to
ensure uniform input sizes across different scenarios.
Each image in our dataset measures 100× 100 pixels,
representing approximately a 1.929 × 1.929 meters
area per pixel. Generating data for numerous scenar-
ios is impractical, so we employ data augmentation
techniques to create an augmented dataset from a
limited synthetic dataset. Specifically, we use random
rotations to incorporate the transmitter location into
various input configurations, ensuring a substantial
and diverse training dataset to enhance the model’s
robustness and accuracy.

B. Measurement Campaign

Although ray tracing is a powerful tool for modeling
channels, real-world scenarios present unique varia-
tions that can significantly alter the channel charac-
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Fig. 3: A comparison of the model’s output (Fig. 3c)
with the ground truth heatmap generated by Wireless
InSite (Fig. 3d), showing its superior performance
compared to (Fig. 3b).
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Fig. 4: Measurement campaign at Northeastern Uni-
versity Campus in collaboration with VIAVI to gather
real-world data for model validation and refinement.

teristics (see Fig. 4b). Three main factors contribute
to these variations: (1) environmental dynamics, such
as moving vehicles, constantly change the channel
conditions; (2) the precise shapes and materials of
buildings, which 3D models may not accurately cap-
ture, can affect channel behavior, as materials are often
not modeled with exact fidelity; (3) interference from
other users and background noise introduce additional
environment noise into the channel, complicating ac-
curate modeling.

To refine, calibrate, and validate the DL model
in a real-world scenario, we conducted a measure-
ment campaign in collaboration with VIAVI Solutions
around the Northeastern University campus, as de-
picted in Fig. 4a. The details of the measurements are
provided in Table I.

For channel sounding, the VIAVI Solutions Ranger,
an RF waveform generator and capture platform,
was used. It supports two full-duplex channels with
200 MHz bandwidth up to 6 GHz and captures three
and one-half hours of recordings. Analysis and wave-
form modifications are done using the Signal Work-
shop application, which can be run locally or remotely.

The recorded In-phase and Quadrature (IQ) samples
by the Ranger were processed in two steps: (1) extract-
ing CIR (h(τ, t)) from the raw IQ samples (R(τ, t));
and (2) calibration to determine the actual Path Gain
(PG(qRX)). For the first step, we utilized a Galois
Linear Feedback Shift Register 14 (GLFSR-14) code-
word, modulated it using Binary Phase-shift keying

TABLE I: Measurement Setup and Equipment

TX

Radio Unit (RU) Ettus USRP X410
Amplifier Minicircuits ZHL-1000-3W+ (38 dB)
Antenna Pasternack PE51OM1014 (6 dBi)
Location 42°20’25”N 71°05’16”W

RX

RU Ranger provided by VIAVI Solutions
Antenna Waveform directional antenna (10 dBi)
Location Mobile (see Fig. 4a)

Measurement Details

Frequency 910 MHz
Bandwidth 122.88 MHz
Codeword GLFSR-14
Synchronization GPS clock for both TX and RX

(BPSK), resampled it to match the RX sampling fre-
quency (s(t)), and then correlated it with the received
data. This process was repeated for each second of the
data. Thus, CIR at the receiver h[τ, t = n] at the n-th
second at location qRX using GPS logs is

h(τ, t) = R(τ, t) ∗ s(t). (4)

To remove background noise from the channel, we
identified the significant peaks in the channel for every
length of the codeword:

α = h(τ, t) · 1{peaks(h(τ,t))}. (5)

The indicator function 1{peaks(h(τ,t))} is defined as

1{peaks(h(τ,t))} =

{
1 peaks of h(τ, t)
0 otherwise.

(6)

This function is 1 at the peak (threshold of +3dB
of the neighboring points) positions of h(τ, t) and 0
elsewhere, effectively isolating the peak values of the
CIR. After extracting the sparse channel, we sum the
values like in (3).

To accurately determine the path gain, a conducted
calibration test Over-the-Cable (OTC) was performed
with all equipment in the loop except for the antennas.
Instead of antennas, 60 dB attenuators (LATT) were
placed between RX and TX to prevent Analog to
Digital Converters (ADCs) saturation, and the cable
loss (Lc) was measured.

POTC
RX = PTX +GAMP − Lc − LATT (7)

After field measurements, the average received
power from the calibration data (POTC

RX ) was subtracted
from the received power in the actual measurement
(POTA

RX ) to compensate for amplifiers (GAMP), cable
losses (Lc), and TX power (PTX).

POTA
RX = PTX +GAMP +GANT + PGOTA (8)

The nominal gain of the antennas (GANT) was also
considered in PGOTA:

PGOTA = POTA
RX − POTC

RX − Lc − LATT −GANT (9)
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Fig. 5: U-Net architecture adapted from PMNet [7].
We use elevation maps and propagation estimates as
inputs to achieve an accurate propagation model.

III. DL-BASED PROPAGATION MODEL

We propose a novel model shown in Fig. 5 inspired
by PMNet [7], which originally takes two inputs:
(1) a building map, indicating building locations with
binary values (ones and zeros); and (2) a one-hot
encoded TX location. We have modified these inputs
for improved performance. Instead of using a binary
building map, we now input an elevation map (Iel) that
shows building heights (Fig. 3a). Additionally, rather
than a one-hot encoded TX location, we use a rough
estimation of the propagation model derived from real-
time ray tracing by Wireless InSite (Iest), which runs
in approximately 30 ms, as illustrated in Fig. 3b. The
TX location is always at the center of the image, so
there is no need to include the TX location in another
channel. These modifications to the input enable our
model to deliver high-fidelity propagation predictions
in real time for different scenarios.

The DL model is designed to predict the path gain
(PGdB(qRX)) given the input x and the model param-
eters θ (weights and biases). However, the model’s
output is not limited to the path gain for a specific
location, i.e., pixels, but rather it provides the path gain
for an entire area, i.e., a heatmap. Mathematically, this
can be represented as P (PGdB(qRX)|x, θ), where x is
the concatenated input [Iel, Iest], and θ encompasses
all the parameters of the model. The objective is to
learn the distribution of path gain conditioned on the
input data and model parameters. This is achieved by
optimizing the model parameters θ during training to
minimize the prediction error.

As mentioned in Section II, the main dataset con-
sists of 61 different scenarios (TX locations), each
with 100 augmented scenarios, resulting in a total of
6, 100 images. To validate the robustness and ensure
a fair comparison of the model, we randomly split
the data into different ratios ten times. This approach
helps to: (1) ensure there is no bias towards specific
scenarios; and (2) evaluate the model’s generalization
across various test ratios. Additionally, the trained
model is tested in a different type of environment
at Fenway Park with 16 TXs to further assess its
performance. Besides ray tracing, measurement data
is also used to validate the model. The entire process
is illustrated in the diagram in Fig. 1.

IV. METRICS AND RESULTS

As described in Section III, the model is trained and
tested with different split ratios using 10-fold cross-
validation to find the optimal configuration. The results
are shown in Fig. 6a. As observed, the model stabilizes
after a 0.6 split ratio, indicating that no further training
is required for effective inference. The error has been
normalized across all plots, with the path gain range
spanning from −50 to −250 dB.

Also, the Empirical Cumulative Distribution Func-
tion (eCDF) of error for the best-performing model
across 10-fold cross-validation has been plotted using
two different test datasets (unseen by the model): (1)
the same area at Northeastern; and (2) a different area
at Fenway Park (42°20’26”N, 71°05’38”W), where
the environment is more open compared to the dense
structure of the Northeastern Campus.

Results in Fig. 6b show that the model outper-
form traditional propagation estimation. Specifically,
the median error for DL at Northeastern Campus is
0.0268, and at Fenway Park it is 0.0484. However, for
the traditional model, the median error at Northeastern
Campus is 0.4146, and at Fenway Park it is 0.0778.
These results highlight the model’s robustness and
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Fig. 7: eCDF of error w/ and w/o calibration using the
measurement data (10% of the dataset).

adaptability to different environments, maintaining su-
perior performance in both familiar and new scenarios.

In addition to ray tracing, we evaluate the model’s
performance after adding measurement data in the
training phase (Fig. 7). For this, we use 90% of
the points for testing. Initially, the error is relatively
high (median of 0.0569 dB), but after refining the
model with a small amount of measurement data,
the performance improves significantly, reducing the
median error to 0.0113 dB. This demonstrates that the
DL model can be calibrated with measurement data,
unlike common ray tracing software.

Besides the low overall error of the propagation
model, using DL models enables near real-time ac-
curate propagation modeling. From our test benches,
real-time ray tracing by Wireless Insite takes approx-
imately 30 ms to run, while high-fidelity ray tracing
takes over 387.6 s to complete. However, our model
requires only 46 ms on a GPU and 183 ms on a CPU
to run with minimal error.

V. CONCLUSIONS

We introduce a novel real-time path gain estimator
leveraging advanced deep learning techniques. Our
approach integrates elevation maps and rough prop-
agation model estimations for highly accurate propa-
gation modeling. Placing the transmitter at the center
simplifies the model while enhancing performance,
with precise path gain predictions in near real-time.
Our experimental findings demonstrate that the pro-
posed model achieves a normalized RMSE of less
than 0.035 dB across a 37, 210 square meter area,
executing in just 46 ms on a GPU and 183 ms on a
CPU. This represents a significant advancement over
traditional high-fidelity ray tracing methods, which
typically require over 387.6 seconds on a GPU to
complete. Our research underscores the potential of
AI-enhanced techniques to transform wireless network
design. It lays a foundation for real-time digital twins,
promising efficient deployment and maintenance of
future wireless infrastructure.
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