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Abstract—Wireless Sensor Networks (WSNs) are pivotal in
various applications, including precision agriculture, ecological
surveillance, and the Internet of Things (IoT). However, energy
limitations of battery-powered nodes are a critical challenge,
necessitating optimization of energy efficiency for maximal net-
work lifetime. Existing strategies like duty cycling and Wake-up
Radio (WuR) technology have been employed to mitigate energy
consumption and latency, but they present challenges in scenarios
with sparse deployments and short communication ranges. This
paper introduces and evaluates the performance of Unmanned
Aerial Vehicle (UAV)-assisted mobile data collection for WuR-
enabled WSNs through physical and simulated experiments.
We propose two one-hop UAV-based data collection strategies:
a naı̈ve strategy, which follows a predetermined fixed path,
and an adaptive strategy, which optimizes the collection route
based on recorded metadata. Our evaluation includes multiple
experiment categories, measuring collection reliability, collection
cycle duration, successful data collection time (latency), and
node awake time to infer network lifetime. Results indicate that
the adaptive strategy outperforms the naı̈ve strategy across all
metrics. Furthermore, WuR-based scenarios demonstrate lower
latency and considerably lower node awake time compared to
duty cycle-based scenarios, leading to several orders of magni-
tude longer network lifetime. Remarkably, our results suggest
that the use of WuR technology alone achieves unprecedented
network lifetimes, regardless of whether data collection paths
are optimized. This underscores the significance of WuR as the
technology of choice for all energy critical WSN applications.

I. INTRODUCTION

Networks of wireless devices acting as interface to the
physical world, known as Wireless Sensor Networks (WSNs),
have become the communication backbone of countless appli-
cations. They have been applied to various domains, including
precision agriculture, ecological surveillance, and the Internet
of Things (IoT) [1]. The crux of wireless sensor networking
resides in its scale, its pervasiveness, and in being able to
communicate wirelessly. This is because WSN devices (or
nodes) can be deployed virtually anywhere, independently of
the presence of infrastructure (e.g., wired networks) or power.
However, being battery-powered poses limitations on energy
availability, which consequently limits a node’s lifetime and
the overall duration of network operations (network lifetime).

In most scenarios, the replacement of nodes’ batteries is in-
convenient or entirely impossible. Thus, an important problem
for WSNs is that of optimizing energy efficiency in order to
attain maximal network lifetime.

Approaches for optimizing energy efficiency have been ex-
plored at all layers of a node architecture [2]. In contemporary
designs, the energy consumed by communication is found to
be significantly higher than by all other operations [3]. The
majority of energy consumption by communication is due to
the radio’s idle listening. This wasteful energy consumption
can be reduced by the use of duty cycling [4], wherein the
node’s radio is kept off (asleep), and periodically turned
on (awake) for brief intervals, during which communication
occurs. In the asleep state, the energy consumption is or-
ders of magnitudes lower than in the awake state (usually
microwatts vs. milliwatts). While this approach can saliently
reduce energy consumption due to idle listening, it noticeably
increases the expected data delivery times (end-to-end la-
tency) [5]. These high latencies can be ameliorated by making
the transition to the awake state occur “on demand” using
Wake-up Radio (WuR) technology [6], [7], [8]. In addition to
its main radio, each node is endowed with an ultra-low-power
auxiliary radio that remains always on. When communication
with a particular node is required, that node can be awoken by
sending it a Wake-up Sequence (WuS) that matches its Wake-
up Address (WuA). After exchanging packets, nodes return
to sleep. This approach significantly attenuates both energy
consumption and latency [9].

Perhaps the most important function of a WSN is that
of data collection. Nodes obtain sensor readings from the
environment and collate them into data packets that need to be
transported to a collection point (the network sink). In many
WSN scenarios data is collected by routing packets through
multiple nodes (multi-hop routing) [10]. However, routing-
based data collection requires the network to be fully con-
nected, which prevents applicability to scenarios with sparse
deployments [11]. This is further exacerbated by the use of
WuR technology, as contemporary WuR designs typically have
relatively short communication ranges (≤ 25 m) [12], [13].



Since a WuR-enabled WSN would need to be fully connected
with respect to WuR links in order to route data packets, this
imposes an even greater constraint on network density, which
affects deployment and operational costs.

Another approach to data collection envisions sending a
mobile data collector to the node, to collect data directly from
the source via a simple one-hop wireless transmission [14],
[15], [16]. The collector can be any kind of mobile device,
outfitted with communication equipment and an on-board
controller. Sufficient mobility, like that of an Unmanned Aerial
Vehicle (UAV) [17], significantly reduces the difficulty of
collecting data from remote nodes [18]. A further benefit of
mobile data collection is the avoidance of energy consumption
by routing. Even if a route from a node to the sink can be
found, multi-hop routing always consumes more energy than
one-hop forwarding [19], [20]. This leads to shorter node
lifetime, and in turn to shorter network lifetime.

In this paper, we evaluate the performance of UAV-assisted
mobile data collection for WuR-enabled WSNs via physical
and simulated experiments. Our aim is to demonstrate that the
joint exploitation of WuR technology and one-hop forward-
ing produces network lifetimes that are unthinkable in duty
cycling-based WSNs. We start by designing two one-hop UAV-
based data collection strategies. The first, a naı̈ve strategy,
keeps no information about node locations and links (namely,
on the network topology), and visits the nodes according
to a predetermined fixed path. We then define an adaptive
strategy that aims at optimizing the collection route based
on metadata recorded during previous collection cycles. Our
evaluation is based on multiple categories of experiments
in which the performance of UAV-based data collection is
evaluated. We use WuR-enabled wireless sensor nodes and
a quad-rotor drone UAV to conduct physical experiments that
evaluate both strategies in networks with duty cycling and with
WuR. Parameters and results from these physical experiments
are used to inform and validate simulations, which we use
to examine the effects of scale on performance. At each
collection cycle, we measure the percentage of nodes from
which data packets are collected (reliability), the duration of
the collection cycle, and the time of successful data collection
(latency). We also measure the node awake time, which we
use to infer network lifetime.

Results show that the adaptive strategy obtains the best
performance for all metrics. The time spent awake by the
nodes is considerably lower for the WuR-based scenarios
than for duty cycle-based networks. The latency of WuR-
based scenarios is generally lower than that in scenarios with
shorter duty cycles. Overall, the lifetime of networks with
WuR technology, whether data collection paths are optimized
or not, is shown to be several orders of magnitude longer
than that of networks with duty cycle. This makes WuRs the
technology of choice for all energy-critical WSN applications.

The paper is organized as follows. Section II describes
the experimental scenarios and the data collection strategies.
Section III lists performance metrics, experimental parameters
and discusses results. Section IV concludes the paper.

II. UAV-ASSISTED DATA COLLECTION

A. Network Scenarios

We consider scenarios that consist of N wireless nodes
scattered in an L × W deployment region. Each node is
endowed with a wireless transceiver (the main radio), used
for data communications. A UAV with a low-power MagoN-
ode++ [21], is used to collect data from the network nodes.
It launches from a Base Station (BS), traverses the region in
which the nodes are deployed, stops at designated collection
points and wirelessly requests and gathers data from every
wireless node in the deployment region, finally returning
to the BS to recharge/refuel. This process is known as a
collection cycle. A powered sink is situated in or near the
deployment region. The sink sports a relatively long-range
radio to communicate with the UAV. As the UAV collects data
packets, it relays them to the sink. Upon returning to the BS,
the UAV batteries are checked and replaced if needed.
We consider two types of scenarios:

• In duty cycle-based scenarios each node operates its main
radio according to a preset duty cycle d. Following a
duty cycle of d% means that a node radio remains awake
for d/100 s and goes to sleep for (1− d/100) s, repeating
indefinitely. When the UAV hovers by a collection point for
a time τ , it unicasts a Request-to-Receive (RTR) control
packet to the node (via its main radio). If the node is awake,
it responds with a data packet.

• In WuR-based scenarios each node also feature a WuR, and
is set to wake up according to a unique ID [22], [23]. A
node keeps its main radio asleep until it receives a wake-up
sequence (via its WuR) matching its ID. When awoken, the
node sends a data packet to the UAV using the main radio,
and then returns to sleep.

In both scenarios the UAV unicasts its requests (whether an
RTR packet or a wake-up sequence), which requires the UAV
to know the unique address of the node to whom the request
is sent. This might be known at network deployment, or can
become known after a few connection cycles (the latter is the
case of our experiments below). Using unicast requests makes
the data collection more robust and simplifies channel access.

B. Data Collection Strategies

We consider two collection strategies: naı̈ve and adaptive.

• The naı̈ve strategy considers the node locations to be
unknown. The UAV is set to fly in a rectangular spiral
path that covers the entire deployment region.1 The UAV
periodically stops at preset collection points along this path.
At each collection point, the UAV attempts to collect data
from all nodes within its transmission reach.

• The adaptive strategy (AS) records topology metadata,
which are used to estimate node locations, shorten the

1 Traveling on rectangular spiral paths has been shown to produce better
performance results than following other naı̈ve paths [24], [25].



flight path for subsequent collection cycles, and eventu-
ally converge to a near-optimal flight path.2 The UAV
initially starts with a naı̈ve collection cycle, but keeps a
record of which nodes were successfully collected from at
each collection point. This information is used to estimate
node locations, using supervised likelihood-maximization
assisted by Nelder-Mead search. Based on the estimated
node locations, a sequence of N new collection points
is determined (one collection point for each node) using
a pattern-search adaptation of the Nearest Neighbor Al-
gorithm [27]. The strategy converges to the near-optimal
path when the mean Euclidean distance between current
and previous estimates of node locations is below a preset
threshold. Once the strategy has converged to the near-
optimal path, it will stop making adjustments to subsequent
paths. (All future collection cycles will take the same path).

Fig. 1 illustrates both strategies on a sample topology with 4
nodes deployed in a square area. Fig. 1a depicts the topology:
The BS location is depicted at the center of the area, repre-
sented by a small pentagon; the nodes are depicted as small
gray rectangles. Fig. 1b presents the path taken and the preset
collection points (small green dots) visited by the UAV during
the naı̈ve collection cycle. In the case of the adaptive collection
strategy (Figures 1c to 1f), the UAV initially performs the same
naı̈ve collection cycle. However, Fig. 1c shows the metadata
recorded during this initial collection cycle (small colored
dots). Fig. 1d shows the estimated node locations following
the initial collection cycle, as indicated by the center of each
circle surrounding a cluster of corresponding collection points.
Fig. 1e presents the new sequence of collection points and
the path taken by the UAV for the second adaptive collection
cycle. Finally, Fig. 1f shows the collection points of the path
to which the adaptive strategy converges.

III. EXPERIMENTAL EVALUATION

Our experiments have the overarching goal of showing the
effectiveness of using WuR technology for UAV-assisted data
collection. We conducted two types of experiments, namely,
testbed-based experiments, where we flew a UAV to collect
data from ten wireless nodes (Section III-A), and simulation-
based experiments, which we validated via the testbed-based
results, and which we used to investigate the effect of scale
on UAV-assisted data collection (Section III-B).

We investigate the following metrics (all averages).
• Packet Delivery Ratio (PDR): The percentage of all

generated data packets that are successfully delivered to
the sink via the UAV.

• Awake time: The time (in seconds) for which a node
remains awake during a collection cycle, averaged over
all nodes in the network.3

2 Determining optimal paths would require solving the NP-hard Travelling
Salesman Problem. Near-optimal paths are determined by using a constructive
heuristic that approximates the optimal path in sub-quadratic time [26].

3 As the energy consumption of a node is dominated by idle listening,
the awake time gives an indication of the energy consumed over the course
of our experiments. Measuring actual energy values proved problematic in
testbed-based experiments.
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(a) Sample topology with 4 nodes (b) Naı̈ve collection cycle

(c) AS: First metadata collection (d) AS: Estimated locations

(e) AS: First adapted path (f) AS: Near-optimal path

Fig. 1. (a) A sample topology. (b) The naı̈ve collection strategy. (c)–(f) The
adaptive collection strategy (AS).

• Latency: The time (in seconds) taken to successfully
collect a data packet and forward it to the sink. This
metric includes the time for waking up nodes using the
WuR, data transmission from nodes to UAV, and data
forwarding from the UAV to the sink.

• Network lifetime: The time (in days) from the start of net-
work operations until the first device runs out of energy.4

(We stipulate that devices are continuously visited by a
UAV: Once one UAV has finished a visit to the device,
another one follows for a new collection cycle.)

Common parameter settings for both types of experiments
include the following. Data are produced by the nodes accord-
ing to a Poisson distribution with mean 1 minute. Each data
packet is 70 B long, accounting for the application payload
and for the headers added by lower layers (simple MAC and
physical layer). The UAV flies at a speed of 2.15 m/s, and

4 This definition is consistent with that of prior work about the lifetime of
wireless networks. Although the network may still serve its intended purpose
even if some of its devices are “dead,” this conservative definition provides
an informative lower bound on the network lifetime [28].



stops at each collection point for a time τ = 4 s. In duty
cycle-based (WuR-based) scenarios, the RTR packet (wake-up
sequence) is transmitted for a total of 25 (20) times, equally
spaced within one second of the 4 that the UAV resides at the
collection point. The UAV is capable of self-localization via
high-precision onboard GPS [17]. In all of our experiments,
flight altitude is set to 5 m, which ensures robust and reliable
WuR-based communication [13]. The wireless nodes used in
our testbed-based experiments are the WuR-endowed ultra-
low-power MagoNode++, that can be used in both duty cycle
and WuR mode [21]. The MagoNode++ has been modeled in
detail for our simulation experiments [7], [9]. Accordingly, the
data rate of the main radio is 250 kbps, and the transmission
range is 70 m. In duty cycled-based scenarios, the duty cycle d
is varied in the set {100, 50, 10, 5}%. Once the UAV is at
a collection point it broadcasts a 3 B long RTR packet.
In WuR-based scenarios the wake-up sequence is 8 b long.
These sequences are transmitted at a data rate of 1 kbps. The
transmission range of the WuR is set to 25 m [13].

A. Testbed-based Experiments

As mentioned, the wireless nodes used in our testbed-based
experiments are the WuR-endowed MagoNode++ [21]. The
UAV is a Monarch quad-rotor vehicle, outfitted with a Pixhawk
Mini flight controller operating with Ardupilot firmware, and
an Intel NUC NUC7i7DN for the on-board computer [17].
This model is fairly heavy, at approximately 5 kg, but offers
an impressive flight time of over 40 minutes. The NUC is
remotely accessed via a WiFi connection in order to run the
program that controls flight and communication.

Our experiments were conducted at Northeastern Univer-
sity’s Expeditionary Cyber and Unmanned Aerial System
(ECUAS) lab at the Innovation Campus in Burlington, MA.
Specifically, all experiments were conducted inside the out-
doors netted enclosure. This enclosure is 45.72 m×60.96 m×
18.29 m in size. Ten wireless nodes were mounted on tripods
and distributed across the ground. The BS was situated at
ground-level in the center of the enclosure. The sink was
situated inside the enclosure, plugged into the local power
grid, listening for data packets from the UAV.

For the naı̈ve collection strategy, we performed multi-
ple independent collection cycles for both duty cycle-based
scenarios and WuR-based scenarios. Experiments with the
adaptive collection strategy were performed as multiple sets
of collection cycles, starting with a naı̈ve collection cycle
and progressing until the strategy converged on a near-optimal
path, which was then used to collect measurements.
▷ Results. The PDR is consistently 100%, given the relatively
low data traffic generation rate and collision-free transmission
thanks to the use of unicast for collecting data from the nodes.
Table I lists the results of all other metrics for both types of
scenarios averaged over all collection cycles.

Independently of the collection strategy, the awake time for
the duty cycle-based scenarios decreases with the value d of
the duty cycle, as expected. Also expected, the awake time for
the WuR-based scenario is substantially lower than that of any

of the duty cycle-based scenarios: over 98% lower than in the
case with d = 5%, independently of the collection strategy.
The adaptive strategy reduces the time taken per collection
cycle. As a consequence, the number of collection cycles
performed by the adaptive strategy is considerably greater
than the number of collection cycles performed by the naive
strategy. The reason why the awake times vary in networks
with duty cycle is because we look at the amount of time spent
awake per collection cycle. For example, for a duty cycle of
100%, the time spent awake is the same for both strategies
(i.e., 100%). However, because the adaptive strategy results
in a faster collection cycle, the number of seconds awake is
lower for the adaptive strategy than for the naive strategy.

Latency in duty cycle-based scenarios clearly increases for
decreasing values of d. We observe that latency in the WuR-
based scenarios is higher than that in scenarios with 50%
and 100% duty cycle. This is because of the WuR range,
which is shorter than that of the main radio, thus allowing the
UAV to awake and receive data only from nodes closer to it.
When a node is further away from the UAV, the likelihood of
successful awakening decreases [13]. For the remaining two
values of the duty cycle that we considered, using a WuR
is faster in retrieving data, because the longer sleep times
imposed when d = 5, 10% makes the UAV wait longer.

Network lifetimes in WuR-based scenarios are always re-
markably longer than for any duty cycle scenarios. 5 For the
naı̈ve strategy, the WuR-based scenario achieves over 1563
(78) times longer lifetime than in scenarios with d = 100%
(d = 5%). For the adaptive strategy, these ratios are over 2340
times and 117 times, respectively.

Using a collection strategy that optimizes the UAV path
produces better performance of all measured metrics, irrespec-
tive of the scenario. This is expected, as being able to select
collection points that are closer to the nodes imposes lower
energy consumption and shortens latency. We notice, however,
that the WuR-induced improvements of critical metrics such as
network lifetime over duty cycling are so overwhelmingly high
even when using naı̈ve strategies that implementing complex
path optimization techniques appears unnecessary.

B. Simulation-based experiments

Simulations are conducted using the GreenCastalia simu-
lator [29], an extension of the Castalia simulator [30] that is
based on OMNeT++ [31]. The MagoNode++, the Monarch
UAV and its mobility are implemented in GreenCastalia with
parameters obtained from the testbed-based experiments.

Our simulation models and settings have been validated
through testbed-based experiments. We implemented the
testbed scenario described above in GreenCastalia. The simu-
lation results on all metrics of interest are in agreement with

5 As it is unfeasible to run testbed-based experiments for days at a time, the
network lifetime is calculated using the energy model from the simulation-
based experiments. Each node is powered by one AA lithium-ion battery
with a capacity of 10656 J. The lifetime of each node is calculated as
battery capacity divided by mean energy consumption during a collection
cycle, multiplied by the mean duration of a collection cycle. The lowest node
lifetime sets the lifetime of the network.



TABLE I
PERFORMANCE RESULTS FROM TESTBED-BASED EXPERIMENTS.

Scenarios
NAÏVE COLLECTION STRATEGY ADAPTIVE COLLECTION STRATEGY

Awake time [s] Latency [s] Network
lifetime [days] Awake time [s] Latency [s] Network

lifetime [days]

100% duty cycle 68.983±0.428 0.073± 0.008 3.671 23.258±0.144 0.050± 0.005 3.671

50% duty cycle 33.478±0.275 0.343± 0.037 7.341 12.198±0.100 0.107± 0.012 7.272

10% duty cycle 7.007± 0.078 0.538± 0.069 36.706 2.526± 0.028 0.135± 0.017 36.712

5% duty cycle 4.185± 0.030 0.618± 0.106 73.413 2.441± 0.018 0.143± 0.024 73.401

WuR 0.076± 0.007 0.427± 0.032 5740.455 0.022± 0.002 0.125± 0.009 8592.477
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Fig. 2. Simulation-based experiments: Awake time in networks with
N = 128 and L,W = 500 m.

those from the testbed-based experiments: All averages from
simulations are within 5% of those from the testbed. All results
shown here have been obtained by averaging the outcomes of a
number of simulation runs sufficient to obtain 95% confidence
with 5% precision.

In our simulations we varied the size of the network N ∈
{48, 64, 128} and the size of the deployment area L × W ∈
{(100 m × 100 m), (250 m × 250 m), (500 m × 500 m)}.
As result trends are the same for all combinations obtained by
varying these parameters, in the following we show results for
networks with 128 nodes scattered in the largest deployment
area, which is the case more representative of large scale.
▷ Results. The PDR of all collection cycles remains consis-
tently 100%. The naı̈ve strategy comprehensively covers the
entire deployment region, making packet losses unlikely. If
the adaptive strategy encounters a missed collection, it retries
previously successful collection points until it can recover the
packet, which again results in low likelihood of packet loss.

Fig. 2 shows results concerning the awake time for the
naı̈ve (Fig. 2a) and the adaptive (Fig. 2b) collection strategies.
Results for the awake time mimic those observed in the
testbed-based experiments, in that this metric decreases with
the values of the duty cycle d in duty cycle-based scenarios,
and is remarkably better in WuR-based scenarios. For instance,
nodes with a WuR stay awake 99% less than when they operate
according to a 5% duty cycle, irrespective of the collection
strategy. This suggests that scale has minimal impact on the
awake time of wireless nodes with or without WuR technology.

Fig. 3 shows results concerning the latency for the naı̈ve
(Fig. 3a) and the adaptive (Fig. 3b) collection strategies. As
observed in the case of testbed-based experiments, latency in
WuR-enabled networks improves only compared to latency in
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Fig. 3. Simulation-based experiments: Latency in networks with N = 128
and L,W = 500 m.
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Fig. 4. Simulation-based experiments: Network lifetime in networks with
N = 128 and L,W = 500 m.

networks with low duty cycles. This, again, is a consequence
of the lower range of WuR technology with respect to that of
the main radio (25 m vs. 70 m), allowing networks with duty
cycles to reach directly more nodes.

Fig. 4 shows results concerning the network lifetime for
the naı̈ve (Fig. 4a) and the adaptive (Fig. 4b) collection
strategies. In duty cycle-based scenarios the network lifetime
grows noticeably with decreasing values of d, irrespective
of the collection strategy. This is clearly because nodes stay
awake less and less, and therefore consume less, thus lasting
longer. The improvement in network lifetime obtained by
using WuR technology is remarkable. For instance, with
respect to networks that duty cycle with d = 5%, networks
with WuRs last 1575 (132) times more if the UAV follows a
naı̈ve (adaptive) path.

Again, the adaptive strategy obtains improvements in all
considered metrics, particularly in networks with duty cycling.
Improvements of the adaptive strategy over the naı̈ve one are
less remarkable in networks with WuRs, due to the impressive
energy efficiency gains obtained by using WuR technology,
for which nodes remain awake only as long as absolutely



necessary for communicating. This is particularly evident
for the network lifetime, which sees an improvement of at
least one order of magnitude in networks with duty cycling,
but below a mere 2% in WuR-based networks. This, again,
suggests that the energy savings afforded by using WuRs are so
remarkable to be independent of the particular data collection
strategy implemented by the UAV, favoring the use of simple
and cost-effective data collection strategies.

IV. CONCLUSIONS

In this study, we explore the efficiency of UAV-assisted data
collection in WSNs using duty cycling or WuR technology for
energy conservation. We introduced a basic collection strategy
and developed an adaptive approach for UAV data gathering.
Through experimental and simulation-based evaluations in
realistic network scenarios, we found that WuR technology
significantly outperforms duty cycling in all key metrics.
Notably, the energy savings provided by WuRs are substantial
enough to potentially render complex UAV route optimization
strategies unnecessary.
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