
NEU Capstone 2014

Tunnel Inspection Robot

Matt Van Berlo

Sam Coe

Joshua Johnson

Joseph Robinson

Robert Watson

Professor Bahram Shafai

 2

Table of Contents

Abstract .. 3

Problem Formulation .. 3

Analysis .. 4

Design ... 5
Mechanical .. 5

Simulations ... 6
Electrical .. 7
Software ... 8
System Software and Communications .. 8

Overview of System SW and Communications Design ... 8
Communications ... 9
System Servers ... 10
Interfacing .. 10

Parts and Implementation ... 13
Mechanical ... 13
Electrical ... 15
Software .. 18
System Software and Communications ... 18

Communications .. 18
Interfacing .. 19

Computer Vision .. 20
Hanger Alignment Estimation ... 22
Image Preprocessing ... 22
Color to Gray Scale Conversion ... 22
Subtractive Preprocessing... 23
Image Segmentation .. 24
Image Hough Transform .. 25
Axis Rotation ... 25
Error Estimation .. 26
Algorithm Pseudo Code .. 26

Crack Detection .. 26
Image Preprocessing ... 27
Algorithm Pseudo Code .. 32

Cost Analysis .. 34
Table of Costs by Order Number .. 34
Cost Break Down by Category ... 35

Conclusion .. 36

References .. 37

 3

Abstract

A mobile robotic system was developed as a tool to improve the efficiency and the
overall accuracy of the tunnel inspection process. Important factors presented to
our team by Massachusetts Department of Transportation (MassDOT) were to
reduce cost, save time, and mitigate additional traffic congestion caused by these
required annual inspections. Current methods for inspecting the Central
Artery/Tunnel Project “Big Dig” fresh air intake and CO2 exhaust tunnels (plenums)
are time consuming, costly, and pose potential safety hazards to both the inspectors
and drivers. Our system will provide a means for inspectors to conduct these
inspections from a central inspection office without requiring onsite manual labor.
In addition to reducing costs, time, and potential hazards, our proposed method
enhances inspection reports through its user-friendly software package with
integrated automated features.

While working through the engineering design process we ultimately broke the
project into four categories: hardware, software, communications, and detection.
During the design process we utilized 3D modeling and simulation software to
develop a robust, reliable, cost efficient, easy-to-use inspection platform. Software
requirements included an intuitive interface with real-time video stream and a
means of controlling the mobile platform in a natural way, all over a reliable Wi-Fi
communication scheme.

Problem Formulation

Starting back in 1991, the Big Dig remapped the 6-laned I93 from above the city to
below via a 3.5-mile long tunnel. Intention was to rid Boston of severe traffic
concerns, which caused up to ten hours of traffic per day for city drivers. Projections
forecasted traffic reaching up to 16 hours a day by 2010.
In 2006, a 12t-ceiling tile fell on a car and the drivers. After, several anchors
embedded in the tunnel’s roof slab were discovered to be the cause [1]. Citywide
tunnel inspections this problem as abundant, even in newly constructed areas [see
Fig 1].

Figure 1 - The ceiling collapse (left) and a simulated view of the cause of the collapse (right)

 4

MassDOT spends over $3M each year on plenum inspections [2]. Inspections call for
lane closures, reintroducing traffic congestions. Plus, working conditions have
proven unsafe for both the inspectors and the drivers alike.

In response to the presented problem we propose a feasible solution that takes the
inspector out of the plenums, and puts them at the seat of their desks. The proposed
solution is a mobile platform controllable from a host computer, running over WiFi.
The proposed system addresses safety of inspectors and drivers alike, quality of
inspections, overall costs, time per inspection, and reliability of results from
beginning an inspection to the submission of the final report

Analysis

The next phase of our design includes implementing our plan for autonomy,
integrating a battery pack, upgrading and enclosing the motors and electronics, and
redesigning the chassis/lift structure for better rigidity and to meet necessary
ingress protection concerns.

 For system autonomy, we would employ a simple line following scheme to
keep our robot on a specific path. On this line we would place RFID tags to indicate
the location of various test points. These tags would be picked up by an RFID
scanner integrated into the chassis and would store basic archival information on
the test point. This scheme would be very robust since line followers are easy to
make and we can guarantee test accuracy by placing the RFID tags along the line.
This assures that images are taken from the same location every inspection, which
yields the highest degree of accuracy with our software. Using the feedback from
our motors and adding an IMU, we could improve upon the navigational precision
even more. Finally, additional sensors like ultrasonic distance detectors and
magnetic Hall sensors would be used in object avoidance schemes and to detect the
steel used in the hangars. All this integrated with strong software and control
structures, would a great degree of autonomy and free up inspector time or allow
the inspector to control multiple units.

 Integrating a battery pack and enclosing the electronics should be trivial tasks
given funding or resources. We recommend a lightweight LiPo or NiCd battery pack,
sufficient enough for four hours of continuous operation. The battery pack should be
hot swappable and easy to change. Redesigning the chassis and lift system is more a
task suited to mechanical designers and we don’t have much input there aside from
the IP concerns we identified in our visits to the plenums: dust, humidity, small
puddles, and corrosives in the air/ground from exhaust/sea water. These concerns
would likely need to be addressed in the enclosure design to ensure a long lifetime
for the robot. To upgrade the electronics and motor system, we recommend more
rugged, precision DC regulators and converters, higher power drive motors to
account for extra weight from chassis and additional inspection equipment. We also

 5

recommend moving to a higher powered motor controller, like the Sabertooth, to
drive these more powerful motors. Additional sensors and test equipment would
likely need to be integrated for MDOT’s other inspection procedures.

 We also noticed that the MDOT had no test or metric to monitor/track air
quality or effectiveness of the plenum in completing its purpose. In the next phase,
we’d integrate air quality and other environmental sensors to monitor the plenum
as it exchanges exhaust air. This task is difficult and time consuming for a human
inspector and would be costly to implement as a sensor network; however, it would
be easy and cost effective as a part of our system. We could also integrate flame and
fire sensors to provide an effective early warning system.

Design

Mechanical

Early designs of the structural elements of the robot
were sketched out on a white board during group
meetings, such as the one shown in figure 2. Once
the initial design idea was flushed out we developed
a 3D model of the robot component in Google
SketchUp. Creating 3D parts with realistic
dimensions was very important so that the 3D
assembly of the robot could be used to identify
potential problems, such as a bolt being slightly too
long and hitting a spinning wheel. By creating a
realistic 3D model we were able to drastically
reduce the amount of time spent reworking the
design once assembly started. Figure 3 shows the 3D
assembly of the lift platform while figure 4 shows
the 3D assembly of the robot chassis. Figure 5 shows
the final assembly of the robot.

Figure 2 – Early white board design
of lift system

Figure 3 – Lift platform Figure 4 – Robot chassis

 6

In addition to a robust chassis, our solution also
called for the inspection robot to be able to
position its camera at varying heights in order to
get the best view of whatever structural element it
was inspecting. In order to accomplish this it was
decided to develop a lift system. This lift system
would consist of a tower, threaded acme rod, lift
platform, and DC motor to spin the acme rod.
While design this portion of the robot our team
consulted with a graduate mechanical engineer
Alex Irwin. Alex helped us develop the core idea
behind the lift system, as well as picking out parts
that would be needed. The lift tower which sits on
top of the chassis can be seen in figure 5.

Simulations

After the initial design was completed our team
set about creating a virtual Plenum (tunnel above
the roadway in the Big Dig tunnel system) and
virtual robot. This simulation environment would
allow us to test our design and see how it would
look from the robots point of view during an
inspection. Figure 6 shows the virtual plenum and
robot.

The 3D models of the plenum and the robot were
both created in Google SketchUp, then with the

help of a plugin called Sketchy Physics it was possible to allow a user to control the
virtual inspection robot with an Xbox controller and perform a virtual inspection, all
while obeying the laws of physics (i.e. if the robot hits an obstacle it will stop).
Before moving on to the final design of the robot we performed many virtual
inspections and learn a lot about how the robot should be driven, where the driving
and inspection cameras should be placed to allow for the optimal field of view, and
how to position the robot for each type of inspection.

Figure 5 – Robot final assembly

 7

Figure 6 – 3D model of Upper Plenum with Simulation Robot

The 3D model of the plenum and the robot taught us a great deal about how to
create a successful inspection robot, and we contribute the success of the
mechanical platform, to our early simulation efforts.

Electrical

Figure 7- Basic System Overview

From a system level, the Raspberry Pi’s each have charge of a motor controller and
camera module. One Pi is designated the “Base” and the other we call the “Lift.” Base
and Lift receive commands over Wifi and relay those commands to their motor

 8

controller or appropriate GPIO pin. Base needs to control both channels on the 15A
Roboclaw and a Pi Camera Module; Lift needs to control a single channel on its
motor controller, two servos for pan and tilting the camera, the Pi Camera Module,
and a 5V signal to trigger the spotlight.

Also included on the system was an ArduinoMega2560, which we included to
increase I/O capabilities, since we were limited to the number of GPIO pins provided
by the Pi’s. This controller also allows for easy integration of sensors and has ready-
made boards for integration and development further down the line.

To power all this, we intended to use a 24V or 36V rechargeable LiPo or NiCd
battery but could not due to funding limitations. This battery would then feed into
our 12V DC regulator, which would be converted by the LM2596 step down
regulators. For now, we provide power over a two-wire umbilical that feeds 24VDC
to the 12VDC regulator.

Software

System Software and Communications
The system software and communications comprised of providing a means for the
user to interface with the mobile platform over WiFi from a host computer. On the
side of the host, a user interface with real-time media streamed video embedded
within was a must. Why a must? Having a delayed video stream would put the user’s
perspective in the past of the current, which comes with the potential for one of
many possible issues to arise (e.g. user drives into the wall, only realizing when the
mobile robot has already been spinning its tires head onto concrete for the amount
of time the video stream was delayed). In addition to this, a means of controlling the
robot was a requirement on the side of the host. On the side of the mobile platform,
a video camera for live media streaming is needed to provide a field of view from
the robot’s perspective. There is also the obvious need to be able to interface with
the robot and all installed HW it carries.

Overview of System SW and Communications Design
In response to the requirements we had defined, finding the appropriate
components, along with the appropriate methodology to use for its purpose, took a
combination of research and price matching. The initial component list was the final
list of components used, as far as the system SW and communications were
concerned. A high-level view of the system is shown in Figure 8.

 9

Figure 8 - Overview of System SW and Communication Scheme

The remaining subsections provide details on each aspect of the shown diagram.

Communications
Our design is a rendition of the client-server architecture model. The client-server
model is comprised of two parts the client and the server, translating as our host
and mobile platform respectively. It works by setting the client is responsible for
sending requests to the server that then processes the request and responds to the
client to confirm it has received. In addition to the confirmation, the server also
sends back any data represented as that requested by the client. Figure 9 depicts the
Client-Server Model as implemented for our system’s communication scheme.

In our system design, the robot consists of two Raspberry Pies (RPIs), each modeled
as the servers. All communication and functionality of the RPIs are independently of
one another, with no communication going between them. We defined one of the

Figure 9 - Client-Server Architecture Model

 10

RPIs as being the Base Pi, the other as the Lift Pi. The reason for this will be made
clearer throughout the remaining contents of this section.
As hinted upon prior, the host computer needs to be able to control all aspects of the
robot such as moving the base, lift system, camera system and any other features
that could be added in the future. For this reason the host computer has the ability
to talk to both of the servers on the robot. The request/response protocol is also
constructed to handle the various request types and be extensible for any future
features.

System Servers
The system has two servers, each on a separate RPI, one that is responsible for
handling requests for the base system and one for the lift system. The reason for this
is that both servers need to be responsive, and a single RPI would not have enough
CPU power to handle all communications. Each server is designed to be as
lightweight and efficient as possible. Consequently, the only real responsibility the
servers have are to decode requests and then relay the data in the requests to their
proper hardware components such as the motor controller or servers. The servers
are not responsible for any processing of data, and are really just a go-between for
the hardware components and the host computer.

The software system is architected to include a video streaming solution so the host
could see what is happening on the robot and inspectors can carry out inspections.

Ideally both servers have video streams that the client can see what is happening in
the tunnels from two different viewpoints. The video streams are built to be real-
time with minimal lag, high quality, and easily integrated into the host GUI.

Interfacing

The Controller
It was imperative that we implemented an intuitive method for controlling the robot
and all its functions. Controlling a mobile platform through the eyes of live media
streaming carries a strong resemblance to video games. This factor, along with the
fact Microsoft spent $100M on R&D for their Xbox controller [3]; we chose to go
with just that.

As shown in Figure 10, the buttons on the Xbox controller are mapped to specific
requests used to control the robot. As claimed in the figure, nearly all functionality
of the system is accessible from the controller itself, i.e., all functions appropriately
suited for the controller was incorporated. Key assignments were mapped out
carefully, and tested/ modified excessively. This was to ensure controlling the robot
was done in the most effective/ natural way for the user.

 11

A visual of the robot is provided in Figure 10 to assistant on the following
elaboration concerning controller mapping. In summary, controller was mapped as
follows:

 The right joystick controlled the base motion of the platform guided by the
Base Pi and its camera.

 The left joystick controlled rotational motions of the Lift Pi camera.
 Front triggers (2x) located at the top of the controller control the lift itself,

the lift platform’s vertical movement up/down mapped to right/left triggers,
respectively.

 Middle button enables the controller, acting as an i/o switch.

 Buttons provide access to features such as taking a picture, record current
field of view as a movie, set/get flags to move on to the next hanger, and
launch our Image Analyzer to further inspect the most recent of pictures
captured.

Figure 10 - XBox Controller Key Map

 12

Spot Light

Lift Platform

Motor Controls
Base Camera with Bumper

Protectors

Lift Camera
(Servo

Figure 11 - System Level View

 13

The User Interface

The graphical user interface (GUI) offered with our system software package was
designed to allow the user complete control over all features and settings, while
maintaining simplicity for the purpose of ease-of-use. Figure 12 shows the main
window.

Further elaboration on the system SW and communication scheme are providing in
the following section [see Parts and Implementation].

Parts and Implementation

Mechanical

When designing the robot we knew that we wanted a very strong, yet light chassis,
which would withstand the dirty tunnel environment and resist corrosion. Since
corrosion is a big problem in the tunnels since it is often humid and damp we chose
aluminum 80/20 extruded square tubing. This tubing is corrosion
resistant, strong, and easy to rework in case future sensor
packages are introduced. Aluminum was chosen for as many of
the robots elements as possible in order to reduce weight and
protect against corrosion. In the even that aluminum was not

available then anodized steel, or stainless steel was utilized.

The drive system of the robot is a differential two-wheel front
drive system with a caster in the back. The motors are in the back
of the robot, but are connected to the front wheels via a timing
belt and timing gears. Initially the robot was intended to have a

Figure 13

Figure 14

Figure 12 - Main Interface (Base Pi Camera)

 14

four wheel differential drive system, but the wheels that were initially chosen where
too rubbery (figure 13) for that application, therefore we substituted two plastic
lawn mower wheels (figure 14) and a caster in their place. This system worked very
well, and allows for great maneuverability and is very stable.

To drive the robot we chose two 50:1 Metal
Gearmotors with 64 CPR Encoder from Pololu, figure
15. These motors each can produce 12 kg-cm of
torque, our tests showed that this is more than
adequate to propel the robot up any gradient in the
Big Dig tunnel system with a top speed of 30.5

meters/minute. The encoders on these motors allow
us to precisely control the speed of the robot, as well

as the ability to perform autonomous movements in the future.

To drive the lift system we chose one 19:1 Metal Gearmotor with 64 CPR Encoder
from Pololu. Our tests revealed that at least 4 kg-cm of torque was needed in order
to drive the lift acme rod and propel the lift platform upward. This motor is capable
of producing 5 kg-cm of torque.

Everything was assembled using either bolts/nuts
with lock-tight, or couplers with lock-tight. Epoxy was
also utilized if neither bolts or couplers were
appropriate.

The lift platform (figure 16) was designed in Google
SketchUp and printed at the NEU 3D printing studio.
The lift platform has a mount for a raspberry-pi, DC-
DC regulator, two micro servos, and a raspberry-pi
camera. The servos control the motion of the
raspberry-pi camera and allow for a complete control

of the camera in the x and y directions for 180
degrees.

Figure 15

Figure 16 – Lift platform

 15

Electrical

Raspberry Pi Model B Rev. 2

We utilized dual Raspberry Pi’s in our design as our embedded devices. We found
them to cheap and easy to use, yet powerful enough to meet our video streaming
and controller needs. Power to this device was delivered through a LM2596
StepDown DC Converter set to 5V.

 SoC = Broadcom BCM2835

 CPU = 700 MHz ARM 1176JZF-S

 GPU = Broadcom VideoCore IV supporting OpenGL, MPEG-2, 1080P, h.264/MPEG-4 AVC

 RAM = 512 MB RAM

 USB = 2 - USB 2.0 ports

 Video outputs = Composite RCA and HDMI

 Audio outputs = 3.5mm and HDMI

 Onboard storage = SD/MMC/SDIO card slot (4GB recommended)

 Onboard network = 10/100 RJ-45

 Low-level peripherals = 8 × GPIO, UART, I²C bus, SPI bus with two

chip selects, +3.3 V, +5 V, ground

 Power rating = 700 mA (3.5 W)

 Power source = 5 volt via MicroUSB or GPIO header for power

(1.0A recommended)

 Size = 85.60mm × 53.98mm (3.370 × 2.125 in)

 Weight = 45g (1.6oz)

ArduinoMega 2560

We included an Arduino microcontroller to
increase our I/O capabilities, since we were
limited by the small number of GPIO pins
provided by our RaspberryPi’s. The Arduino
added many extra digital and analog I/O pins
for us to integrate extra sensors and
supplementary electronics, and was a device
familiar to most of us. Power to this device was
delivered through a LM2596 StepDown DC
Converter set to 5V.

 Processor: ATmega2560 @ 16 MHz
 RAM size: 8 Kbytes
 Program memory size: 248 Kbytes
 Motor channels: 0
 User I/O lines: 7
 Max current on a single I/O: 40 mA
 Minimum operating voltage: 7 V
 Maximum output voltage: 12 V

Figure 17 - Raspberry Pi Model B Rev.
2

Figure 18 - ArduinoMega 2560

 16

Roboclaw 15A

This RoboClaw motor controller was connected
to the Base Pi using simple serial and controlled
the drive motors. Power to this device was
delivered through the 12V DC regulator.

 Motor channels:2
 Control interface:non-inverted TTL serial

(2-way);
RC servo pulses; analog voltage

 Minimum operating voltage:6 V
 Maximum operating voltage:34 V
 Continuous output current per channel:15 A

RoboClaw 5A

This RoboClaw motor controller was connected to
the Lift Pi using simple serial and controlled the
lift motor which advanced the Lift System Payload
up or down depending on the direction of the
motor. Power to this device was delivered through
the 12V DC regulator.

 Motor channels:2
 Control interface:non-inverted TTL serial

(2-way);
RC servo pulses; analog voltage

 Minimum operating voltage:6 V
 Maximum operating voltage:34 V
 Continuous output current per channel:5 A
 Peak output current per channel:10 A

Raspberry Pi Camera Module

We used two of these camera modules to capture live video for the operator and
pictures for our software.

 5 megapixel native resolution sensor-
capable of 2592 x 1944 pixel static
images

 Supports 1080p30, 720p60 and
640x480p60/90 video

 Camera is supported in the latest
version of Raspbian, Raspberry Pi's
preferred operating system

Figure 19 – Roboclaw 15A

Figure 20 - RoboClaw 5A

Figure 21 - Raspberry Pi Camera Module

 17

Micro Servos

We utilized four of these Micro servos on our platform. Two were driven using GPIO
pins on Lift Pi and the software library ServoBlaster; the other two were located on
the base and were driven by the Arduino. The lift servos were used to pan and tilt
the lift camera and the base servos rotated ultrasonic sensors across a 180 degree
sweep. Power to these devices was delivered through their controllers.

 Coreless motor
 Dead Band Width : 2 usec
 Stall Torque : 1.5kg/cm at 4.8V
 Operation Voltage : 3.0 - 7.2Volts
 Dimension : 22mm x 12mm x 29mm

Edimax Wireless USB Adapter

 Currently smallest wireless adapter to be hidden well in USB port
 Supports 150 Mbps 802.11n (Up to 6 times the speed and 3 times the

coverage of 802.11b.).
 Channels (FCC) 2.4GHz : 1~11. Power Input USB Port (Self-Powered).

Dimensions 0.28" x 0.59" x 0.73". Temperature 0 -40 degree C (32-104
degree F). Humidity 10 ~ 90% Non-Condensing. System XP/Vista/Win7,
Mac, Linux

 Port 1 x 2.0 USB Type A. Wireless Data Rates Up to 150 Mbps. Modulation
OFDM: BPSK, QPSK, 16-QAM, 64-QAM, DSSS. Frequency Band 2.4GHz -
2.4835GHz. Antenna internal chip antenna

 Spec Standards IEEE 802.11n; backward compatible with 802.11b/g Wi-Fi
Certified. Security 64/128 bit WEP Encryption and WPA-PSK, WPA2-PSK
security; WPS compatible IEEE 802.1X

12V DC Regulator

This was the main power regulation device on the platform and it was intended to
regulate power coming off the battery for all devices. Though this device claimed
over/under voltage protection, two of these devices
ended up breaking when being underdriven.

 Input voltage: 24V DC
 Input range: 12-40V DC
 Output voltage: 12V DC
 Output current: 20A (Max) / 240W
 Case material: die-cast aluminum

 Potting material: epoxy sealed

Figure 22 – micro servo

Figure 23 - 12V DC Regulator

 18

LM2596 Step-Down Converter

We used these devices as a quick and cheap way
to set up different voltage rails and simply our
platform’s wiring scheme.

 Input: DC 3V to 40V (input voltage must be higher than the output voltage
to 1.5v above can not boost)

 Output: DC 1.5V to 35V voltage continuously adjustable, high-efficiency
maximum output current of 3A.

In addition to main electronics listed above, we also created a few small
circuits like the camera spotlight (figure 25), roadway lights, and
speakers. The lighting circuits used LM317s in constant current
configuration to regulate current to the LEDS and a simple MOSFET
based logic switches to turn on/off. The speaker circuits use LM358s as
dual stage audio amplifiers to boost the 8bit tones sent from the

Arduino.

Software

System Software and Communications
To implement the client design we chose to use the JAVA language. By using JAVA,
we were able to develop the software package that is portable in terms of host
computer platforms. The host communicates to the servers via TCP. We chose TCP
for it is a reliable protocol with transfer rates suited for real-time control.

Communications
To do the actual requests/responses we used the Google Protobuf library [4]. This
library allows for the encoding/decoding of structured data for transmission over a
network, as needed. The message structure can be fine tuned by the developer and
is able to be built upon, allowing for new request types for future features. The
Protobuf library has API for both Java and C++. The only viable options to be used as
the host used Java and the servers used C++.

As the goal of the server architecture was to be fast, efficient and lightweight it is
built using the C++ Boost ASIO library. The Boost ASIO is an asynchronous I/O
architecture that is intended to for use in managing long running operations with
primary focus on networking. Boost ASIO provides support for asynchronous
operations using the Proactor design pattern [see Figure 26].

Figure 24 - LM2596 StepDown Converter

Figure 25 – Spot light

 19

The general flow of the servers is that they first listen for a connection from the
host. They set up a new TCP session for each incoming connection. Then when the
servers received requests they use Protobuf to decode them. Each request has a
header that specifies which request type it is and the server uses this type to route
the data in the request to hardware components. The hardware components are all
connected to the RPIs using various protocols such as serial RS232. The server
knows how to send data to each peripheral using whichever protocol is needed.

Figure 26 - Proactor Design Pattern

Real-time Media Streaming
In order to realize our design goals of the video streaming solution we used the
Gstreamer library to do the heavy lifting [5]. The Gstreamer library is used because
it has bindings for both C++ and Java, and could be used on both the client and
server. The Gstreamer library takes care of encoding, packetizing, and broadcasting
the video stream from both servers. In order to achieve the fastest and most stable
video stream we configured Gstreamer to use the RTSP protocol over a TCP
connection. On the client Gstreamer receives, de-packets, decodes the video streams
from the servers. The library even has video playing components that made it easy
to integrate into the client GUI.

Interfacing

The Controller
The JInput library was used to link the Xbox controller to the host computer [6]. The
JInput library polled the Xbox controller every few milliseconds and told the host
what has changed in the Xbox controller state. An example of this would be if a
button was clicked or a joystick is moved. The host then created requests to send to
the server based on the state changes of the Xbox controller. Key assignments were
mapped to provide an intuitive interface at the hands of the inspector.

 20

The User Interface
All GUIs were developed using the JAVA Swing API. This API provides containers
and components to physically interact with that are equipped with EventListeners
that respond to an event triggered from within the GUI (e.g. in the event a button is
clicked and the response the application should hereby). Figure 27 shows all
involved interfaces.

As shown in the top of Figure 27, the user has complete control over network-
related settings, making for the simplest method to connect the user to the remote

Figure 27 - User interfaces offered as apart of the SW package. The main window provides
control of all SW functions/ features, with video stream from Base Pi embedded in the center
(Top). Image Analyzer allows for image inspection and analysis by offering access to image
processing and computer vision functions (Bottom Left); A second embedded video provides
live stream of rotating lift camera to allow for a close-up view, and also a login window for
logging user progress and support username setup (Bottom Left).

 21

mobile platform over Wi-Fi. The panel controlling the connection [network] settings
is located on the left side of the main window.

The main window also provides real-time system status updates. The system status
updates are visually provided by the status bars on the right side of the GUI,
covering anything from Battery life, to the Connection status itself.
In case it not evident, the live media stream plays in the middle of the main window,
with various controls pertaining to the feed accessible via the buttons below.

The ability to login as a user was implemented as a means of tracking the inspectors
performing a given inspection. In addition, it is assumed managers would take
interest in inspectors progress, and there is no better way than to log it digitally.
Notice the login window shown bottom right of the figure.

Notice, the two buttons located bottom right of the main window, Acoustic Sensing
and Image Analyzer. The former was added for future functionality to be added, the
latter opens the Image Analyzer application window included as a part of the SW
package provided with the system.

The Image Analyzer was designed to provide inspectors image processing
capabilities. By default, the application opens displaying the most recent image
captured during the inspection; however, the user can easily open an image from
the past via an Open Dialog search window. This interface is where the all post-
processing is performed on the images (e.g. Crack Detection, brightness/contrast
adjustment, image type conversion, amongst a few other capabilities). This
application was designed such that additional functionalities are easily added in the
future.

The last of the window views provided allows the user to view both the Base Pi and
the Lift Pi, simultaneously. Initially, we provided a toggle button in the main
window for the user to switch between views as desired. However, after testing the
system it was realized that it would be much more efficient to have both video
streams viewed at the same time, both in terms of look and feel and time-efficiency.
With that being said, a window was developed to play the video stream from the Lift
Pi, in parallel to the main window playing the stream from the Base Pi. The user has
the ability to toggle the Lift Pi I/O, as it is not always needed during the inspection
process.

 22

Computer Vision

Hanger Alignment Estimation
Hangers are ideally plum. A plum hanger has the minimum amount tension on it
caused by a load being pulled down by gravity. The tension on a hanger that is not
plum increases as the angle, theta, it is leaning increase, as per the following
equation:

𝑇ℎ𝑎𝑛𝑔𝑒𝑟 = 𝑇𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ∗ √1 + tan2 𝜃 (1.1)

A computer vision technique using stereo vision is use to estimate the angle that a
hanger is leaning at. Two images are taken by the system as it is passing a hanger.
The system is two meters from the row of hangers. Image one is taken 45 degrees
before the hanger, and image two 45 degrees after, as shown in figure 28. The X and
Y directions correspond to the width, and length of the tunnel, respectively.

The algorithm is divided into four steps; image preprocessing, image segmentation,
Hough transformation, and Z rotation.

Image Preprocessing
The images taken of the hanger using the Raspberry Pi camera are quite noisy. In
addition to that, elements in the background, such as joints between concrete
panels, and the T beam appear as straight lines, as does the hanger. A series of
preprocessing steps are used to make the hanger stand out from the background
elements.

Color to Gray Scale Conversion
Images taken by the Raspberry Pi camera are in color. The following equation is
used to convert the colored image, I(R,G,B), to a gray scale image, g(x,y) [6]. R, G, and
B refer to the color channels of the colored image. This conversion reduces the
number of pixels operations are done on to a third, without loss of information
about the location of the hanger.

Figure 28 - Top down view of positions image 1 and
image 2 of the hanger are taken from by the robotic

system

 23

𝑔(𝑥, 𝑦) = 0.2989 𝐼(𝑅(𝑥, 𝑦)) + 0.5870 ∗ 𝐼(𝐺(𝑥, 𝑦)) + 0.1140 ∗ 𝐼(𝐵(𝑥, 𝑦))
 (1.2)

Subtractive Preprocessing
The pixel values of a line like structure tend to stand out in comparison to the
background in the immediate area. Using a median filter on the image of a carefully
selected kernel size can therefore remove lines that pass through a small window
that are of a particular width without blurring lines that are larger. When the width
of a line in a window causes it to take up more than half the window, it will remain.
Conversely, if the width of a line in the window causes it to take up less than half of
the window, it will be removed.
The test hanger was approximately 2.8 meters from the camera, which resulted in
the test hanger appearing as 5 pixels in width, H. The median filtered image, m(x,y),
of g(x,y) with a kernel size H results in an image where lines 2 pixels in width or less
are removed, and the general camera noise and lighting and color gradients are
somewhat blurred. The median filtered image, M(x,y), of g(x,y) with a kernel size W
such that a line of width H is removed results in an image where the general camera
noise and lighting and color gradients are very blurred. W three times the size of H
is the minimum that will work and will remain odd valued as long as H is odd
valued.

𝑊 = 3 ∗ 𝐻 (1.3)
𝑚(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟(𝑔(𝑥, 𝑦), [𝐻, 𝐻]) (1.4)
𝑀(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟(𝑔(𝑥, 𝑦), [𝑊, 𝑊]) (1.5)

 Subtraction of the two median filtered images results in an image, L(x,y),
where the background is removed, leaving only structures that are of a width A,
where:

𝐻 ≤ 𝐴 < 𝑊/2 (1.6)
𝐿(𝑥, 𝑦) = 𝑀(𝑥, 𝑦) − 𝑚(𝑥, 𝑦) (1.7)

Figure 29 - G(x,y) Figure 30 - m(x,y)

 24

Image Segmentation

The image is converted to a binary image, B(x,y) before the Hough transform is
used. The threshold value was selected using Otsu’s method [7]. The Otsu’s method
algorithm minimizes the intra-class variance between the regions above and below
the threshold. For the set of test images used, the optimal value for T was 12.

𝐵(𝑥, 𝑦) = {
1, 𝐿(𝑥, 𝑦) ≥ 𝑇

0, 𝐿(𝑥, 𝑦) < 𝑇
} (1.8)

Figure 32 - M(x,y) Figure 31 - L(x,y)

Figure 33 - Histogram of L(x,y) and threshold

 25

Image Hough Transform
The preprocessing technique used results in an image where the hanger is the
longest, continuous line in B(x,y). The Hough transform [3] of the image is to find
the angle of the hanger, relative to vertical. This is done to an accuracy of half a
degree, which yields and error of ±0.25 degrees. The maximum value of HT(θ, ρ),
corresponds to the hanger angle of the hanger relative to vertical, and the length of
it, as seen in the image.

𝐻𝑇(𝜃, 𝜌) = ℎ𝑜𝑢𝑔ℎ 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝐵(𝑥, 𝑦)) (1.9)

−180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 ≤ 𝜃𝑛 ≤ 180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 (1.10)
𝜃𝑛 = 𝑛 ∗ 0.5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 , − 360 ≤ 𝑛 ≤ 360 (1.11)

𝜃𝑒𝑟𝑟𝑜𝑟 = ±0.25 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 (1.12)

Axis Rotation
The angles calculated for each image are in reference to image planes that are
rotated by γ, 45 degrees, around the vertical axis relative to the length and width of
the tunnel. A Euclidean transformation is used to calculate the angles in reference to
the length and width of the tunnel.

𝑅𝑍 = [
cos 𝛾 − sin 𝛾
sin 𝛾 cos 𝛾

] (1.13)

[
tan 𝜃𝑤𝑖𝑑𝑡ℎ

tan 𝜃𝑙𝑒𝑛𝑔𝑡ℎ
] = 𝑅𝑍 ∗ [

tan 𝜃𝑖𝑚𝑎𝑔𝑒 1

tan 𝜃𝑖𝑚𝑎𝑔𝑒 2
] (1.14)

Figure 34 - B(x,y) created with selected using Otsu’s Method. T = 12.

Figure 35 - HT(θ, ρ) of B(x,y) from figure 35. Maximum
response at θ = 7 degrees

 26

Error Estimation
The error propagation formula for the tunnel width and length angles can be
calculated using the following two formulas:

𝛿𝜃𝑤𝑖𝑑𝑡ℎ =
𝛿𝜃𝑖𝑚𝑎𝑔𝑒 1

cos 𝛾

cos 𝜃𝑖𝑚𝑎𝑔𝑒 1
2−𝛿𝛾 sin 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 1+𝛿𝛾 cos 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 2+𝛿𝜃𝑖𝑚𝑎𝑔𝑒 2

sin 𝛾

cos 𝜃𝑖𝑚𝑎𝑔𝑒 2
2

1+ (cos 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 1−sin 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 2)
2

 (1.15)

𝛿𝜃𝑙𝑒𝑛𝑔𝑡ℎ =
𝛿𝜃𝑖𝑚𝑎𝑔𝑒 1

cos 𝛾

cos 𝜃𝑖𝑚𝑎𝑔𝑒 1
2+𝛿𝛾 cos 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 1−𝛿𝛾 sin 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 2+𝛿𝜃𝑖𝑚𝑎𝑔𝑒 2

sin 𝛾

cos 𝜃𝑖𝑚𝑎𝑔𝑒 2
2

1+ (sin 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 1+cos 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 2)
2

 (1.16)
Where the error in γ results from the error in the position of the system relative to
the tunnel width. The camera cannot rotate about the axis perpendicular to the
image, so it is assumed this error is zero and does not change. The error in the image
angle come from the resolution of the Hough transform calculation.

Algorithm Pseudo Code
A summary of the algorithm written in pseudo code follows:

Hanger Alignment Estimation Algorithm

for both RGB PNG Images do
 I(r,g,b) = load RGB PNG Image
 g(x,y) = convert I(r,g,b) to grayscale image
 m(x,y) = median filter g(x,y) with the kernel size [H,H]
 M(x,y) = median filter g(x,y) with the kernel size [W,W]
 L(x,y) = M(x,y) – m(x,y)
 B(x,y) = threshold L(x,y) at T
 [HT(theta, rho), theta, rho] = Hough transform of B(x,y) with angle step
width of A
 [maxThetaIndex] = Theta index of maximum in hough response
 maxTheta = value of theta at max index theta(maxThetaIndex)
end for
return [thetaWidth, thetaLength] = Z rotation of angles from each image

H = 5, W = 15, A = 0.5 degrees, T = 12

Crack Detection
Cracking and crack growth rate of the structural and non structural concrete of the
upper plenum roof slab is monitored by contract inspectors. The presence and
growth rate of cracks that form around the hanger anchor points of are of particular
interest. A growing crack compromises the structural integrity of the anchor
connection to the roof slab. Inspection is done visually and manually sketching
cracks that are found and noting their location. During each inspection cycle,
sketches are compared to assess the growth rate of cracks, and appearance of new
ones. This method of sketching and comparison is subjective to person performing
the inspection. Several computer vision based methods were developed in the past

 27

that aimed to automate this task [8, 10, 11]. The proposed algorithm improves the
true and false positive detection rates by combining elements from previously
developed algorithms.

Image Preprocessing
The images taken of the hanger using the Raspberry Pi camera are quite noisy. In
addition to that, elements in the background, such as joints between concrete
panels, the hangers, and the T beam appear as lines, as do surface cracks on the
concrete. A series of preprocessing steps are used to make the surface cracks stand
out from the background elements.

Color to Gray Scale Conversion
Images taken by the Raspberry Pi camera are in color. The following equation is
used to convert the colored image, I(R,G,B), to a gray scale image, g(x,y) [6]. R, G, and
B refer to the color channels of the colored image. This conversion reduces the
number of pixels operations are done on to a third, without loss of information
about the location of the hanger.

𝑔(𝑥, 𝑦) = 0.2989 𝐼(𝑅(𝑥, 𝑦)) + 0.5870 ∗ 𝐼(𝐺(𝑥, 𝑦)) + 0.1140 ∗ 𝐼(𝐵(𝑥, 𝑦))
 (2.1)

Subtractive Preprocessing
The pixel values of a line like structure tend to stand out in comparison to the
background in the immediate area. Using a median filter on the image of a carefully
selected kernel size can therefore remove lines that pass through a small window
that are of a particular width without blurring lines that are larger. When the width
of a line in a window causes it to take up more than half the window, it will remain.
Conversely, if the width of a line in the window causes it to take up less than half of
the window, it will be removed.
Cracks tend to be thin lines, so by setting the kernel size, H, such that all cracks are
removed when the median filter is applied, m(x,y), and then subtracting the gray
scale image, g(x,y), from it, the result is an image, s(x,y), in which the background
elements are removed, leaving just the cracks. This subtractive preprocessing
method comes from the approach in [14]

A kernel size, H, of 11 was used. This will result in lines greater than 5 pixels in
width being removed.

𝑚(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟(𝑔(𝑥, 𝑦), [𝐻, 𝐻]) (2.2)
𝑠(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) − 𝑔(𝑥, 𝑦) (2.3)

 28

Fujita Line Emphasis Filter
The Fujita line emphasis filter [7] was selected as the most accurate technique for
emphasizing cracks of varying width. Three kernels are constructed from the
convolution of the Hessian matrix (2.4) with a Gaussian function (2.3)

Figure 36 - Removal of slight variation like an
irregularly illuminated condition, shading, or
blemish. [1]

Figure 38 - g(x,y) image of cracked
Concrete

Figure 37 - m(x,y) median s(x,y)
shadow image

Figure 39 - filtered image

 29

∇2𝐼(𝑥, 𝑦) = [
𝐼𝑥𝑥(𝑥, 𝑦) 𝐼𝑥𝑦(𝑥, 𝑦)

𝐼𝑦𝑥(𝑥, 𝑦) 𝐼𝑦𝑦(𝑥, 𝑦)
] (2.4)

𝐺(𝑥, 𝑦; 𝜎𝑛) =
1

2𝜋𝜎𝑓
𝑒

−(
𝑥2+𝑦2

𝜎𝑛
2)

 (2.5)

The three kernels, (2.7, 2.8, and 2.9) are the second order partial derivatives of the
Gaussian function of size HxH. Where 𝜎𝑛 is the standard deviation of the Gaussian.
These kernels are calculated for N scale factors, which follows equation (2.6).

𝜎𝑛 = 𝜎1𝑠𝑛−1 , 𝑛 = 1, 2, … 𝑁 (2.6)

𝜎1 = 𝑠 = √2 , 𝑁 = 4, 𝐻 = 21
The values for s, 𝜎1, H, and N were determined experimentally in [1].

𝐺𝑥𝑥(𝑥, 𝑦) = 𝐺(𝑥, 𝑦; 𝜎𝑛) ∗ 𝐼𝑥𝑥(𝑥, 𝑦) (2.7)
𝐺𝑦𝑦(𝑥, 𝑦) = 𝐺(𝑥, 𝑦; 𝜎𝑛) ∗ 𝐼𝑦𝑦(𝑥, 𝑦) (2.8)

𝐺𝑦𝑥(𝑥, 𝑦) = 𝐺𝑥𝑦(𝑥, 𝑦; 𝜎𝑛) = 𝐺(𝑥, 𝑦; 𝜎𝑛) ∗ 𝐼𝑥𝑦(𝑥, 𝑦) (2.9)

At each coordinate of this 2x2 matrix, the eigen values are calculated from the
values given by equations 2.7-9, Where λ1(x,y) and λ2(x,y) are the eigen values at a
particular coordinate in I(x,y), and λ1(x,y) > λ2(x,y). A particular pixel in I(x,y) being
part of a line is given by equation (2.10). This is calculated for N scale factors to take
into account that cracks may be of various widths. The line response of the image is
given by equation (2.11), which is the maximum of normalized response from the
set of scale factors. It was determined experimentally in [1] that α = 0.25. R(x,y) is
shown in figure 41.

𝜆12(𝑥, 𝑦) = {

|𝜆2(𝑥, 𝑦)| + 𝜆1(𝑥, 𝑦) , 𝜆2(𝑥, 𝑦) ≤ 𝜆1(𝑥, 𝑦) ≤ 0

|𝜆2(𝑥, 𝑦)| − 𝛼𝜆1(𝑥, 𝑦) , 𝜆2(𝑥, 𝑦) < 0 < 𝜆1(𝑥, 𝑦) <
|𝜆2(𝑥,𝑦)|

𝛼

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

 (2.10)
𝑅(𝑥, 𝑦) = max

𝜎𝑛

𝜎𝑛
2 𝜆12(𝑥, 𝑦; 𝜎𝑛) (2.11)

Figure 40 - R(x,y) line response Figure 41 - B(x,y) binary
segmented image

 30

Image Segmentation
The line response image, R(x,y), is converted to a binary image, B(x,y), shown in
figure 42. A binary threshold value of 164 was selected by analysis of the ROC curve
shown in figure 44, and false positive curve shown in figure 45. The threshold value
of 164 yields a false positive rate of 1%. The corresponding true positive rate is
59.4%.
Threshold values below 70 were not considered. Below that, the regions are very
blob like, and are all removed by the region classifier. The ROC curve was
constructed from a data set of 20 images of cracks. First, truth images were created,
then for each image, the algorithm was run with a binary threshold value from 70 to
255. For each threshold value, the number of true and false positives were counted.
The true positive rate, or sensitivity, was calculated by dividing all the pixels
correctly found to be in a crack by the sum of crack pixels in the truth images. The
false positive rate, or 1-specificity, was calculated similarly.

Empirical analysis showed that although the calculated true positive rate was low,
when looking at the images, all cracks were correctly identified, sans some spurious
regions, and there were zero false positives. This inconsistency is due to the
subjective nature of the truth image labeling process. A crack could be labeled
correctly, but shifted to the side slightly in the truth image, thus resulting in a large
number of pixels being falsely labeled as being a false negative, and decreasing the
true positive rate.

Figure 42 - L(x,y) cleaned image

 31

Morphological Operations
Five morphological operations are applied in the following order. These reduce
noise in B(x,y) and connect lines that are fragmented. [4] The cleaned image, L(x,y),
is shown in figure 43

1. Close: performs a dilation, followed by an erosion operation. [7]

2. Bridge: Fills in pixel if it has two unconnected neighbors. [7]

3. Diagonal: Fills in to make 8 connected patterns 4 connected. [7]

4. Spur: Removes pixels that are only singly connected. [7]

5. Clean: Removes isolated pixels. [7]

Region Classifier
Cracks are characterized as having a perimeter that is much greater than its area.
This can be expressed by equation (2.12), and a perimeter that is of at least a certain
length. [12] It was determined experimentally that there was a 98.2% chance of a
region being a crack if the perimeter is greater than 40 pixels, and a 92.7% change if
the circularity, F, is less than 0.08. [12] These values were used in our
implementation as well. The aspect ratio measurement taken in [12] was
determined not to be reliable aspect to consider due to the high possibility of a crack
being complexly shaped in the data set we used, rather than linear in the data set
used in [5]. The output of the region classifier is the image D(x,y), shown in figure
46.

𝐹 =
4𝜋∗𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2 < 0.08 (2.12)

Figure 43 - ROC curve performance comparison Figure 44 - False Positive Rate Curve of binary
threshold levels

 32

Algorithm Pseudo Code
A summary of the algorithm written in pseudo code follows:

Crack Detection Algorithm

I(r,g,b) = load RGB PNG Image
g(x,y) = convert I(r,g,b) to grayscale image
m(x,y) = median filtered g(x,y) with kernel size WxW
S(x,y) = m(x,y) – g(x,y), create shadow image
for n = 1:N
 Calculate sigma of Gaussian at n
 Construct Gaussian second partial derivative kernels of size H
 Calculate the second order partial derivatives of Gaussian smoothed image
 for (i,j) = dimensions of image
 Calculate the two eigen values of the hessian at I(I,j)
 Calculate line response at (i,j), normalized for Gaussian variance
 R(i,j) = max(Rold(i,j), Rnew(i,j))
 end for
end for
B(x,y) = threshold R(x,y) at T
L(x,y) = cleaned B(x,y) using binary morphological operations
for all white regions in L(x,y)
 calculate circularity and perimeter
 if (circularity < C) and (perimeter > P)
 Add region to D(x,y)
 else
 discard region
 end if
end for
return D(x,y)

Figure 45 - D(x,y) output of region
classifier

Figure 46 - Original image of
concrete surface

 33

W = 11, A = 0.5 degrees, T = 164, C = 0.08, P = 40, α = 0.25, 𝜎1 = 𝑠 = √2 , 𝑁 = 4, 𝐻 =
21
reported system status. Due to the nature of the application, the interface provides
support for username registration and log-in. This currently is only referenced in
logging, but has obvious potential for more advanced database and record keeping
in future works.

 34

Cost Analysis

Table of Costs by Order Number

Vendor Part Number Order Number Total

Amazon B003ZSN600
1 $73.36

Amazon RASPBRRY-PCBA512

Amazon B00E1GGE40 2 $34.44

Amazon LM2596 3 $9.99

Amazon B00DCAIRIC 4 $6.23

Amazon RASPBRRY-PCBA512
5 $62.23

Amazon B003MTTJOY

Amazon B00AO0PCMW 6 $20.00

Amazon B00E1GGE40 7 $32.00

Amazon B008Q6Z36Q 7A $7.61

Amazon B0050G71ZG 8 $5.59

Amazon B00AO0PCMW 9 $20.00

Amazon B008Q6Z36Q 10 $9.98

Amazon B00AO0PCMW 11 $28.97

Boston Eengineering Shipping 12 $29.49

Ebay HNM8X1.25SS 13 $5.00

80/20 Inc 330297622005

14 $96.41
80/20 Inc 220327629990

80/20 Inc 330503519751

80/20 Inc 370132603224

Pololu 1444

15 $201.19

Pololu 1493

Pololu 1308

Pololu 1939

Pololu 1208

Pololu 1555 16 $39.85

Pololu 1492

17 $131.75 Pololu 1442

Pololu 1308

McMaster-Carr 91292A156

18 $367.39

McMaster-Carr 8600N4

McMaster-Carr 57105K22

McMaster-Carr 6750K141

McMaster-Carr 6412K11

McMaster-Carr 8975K563

McMaster-Carr 9946K12

http://www.mcmaster.com/#91292a156/=q3a51d
http://www.mcmaster.com/#8600n4/=q4isj3
http://www.mcmaster.com/#57105k22/=q4iswq
http://www.mcmaster.com/#6750k141/=q4ita1
http://www.mcmaster.com/#6412k11/=q4ithv
http://www.mcmaster.com/#8975k563/=q4iu7n
http://www.mcmaster.com/#9946k12/=q3afhn

 35

McMaster-Carr 92185A118

McMaster-Carr 91841A005

McMaster-Carr 92185A131

McMaster-Carr 92855A309

McMaster-Carr 6484K446

McMaster-Carr 95100A101

McMaster-Carr 93410A110

McMaster-Carr 6384K39

McMaster-Carr 86985K31

McMaster-Carr 7445A12

McMaster-Carr 8975K429

McMaster-Carr 91292A022

McMaster-Carr 92185A998

McMaster-Carr 9062K273

19 $24.90 McMaster-Carr 92185A991

McMaster-Carr 91841A195

McMaster-Carr 6655K72

20 $20.48
McMaster-Carr 91292A029

McMaster-Carr 6338K413

McMaster-Carr 92185A124

Home Depot 0000-841-583 21 $15.94

Home Depot PR1088001 22 $5.98

Home Depot PR1088001
23

 $7.54 Home Depot 1/2 inch Dowel

Micro Center HDMI-DVI 24 $11.96

Micro Center P-SDH32G10H-GE 25 $19.99

NEU 3D Printing Studio Printed Parts 26 $70.00

Star Market Grease Remover
27

 $4.29

Star Market HL EE Gloves MED $1.49

Total $1,364.05

Cost Break Down by Category

Mechanical $613.64

Electrical $703.18

Misc. $47.23

We believe that the cost of our project considering its capabilities is extremely low.
Before deciding to develop our own robotic platform we researched many consumer
available platforms. There were two problems that we discovered during our

http://www.mcmaster.com/#92185a118/=q3agsf
http://www.mcmaster.com/#91841a005/=q3ahyh
http://www.mcmaster.com/#92185a131/=q3alwu
http://www.mcmaster.com/#92855a309/=q3apyv
http://www.mcmaster.com/#6484k446/=q3b03g
http://www.mcmaster.com/#95100A101
http://www.mcmaster.com/#93410a110/=pz7x67
http://www.mcmaster.com/#6384k39/=q3czkx
http://www.mcmaster.com/#86985k31/=q2xmnx
http://www.mcmaster.com/#7445a12/=q3d120
http://www.mcmaster.com/#8975k429/=q3d29f
http://www.mcmaster.com/#91292a022/=q3d6a6
http://www.mcmaster.com/#92185a998/=pz7ihj

 36

research. First, there were not many platforms that were larger enough to handle a
lift tower of the height we required and still be able. Second, the cost of any platform
that was larger enough was $3,000+ and often did not include electronics. Knowing
this, the $1,364 that was spent over the course of the project is remarkably low.

Conclusion

If fully deployed our project would have a profound impact on the standard way
that tunnel inspection are performed. Our robotic solution would provide a means
to inspect a tunnel from a remote location while also providing a fully automated
way to classify, track, and diagnose tunnel structural and nonstructural cracks.
Providing a safe, efficient, and smart way of inspecting our tunnel infrastructure
would go a long way to preventing further tragedies from tunnel failures in the
future.

By developing this platform we were able to successfully apply many concepts that
we learned from classes, self-studies, and coop. We all felt that the process from idea
conception until final working prototype was incredibly exciting and rewarding and
by successfully completing this process we are indeed prepared for the future.

 37

References

[1] Central Artery Project Tunnel Inspection Program

http://www.massdot.state.ma.us/portals/8/docs/TunnelSafety/FHWA_CAT
_InspectionFinalRpt20111013.pdf

[2] http://www.tunneltalk.com/Safety-Sep2006-Ceiling-panel-collapse-in-
Boston-Big-Dig-tunnel.php

[3] http://www.gamepolitics.com/2013/11/21/microsoft-spent-100-million-
rd-xbox-one-controller#.U1LT1OZdVTZ

[4] https://code.google.com/p/protobuf/
[5] http://gstreamer.freedesktop.org/
[6] https://java.net/projects/jinput
[7] N. Otsu. Threshold selection method from gray-level histograms. IEEE Trans.

Syst. Man Cybern, SMC-9(1):62-66,1979
[8] Fujita, Y.; Mitani, Y.; Hamamoto, Yoshihiko, "A Method for Crack Detection on

a Concrete Structure," Pattern Recognition, 2006. ICPR 2006. 18th
International Conference on , vol.3, no., pp.901,904, 0-0 0

[9] Richard O. Duda and Peter E. Hart. 1972. Use of the Hough transformation to
detect lines and curves in pictures. Commun. ACM 15, 1 (January 1972), 11-
15. DOI=10.1145/361237.361242
http://doi.acm.org/10.1145/361237.361242

[10] Choudhary, G.K.; Dey, S., "Crack detection in concrete surfaces using image
processing, fuzzy logic, and neural networks," Advanced Computational
Intelligence (ICACI), 2012 IEEE Fifth International Conference on , vol., no.,
pp.404,411, 18-20 Oct. 2012

[11] Xuhang Tong; Jie Guo; Yun Ling; Zhouping Yin, "A new image-based method

for concrete bridge bottom crack detection," Image Analysis and Signal

Processing (IASP), 2011 International Conference on , vol., no., pp.568,571,

21-23 Oct. 2011
[12] Convert RGB image or colormap to grayscale – MATLAB rgb2gray. (2014).

Retrieved April 19, 2014, from

http://www.mathworks.com/help/images/ref/rgb2gray.html

[13] Morphological Operations on binary images – MATALAB bwmorph. (2014).

Retrieved April 19, 2014, from

http://www.mathworks.com/help/images/ref/bwmorph.html

http://www.massdot.state.ma.us/portals/8/docs/TunnelSafety/FHWA_CAT_InspectionFinalRpt20111013.pdf
http://www.massdot.state.ma.us/portals/8/docs/TunnelSafety/FHWA_CAT_InspectionFinalRpt20111013.pdf
https://java.net/projects/jinput
http://www.mathworks.com/help/images/ref/rgb2gray.html
http://www.mathworks.com/help/images/ref/bwmorph.html

