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Abstract 
 
A mobile robotic system was developed as a tool to improve the efficiency and the 
overall accuracy of the tunnel inspection process. Important factors presented to 
our team by Massachusetts Department of Transportation (MassDOT) were to 
reduce cost, save time, and mitigate additional traffic congestion caused by these 
required annual inspections. Current methods for inspecting the Central 
Artery/Tunnel Project “Big Dig” fresh air intake and CO2 exhaust tunnels (plenums) 
are time consuming, costly, and pose potential safety hazards to both the inspectors 
and drivers. Our system will provide a means for inspectors to conduct these 
inspections from a central inspection office without requiring onsite manual labor. 
In addition to reducing costs, time, and potential hazards, our proposed method 
enhances inspection reports through its user-friendly software package with 
integrated automated features.  
 
While working through the engineering design process we ultimately broke the 
project into four categories: hardware, software, communications, and detection. 
During the design process we utilized 3D modeling and simulation software to 
develop a robust, reliable, cost efficient, easy-to-use inspection platform. Software 
requirements included an intuitive interface with real-time video stream and a 
means of controlling the mobile platform in a natural way, all over a reliable Wi-Fi 
communication scheme. 

Problem Formulation 
 
Starting back in 1991, the Big Dig remapped the 6-laned I93 from above the city to 
below via a 3.5-mile long tunnel. Intention was to rid Boston of severe traffic 
concerns, which caused up to ten hours of traffic per day for city drivers. Projections 
forecasted traffic reaching up to 16 hours a day by 2010.  
In 2006, a 12t-ceiling tile fell on a car and the drivers. After, several anchors 
embedded in the tunnel’s roof slab were discovered to be the cause [1]. Citywide 
tunnel inspections this problem as abundant, even in newly constructed areas [see 
Fig 1].  
 

Figure 1 - The ceiling collapse (left) and a simulated view of the cause of the collapse (right) 
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MassDOT spends over $3M each year on plenum inspections [2]. Inspections call for 
lane closures, reintroducing traffic congestions. Plus, working conditions have 
proven unsafe for both the inspectors and the drivers alike.  
 
In response to the presented problem we propose a feasible solution that takes the 
inspector out of the plenums, and puts them at the seat of their desks. The proposed 
solution is a mobile platform controllable from a host computer, running over WiFi. 
The proposed system addresses safety of inspectors and drivers alike, quality of 
inspections, overall costs, time per inspection, and reliability of results from 
beginning an inspection to the submission of the final report 

Analysis 
 
The next phase of our design includes implementing our plan for autonomy, 
integrating a battery pack, upgrading and enclosing the motors and electronics, and 
redesigning the chassis/lift structure for better rigidity and to meet necessary 
ingress protection concerns. 
 
            For system autonomy, we would employ a simple line following scheme to 
keep our robot on a specific path. On this line we would place RFID tags to indicate 
the location of various test points. These tags would be picked up by an RFID 
scanner integrated into the chassis and would store basic archival information on 
the test point. This scheme would be very robust since line followers are easy to 
make and we can guarantee test accuracy by placing the RFID tags along the line. 
This assures that images are taken from the same location every inspection, which 
yields the highest degree of accuracy with our software. Using the feedback from 
our motors and adding an IMU, we could improve upon the navigational precision 
even more. Finally, additional sensors like ultrasonic distance detectors and 
magnetic Hall sensors would be used in object avoidance schemes and to detect the 
steel used in the hangars.  All this integrated with strong software and control 
structures, would a great degree of autonomy and free up inspector time or allow 
the inspector to control multiple units. 
 
            Integrating a battery pack and enclosing the electronics should be trivial tasks 
given funding or resources. We recommend a lightweight LiPo or NiCd battery pack, 
sufficient enough for four hours of continuous operation. The battery pack should be 
hot swappable and easy to change. Redesigning the chassis and lift system is more a 
task suited to mechanical designers and we don’t have much input there aside from 
the IP concerns we identified in our visits to the plenums: dust, humidity, small 
puddles, and corrosives in the air/ground from exhaust/sea water. These concerns 
would likely need to be addressed in the enclosure design to ensure a long lifetime 
for the robot. To upgrade the electronics and motor system, we recommend more 
rugged, precision DC regulators and converters, higher power drive motors to 
account for extra weight from chassis and additional inspection equipment. We also 
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recommend moving to a higher powered motor controller, like the Sabertooth, to 
drive these more powerful motors. Additional sensors and test equipment would 
likely need to be integrated for MDOT’s other inspection procedures. 
 
            We also noticed that the MDOT had no test or metric to monitor/track air 
quality or effectiveness of the plenum in completing its purpose. In the next phase, 
we’d integrate air quality and other environmental sensors to monitor the plenum 
as it exchanges exhaust air. This task is difficult and time consuming for a human 
inspector and would be costly to implement as a sensor network; however, it would 
be easy and cost effective as a part of our system. We could also integrate flame and 
fire sensors to provide an effective early warning system. 

Design 

Mechanical 
 

Early designs of the structural elements of the robot 
were sketched out on a white board during group 
meetings, such as the one shown in figure 2.  Once 
the initial design idea was flushed out we developed 
a 3D model of the robot component in Google 
SketchUp. Creating 3D parts with realistic 
dimensions was very important so that the 3D 
assembly of the robot could be used to identify 
potential problems, such as a bolt being slightly too 
long and hitting a spinning wheel. By creating a 
realistic 3D model we were able to drastically 
reduce the amount of time spent reworking the 
design once assembly started. Figure 3 shows the 3D 
assembly of the lift platform while figure 4 shows 
the 3D assembly of the robot chassis. Figure 5 shows 
the final assembly of the robot. 
      
 

 

Figure 2 – Early white board design 
of lift system 

Figure 3 – Lift platform Figure 4 – Robot chassis 
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In addition to a robust chassis, our solution also 
called for the inspection robot to be able to 
position its camera at varying heights in order to 
get the best view of whatever structural element it 
was inspecting. In order to accomplish this it was 
decided to develop a lift system. This lift system 
would consist of a tower, threaded acme rod, lift 
platform, and DC motor to spin the acme rod. 
While design this portion of the robot our team 
consulted with a graduate mechanical engineer 
Alex Irwin. Alex helped us develop the core idea 
behind the lift system, as well as picking out parts 
that would be needed. The lift tower which sits on 
top of the chassis can be seen in figure 5.  

Simulations 
 
After the initial design was completed our team 
set about creating a virtual Plenum  (tunnel above 
the roadway in the Big Dig tunnel system) and 
virtual robot. This simulation environment would 
allow us to test our design and see how it would 
look from the robots point of view during an 
inspection. Figure 6 shows the virtual plenum and 
robot.  
 
The 3D models of the plenum and the robot were 
both created in Google SketchUp, then with the 

help of a plugin called Sketchy Physics it was possible to allow a user to control the 
virtual inspection robot with an Xbox controller and perform a virtual inspection, all 
while obeying the laws of physics (i.e. if the robot hits an obstacle it will stop). 
Before moving on to the final design of the robot we performed many virtual 
inspections and learn a lot about how the robot should be driven, where the driving 
and inspection cameras should be placed to allow for the optimal field of view, and 
how to position the robot for each type of inspection. 
 
 

Figure 5 – Robot final assembly 
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Figure 6 – 3D model of Upper Plenum with Simulation Robot 

 
The 3D model of the plenum and the robot taught us a great deal about how to 
create a successful inspection robot, and we contribute the success of the 
mechanical platform, to our early simulation efforts. 

Electrical 
 

 
Figure 7- Basic System Overview 

 
From a system level, the Raspberry Pi’s each have charge of a motor controller and 
camera module. One Pi is designated the “Base” and the other we call the “Lift.” Base 
and Lift receive commands over Wifi and relay those commands to their motor 
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controller or appropriate GPIO pin.  Base needs to control both channels on the 15A 
Roboclaw and a Pi Camera Module; Lift needs to control a single channel on its 
motor controller, two servos for pan and tilting the camera, the Pi Camera Module, 
and a 5V signal to trigger the spotlight.  
 
Also included on the system was an ArduinoMega2560, which we included to 
increase I/O capabilities, since we were limited to the number of GPIO pins provided 
by the Pi’s.  This controller also allows for easy integration of sensors and has ready-
made boards for integration and development further down the line.  
 
To power all this, we intended to use a 24V or 36V rechargeable LiPo or NiCd 
battery but could not due to funding limitations. This battery would then feed into 
our 12V DC regulator, which would be converted by the LM2596 step down 
regulators.  For now, we provide power over a two-wire umbilical that feeds 24VDC 
to the 12VDC regulator. 

 

Software 

System Software and Communications 
The system software and communications comprised of providing a means for the 
user to interface with the mobile platform over WiFi from a host computer. On the 
side of the host, a user interface with real-time media streamed video embedded 
within was a must. Why a must? Having a delayed video stream would put the user’s 
perspective in the past of the current, which comes with the potential for one of 
many possible issues to arise (e.g. user drives into the wall, only realizing when the 
mobile robot has already been spinning its tires head onto concrete for the amount 
of time the video stream was delayed). In addition to this, a means of controlling the 
robot was a requirement on the side of the host. On the side of the mobile platform, 
a video camera for live media streaming is needed to provide a field of view from 
the robot’s perspective. There is also the obvious need to be able to interface with 
the robot and all installed HW it carries. 

Overview of System SW and Communications Design 
In response to the requirements we had defined, finding the appropriate 
components, along with the appropriate methodology to use for its purpose, took a 
combination of research and price matching. The initial component list was the final 
list of components used, as far as the system SW and communications were 
concerned. A high-level view of the system is shown in Figure 8.  
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Figure 8 - Overview of System SW and Communication Scheme 

The remaining subsections provide details on each aspect of the shown diagram. 

Communications 
Our design is a rendition of the client-server architecture model. The client-server 
model is comprised of two parts the client and the server, translating as our host 
and mobile platform respectively. It works by setting the client is responsible for 
sending requests to the server that then processes the request and responds to the 
client to confirm it has received. In addition to the confirmation, the server also 
sends back any data represented as that requested by the client. Figure 9 depicts the 
Client-Server Model as implemented for our system’s communication scheme. 
 

 
In our system design, the robot consists of two Raspberry Pies (RPIs), each modeled 
as the servers. All communication and functionality of the RPIs are independently of 
one another, with no communication going between them. We defined one of the 

Figure 9 - Client-Server Architecture Model 
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RPIs as being the Base Pi, the other as the Lift Pi. The reason for this will be made 
clearer throughout the remaining contents of this section. 
As hinted upon prior, the host computer needs to be able to control all aspects of the 
robot such as moving the base, lift system, camera system and any other features 
that could be added in the future. For this reason the host computer has the ability 
to talk to both of the servers on the robot. The request/response protocol is also 
constructed to handle the various request types and be extensible for any future 
features.  

System Servers 
The system has two servers, each on a separate RPI, one that is responsible for 
handling requests for the base system and one for the lift system. The reason for this 
is that both servers need to be responsive, and a single RPI would not have enough 
CPU power to handle all communications. Each server is designed to be as 
lightweight and efficient as possible. Consequently, the only real responsibility the 
servers have are to decode requests and then relay the data in the requests to their 
proper hardware components such as the motor controller or servers. The servers 
are not responsible for any processing of data, and are really just a go-between for 
the hardware components and the host computer. 
 
The software system is architected to include a video streaming solution so the host 
could see what is happening on the robot and inspectors can carry out inspections. 
 
Ideally both servers have video streams that the client can see what is happening in 
the tunnels from two different viewpoints. The video streams are built to be real-
time with minimal lag, high quality, and easily integrated into the host GUI.  

Interfacing 

The Controller 
It was imperative that we implemented an intuitive method for controlling the robot 
and all its functions. Controlling a mobile platform through the eyes of live media 
streaming carries a strong resemblance to video games. This factor, along with the 
fact Microsoft spent $100M on R&D for their Xbox controller [3]; we chose to go 
with just that.   
 
As shown in Figure 10, the buttons on the Xbox controller are mapped to specific 
requests used to control the robot. As claimed in the figure, nearly all functionality 
of the system is accessible from the controller itself, i.e., all functions appropriately 
suited for the controller was incorporated. Key assignments were mapped out 
carefully, and tested/ modified excessively. This was to ensure controlling the robot 
was done in the most effective/ natural way for the user. 
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A visual of the robot is provided in Figure 10 to assistant on the following 
elaboration concerning controller mapping. In summary, controller was mapped as 
follows: 

 The right joystick controlled the base motion of the platform guided by the 
Base Pi and its camera. 

 The left joystick controlled rotational motions of the Lift Pi camera. 
 Front triggers (2x) located at the top of the controller control the lift itself, 

the lift platform’s vertical movement up/down mapped to right/left triggers, 
respectively. 

 Middle button enables the controller, acting as an i/o switch. 
 

 Buttons provide access to features such as taking a picture, record current 
field of view as a movie, set/get flags to move on to the next hanger, and 
launch our Image Analyzer to further inspect the most recent of pictures 
captured. 

 

 
 
 
 

Figure 10 - XBox Controller Key Map 
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Figure 11 - System Level View 
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The User Interface 
 
The graphical user interface (GUI) offered with our system software package was 
designed to allow the user complete control over all features and settings, while 
maintaining simplicity for the purpose of ease-of-use. Figure 12 shows the main 
window. 

 
Further elaboration on the system SW and communication scheme are providing in 
the following section [see Parts and Implementation]. 

Parts and Implementation 

Mechanical 
 
When designing the robot we knew that we wanted a very strong, yet light chassis, 
which would withstand the dirty tunnel environment and resist corrosion. Since 
corrosion is a big problem in the tunnels since it is often humid and damp we chose 
aluminum 80/20 extruded square tubing. This tubing is corrosion 
resistant, strong, and easy to rework in case future sensor 
packages are introduced. Aluminum was chosen for as many of 
the robots elements as possible in order to reduce weight and 
protect against corrosion. In the even that aluminum was not 

available then anodized steel, or stainless steel was utilized. 
 
The drive system of the robot is a differential two-wheel front 
drive system with a caster in the back. The motors are in the back 
of the robot, but are connected to the front wheels via a timing 
belt and timing gears. Initially the robot was intended to have a 

Figure 13 

Figure 14 

Figure 12 - Main Interface (Base Pi Camera) 
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four wheel differential drive system, but the wheels that were initially chosen where 
too rubbery (figure 13) for that application, therefore we substituted two plastic 
lawn mower wheels (figure 14) and a caster in their place. This system worked very 
well, and allows for great maneuverability and is very stable. 

To drive the robot we chose two 50:1 Metal 
Gearmotors with 64 CPR Encoder from Pololu, figure 
15. These motors each can produce 12 kg-cm of 
torque, our tests showed that this is more than 
adequate to propel the robot up any gradient in the 
Big Dig tunnel system with a top speed of 30.5 

meters/minute. The encoders on these motors allow 
us to precisely control the speed of the robot, as well 

as the ability to perform autonomous movements in the future. 
 
To drive the lift system we chose one 19:1 Metal Gearmotor with 64 CPR Encoder 
from Pololu. Our tests revealed that at least 4 kg-cm of torque was needed in order 
to drive the lift acme rod and propel the lift platform upward. This motor is capable 
of producing 5 kg-cm of torque. 
 

Everything was assembled using either bolts/nuts 
with lock-tight, or couplers with lock-tight. Epoxy was 
also utilized if neither bolts or couplers were 
appropriate. 
 
The lift platform (figure 16) was designed in Google 
SketchUp and printed at the NEU 3D printing studio. 
The lift platform has a mount for a raspberry-pi, DC-
DC regulator, two micro servos, and a raspberry-pi 
camera. The servos control the motion of the 
raspberry-pi camera and allow for a complete control 

of the camera in the x and y directions for 180 
degrees.  

 
 
 
 
 
 
 
 
 
 
 

Figure 15 

Figure 16 – Lift platform 
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Electrical 
 
Raspberry Pi Model B Rev. 2 
 
We utilized dual Raspberry Pi’s in our design as our embedded devices. We found 
them to cheap and easy to use, yet powerful enough to meet our video streaming 
and controller needs. Power to this device was delivered through a LM2596 
StepDown DC Converter set to 5V. 

 SoC = Broadcom BCM2835 

 CPU = 700 MHz ARM 1176JZF-S 

 GPU = Broadcom VideoCore IV supporting OpenGL, MPEG-2, 1080P, h.264/MPEG-4 AVC 

 RAM = 512 MB RAM 

 USB = 2 - USB 2.0 ports 

 Video outputs = Composite RCA and HDMI 

 Audio outputs = 3.5mm and HDMI 

 Onboard storage = SD/MMC/SDIO card slot (4GB recommended) 

 Onboard network = 10/100 RJ-45 

 Low-level peripherals = 8 × GPIO, UART, I²C bus, SPI bus with two 

chip selects, +3.3 V, +5 V, ground 

 Power rating = 700 mA (3.5 W) 

 Power source = 5 volt via MicroUSB or GPIO header for power 

(1.0A recommended) 

 Size = 85.60mm × 53.98mm (3.370 × 2.125 in) 

 Weight = 45g (1.6oz) 

ArduinoMega 2560 
 
We included an Arduino microcontroller to 
increase our I/O capabilities, since we were 
limited by the small number of GPIO pins 
provided by our RaspberryPi’s. The Arduino 
added many extra digital and analog I/O pins 
for us to integrate extra sensors and 
supplementary electronics, and was a device 
familiar to most of us. Power to this device was 
delivered through a LM2596 StepDown DC 
Converter set to 5V. 
 

 Processor:   ATmega2560 @ 16 MHz 
 RAM size:    8 Kbytes  
 Program memory size: 248 Kbytes 
 Motor channels:   0 
 User I/O lines:   7 
 Max current on a single I/O: 40 mA 
 Minimum operating voltage:  7 V 
 Maximum output voltage: 12 V 

 
 

Figure 17 - Raspberry Pi Model B Rev. 
2 

Figure 18 - ArduinoMega 2560 
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Roboclaw 15A 
 
This RoboClaw motor controller was connected 
to the Base Pi using simple serial and controlled 
the drive motors. Power to this device was 
delivered through the 12V DC regulator. 
 

 Motor channels:2 
 Control interface:non-inverted TTL serial 

(2-way); 
RC servo pulses; analog voltage 

 Minimum operating voltage:6 V 
 Maximum operating voltage:34 V 
 Continuous output current per channel:15 A 

 
RoboClaw 5A 
 
This RoboClaw motor controller was connected to 
the Lift Pi using simple serial and controlled the 
lift motor which advanced the Lift System Payload 
up or down depending on the direction of the 
motor. Power to this device was delivered through 
the 12V DC regulator. 

 Motor channels:2 
 Control interface:non-inverted TTL serial 

(2-way); 
RC servo pulses; analog voltage 

 Minimum operating voltage:6 V 
 Maximum operating voltage:34 V 
 Continuous output current per channel:5 A 
 Peak output current per channel:10 A 

 
Raspberry Pi Camera Module 
 
We used two of these camera modules to capture live video for the operator and 
pictures for our software. 
 

  5 megapixel native resolution sensor-
capable of 2592 x 1944 pixel static 
images 

 Supports 1080p30, 720p60 and 
640x480p60/90 video 

 Camera is supported in the latest 
version of Raspbian, Raspberry Pi's 
preferred operating system 

Figure 19 – Roboclaw 15A 

Figure 20 - RoboClaw 5A 

Figure 21 - Raspberry Pi Camera Module 
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Micro Servos 
 
We utilized four of these Micro servos on our platform. Two were driven using GPIO 
pins on Lift Pi and the software library ServoBlaster; the other two were located on 
the base and were driven by the Arduino. The lift servos were used to pan and tilt 
the lift camera and the base servos rotated ultrasonic sensors across a 180 degree 
sweep. Power to these devices was delivered through their controllers.  
 

 Coreless motor 
 Dead Band Width : 2 usec 
 Stall Torque : 1.5kg/cm at 4.8V 
 Operation Voltage : 3.0 - 7.2Volts 
 Dimension : 22mm x 12mm x 29mm 

 

 
Edimax Wireless USB Adapter 
 

 Currently smallest wireless adapter to be hidden well in USB port 
 Supports 150 Mbps 802.11n (Up to 6 times the speed and 3 times the 

coverage of 802.11b.). 
 Channels (FCC) 2.4GHz : 1~11. Power Input USB Port (Self-Powered). 

Dimensions 0.28" x 0.59" x 0.73". Temperature 0 -40 degree C (32-104 
degree F). Humidity 10 ~ 90% Non-Condensing. System XP/Vista/Win7, 
Mac, Linux 

 Port 1 x 2.0 USB Type A. Wireless Data Rates Up to 150 Mbps. Modulation 
OFDM: BPSK, QPSK, 16-QAM, 64-QAM, DSSS. Frequency Band 2.4GHz - 
2.4835GHz. Antenna internal chip antenna 

 Spec Standards IEEE 802.11n; backward compatible with 802.11b/g Wi-Fi 
Certified. Security 64/128 bit WEP Encryption and WPA-PSK, WPA2-PSK 
security; WPS compatible IEEE 802.1X 

 
12V DC Regulator 
 
This was the main power regulation device on the platform and it was intended to 
regulate power coming off the battery for all devices. Though this device claimed 
over/under voltage protection, two of these devices 
ended up breaking when being underdriven.  
 

 Input voltage: 24V DC 
 Input range: 12-40V DC 
 Output voltage: 12V DC 
 Output current: 20A (Max) / 240W 
 Case material: die-cast aluminum 

 Potting material: epoxy sealed 

Figure 22 – micro servo 

Figure 23 - 12V DC Regulator 
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LM2596 Step-Down Converter 
 
 
 
We used these devices as a quick and cheap way 
to set up different voltage rails and simply our 
platform’s wiring scheme. 
 
 
 
 

 Input: DC 3V to 40V (input voltage must be higher than the output voltage 
to 1.5v above can not boost) 

 Output: DC 1.5V to 35V voltage continuously adjustable, high-efficiency 
maximum output current of 3A. 

 
In addition to main electronics listed above, we also created a few small 
circuits like the camera spotlight (figure 25), roadway lights, and 
speakers. The lighting circuits used LM317s in constant current 
configuration to regulate current to the LEDS and a simple MOSFET 
based logic switches to turn on/off. The speaker circuits use LM358s as 
dual stage audio amplifiers to boost the 8bit tones sent from the 

Arduino. 

Software 

System Software and Communications 
To implement the client design we chose to use the JAVA language. By using JAVA, 
we were able to develop the software package that is portable in terms of host 
computer platforms. The host communicates to the servers via TCP. We chose TCP 
for it is a reliable protocol with transfer rates suited for real-time control.  

Communications 
To do the actual requests/responses we used the Google Protobuf library [4]. This 
library allows for the encoding/decoding of structured data for transmission over a 
network, as needed. The message structure can be fine tuned by the developer and 
is able to be built upon, allowing for new request types for future features. The 
Protobuf library has API for both Java and C++. The only viable options to be used as 
the host used Java and the servers used C++.  
 
As the goal of the server architecture was to be fast, efficient and lightweight it is 
built using the C++ Boost ASIO library. The Boost ASIO is an asynchronous I/O 
architecture that is intended to for use in managing long running operations with 
primary focus on networking. Boost ASIO provides support for asynchronous 
operations using the Proactor design pattern [see Figure 26].  

Figure 24 - LM2596 StepDown Converter 

Figure 25 – Spot light 
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The general flow of the servers is that they first listen for a connection from the 
host. They set up a new TCP session for each incoming connection. Then when the 
servers received requests they use Protobuf to decode them. Each request has a 
header that specifies which request type it is and the server uses this type to route 
the data in the request to hardware components. The hardware components are all 
connected to the RPIs using various protocols such as serial RS232. The server 
knows how to send data to each peripheral using whichever protocol is needed.  

 
 

Figure 26 - Proactor Design Pattern 

Real-time Media Streaming 
In order to realize our design goals of the video streaming solution we used the 
Gstreamer library to do the heavy lifting [5]. The Gstreamer library is used because 
it has bindings for both C++ and Java, and could be used on both the client and 
server. The Gstreamer library takes care of encoding, packetizing, and broadcasting 
the video stream from both servers. In order to achieve the fastest and most stable 
video stream we configured Gstreamer to use the RTSP protocol over a TCP 
connection. On the client Gstreamer receives, de-packets, decodes the video streams 
from the servers. The library even has video playing components that made it easy 
to integrate into the client GUI. 

Interfacing 

The Controller 
The JInput library was used to link the Xbox controller to the host computer [6]. The 
JInput library polled the Xbox controller every few milliseconds and told the host 
what has changed in the Xbox controller state. An example of this would be if a 
button was clicked or a joystick is moved. The host then created requests to send to 
the server based on the state changes of the Xbox controller. Key assignments were 
mapped to provide an intuitive interface at the hands of the inspector.  
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The User Interface 
All GUIs were developed using the JAVA Swing API. This API provides containers 
and components to physically interact with that are equipped with EventListeners 
that respond to an event triggered from within the GUI (e.g. in the event a button is 
clicked and the response the application should hereby). Figure 27 shows all 
involved interfaces. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in the top of Figure 27, the user has complete control over network-
related settings, making for the simplest method to connect the user to the remote 

Figure 27 - User interfaces offered as apart of the SW package. The main window provides 
control of all SW functions/ features, with video stream from Base Pi embedded in the center 
(Top). Image Analyzer allows for image inspection and analysis by offering access to image 
processing and computer vision functions (Bottom Left); A second embedded video provides 
live stream of rotating lift camera to allow for a close-up view, and also a login window for 
logging user progress and support username setup (Bottom Left). 
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mobile platform over Wi-Fi. The panel controlling the connection [network] settings 
is located on the left side of the main window. 
 
The main window also provides real-time system status updates. The system status 
updates are visually provided by the status bars on the right side of the GUI, 
covering anything from Battery life, to the Connection status itself. 
In case it not evident, the live media stream plays in the middle of the main window, 
with various controls pertaining to the feed accessible via the buttons below. 
 
The ability to login as a user was implemented as a means of tracking the inspectors 
performing a given inspection. In addition, it is assumed managers would take 
interest in inspectors progress, and there is no better way than to log it digitally. 
Notice the login window shown bottom right of the figure. 
 
Notice, the two buttons located bottom right of the main window, Acoustic Sensing 
and Image Analyzer. The former was added for future functionality to be added, the 
latter opens the Image Analyzer application window included as a part of the SW 
package provided with the system. 
 
The Image Analyzer was designed to provide inspectors image processing 
capabilities. By default, the application opens displaying the most recent image 
captured during the inspection; however, the user can easily open an image from 
the past via an Open Dialog search window. This interface is where the all post-
processing is performed on the images (e.g. Crack Detection, brightness/contrast 
adjustment, image type conversion, amongst a few other capabilities). This 
application was designed such that additional functionalities are easily added in the 
future.  
 
The last of the window views provided allows the user to view both the Base Pi and 
the Lift Pi, simultaneously.  Initially, we provided a toggle button in the main 
window for the user to switch between views as desired. However, after testing the 
system it was realized that it would be much more efficient to have both video 
streams viewed at the same time, both in terms of look and feel and time-efficiency. 
With that being said, a window was developed to play the video stream from the Lift 
Pi, in parallel to the main window playing the stream from the Base Pi.  The user has 
the ability to toggle the Lift Pi I/O, as it is not always needed during the inspection 
process. 
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Computer Vision 

Hanger Alignment Estimation 
Hangers are ideally plum. A plum hanger has the minimum amount tension on it 
caused by a load being pulled down by gravity. The tension on a hanger that is not 
plum increases as the angle, theta, it is leaning increase, as per the following 
equation: 

𝑇ℎ𝑎𝑛𝑔𝑒𝑟 = 𝑇𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ∗ √1 + tan2 𝜃    (1.1) 

 
A computer vision technique using stereo vision is use to estimate the angle that a 
hanger is leaning at. Two images are taken by the system as it is passing a hanger. 
The system is two meters from the row of hangers. Image one is taken 45 degrees 
before the hanger, and image two 45 degrees after, as shown in figure 28. The X and 
Y directions correspond to the width, and length of the tunnel, respectively. 
 
The algorithm is divided into four steps; image preprocessing, image segmentation, 
Hough transformation, and Z rotation. 
 

 
 

 

 

 

 

 

 

 

Image Preprocessing 
The images taken of the hanger using the Raspberry Pi camera are quite noisy. In 
addition to that, elements in the background, such as joints between concrete 
panels, and the T beam appear as straight lines, as does the hanger. A series of 
preprocessing steps are used to make the hanger stand out from the background 
elements. 

Color to Gray Scale Conversion 
Images taken by the Raspberry Pi camera are in color. The following equation is 
used to convert the colored image, I(R,G,B), to a gray scale image, g(x,y) [6]. R, G, and 
B refer to the color channels of the colored image. This conversion reduces the 
number of pixels operations are done on to a third, without loss of information 
about the location of the hanger. 

Figure 28 - Top down view of positions image 1 and 
image 2 of the hanger are taken from by the robotic 

system 
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𝑔(𝑥, 𝑦) =  0.2989 𝐼(𝑅(𝑥, 𝑦)) +  0.5870 ∗ 𝐼(𝐺(𝑥, 𝑦)) +  0.1140 ∗ 𝐼(𝐵(𝑥, 𝑦)) 
 (1.2) 

Subtractive Preprocessing 
The pixel values of a line like structure tend to stand out in comparison to the 
background in the immediate area. Using a median filter on the image of a carefully 
selected kernel size can therefore remove lines that pass through a small window 
that are of a particular width without blurring lines that are larger. When the width 
of a line in a window causes it to take up more than half the window, it will remain. 
Conversely, if the width of a line in the window causes it to take up less than half of 
the window, it will be removed. 
The test hanger was approximately 2.8 meters from the camera, which resulted in 
the test hanger appearing as 5 pixels in width, H. The median filtered image, m(x,y), 
of g(x,y) with a kernel size H results in an image where lines 2 pixels in width or less 
are removed, and the general camera noise and lighting and color gradients are 
somewhat blurred. The median filtered image, M(x,y), of g(x,y) with a kernel size W 
such that a line of width H is removed results in an image where the general camera 
noise and lighting and color gradients are very blurred. W three times the size of H 
is the minimum that will work and will remain odd valued as long as H is odd 
valued. 

𝑊 = 3 ∗ 𝐻      (1.3) 
𝑚(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟(𝑔(𝑥, 𝑦), [𝐻, 𝐻])    (1.4) 
𝑀(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟(𝑔(𝑥, 𝑦), [𝑊, 𝑊])    (1.5) 

 Subtraction of the two median filtered images results in an image, L(x,y), 
where the background is removed, leaving only structures that are of a width A, 
where: 

𝐻 ≤ 𝐴 < 𝑊/2      (1.6) 
𝐿(𝑥, 𝑦) =  𝑀(𝑥, 𝑦) −  𝑚(𝑥, 𝑦)     (1.7) 

 
  
  
   

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 29 - G(x,y) Figure 30 - m(x,y) 
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Image Segmentation 
 
The image is converted to a binary image, B(x,y) before the Hough transform is 
used. The threshold value was selected using Otsu’s method [7]. The Otsu’s method 
algorithm minimizes the intra-class variance between the regions above and below 
the threshold. For the set of test images used, the optimal value for T was 12. 

𝐵(𝑥, 𝑦) =  {
1, 𝐿(𝑥, 𝑦) ≥ 𝑇 

0, 𝐿(𝑥, 𝑦) < 𝑇
}     (1.8) 

 
 

  
  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 32 -  M(x,y) Figure 31 - L(x,y) 

Figure 33 - Histogram of L(x,y) and threshold 
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Image Hough Transform 
The preprocessing technique used results in an image where the hanger is the 
longest, continuous line in B(x,y). The Hough transform [3] of the image is to find 
the angle of the hanger, relative to vertical. This is done to an accuracy of half a 
degree, which yields and error of ±0.25 degrees. The maximum value of HT(θ, ρ), 
corresponds to the hanger angle of the hanger relative to vertical, and the length of 
it, as seen in the image. 

𝐻𝑇(𝜃, 𝜌) = ℎ𝑜𝑢𝑔ℎ 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝐵(𝑥, 𝑦))    (1.9) 

−180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 ≤  𝜃𝑛 ≤ 180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠     (1.10) 
𝜃𝑛 = 𝑛 ∗ 0.5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠     ,   − 360 ≤ 𝑛 ≤ 360    (1.11) 

𝜃𝑒𝑟𝑟𝑜𝑟 = ±0.25 𝑑𝑒𝑔𝑟𝑒𝑒𝑠     (1.12) 
 

 
 
 
 
 
 
 
 

 
 

Axis Rotation 
The angles calculated for each image are in reference to image planes that are 
rotated by γ, 45 degrees, around the vertical axis relative to the length and width of 
the tunnel. A Euclidean transformation is used to calculate the angles in reference to 
the length and width of the tunnel. 

𝑅𝑍 =  [
cos 𝛾 − sin 𝛾
sin 𝛾 cos 𝛾

]      (1.13) 

[
tan 𝜃𝑤𝑖𝑑𝑡ℎ

tan 𝜃𝑙𝑒𝑛𝑔𝑡ℎ
] = 𝑅𝑍 ∗ [

tan 𝜃𝑖𝑚𝑎𝑔𝑒 1

tan 𝜃𝑖𝑚𝑎𝑔𝑒 2
]    (1.14) 

Figure 34 - B(x,y) created with selected using Otsu’s Method. T = 12. 

Figure 35 - HT(θ, ρ) of B(x,y) from figure 35. Maximum 
response at θ = 7 degrees 
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Error Estimation 
The error propagation formula for the tunnel width and length angles can be 
calculated using the following two formulas: 

𝛿𝜃𝑤𝑖𝑑𝑡ℎ =  
𝛿𝜃𝑖𝑚𝑎𝑔𝑒 1

cos 𝛾

cos 𝜃𝑖𝑚𝑎𝑔𝑒 1
2−𝛿𝛾 sin 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 1+𝛿𝛾 cos 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 2+𝛿𝜃𝑖𝑚𝑎𝑔𝑒 2

sin 𝛾

cos 𝜃𝑖𝑚𝑎𝑔𝑒 2
2

1+ (cos 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 1−sin 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 2)
2  

 (1.15) 
 

𝛿𝜃𝑙𝑒𝑛𝑔𝑡ℎ =  
𝛿𝜃𝑖𝑚𝑎𝑔𝑒 1

cos 𝛾

cos 𝜃𝑖𝑚𝑎𝑔𝑒 1
2+𝛿𝛾 cos 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 1−𝛿𝛾 sin 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 2+𝛿𝜃𝑖𝑚𝑎𝑔𝑒 2

sin 𝛾

cos 𝜃𝑖𝑚𝑎𝑔𝑒 2
2

1+ (sin 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 1+cos 𝛾 tan 𝜃𝑖𝑚𝑎𝑔𝑒 2)
2

 (1.16) 
Where the error in γ results from the error in the position of the system relative to 
the tunnel width. The camera cannot rotate about the axis perpendicular to the 
image, so it is assumed this error is zero and does not change. The error in the image 
angle come from the resolution of the Hough transform calculation. 

Algorithm Pseudo Code 
A summary of the algorithm written in pseudo code follows: 
 

Hanger Alignment Estimation Algorithm 

for both RGB PNG Images do 
 I(r,g,b) = load RGB PNG Image 
 g(x,y) = convert I(r,g,b) to grayscale image  
 m(x,y) = median filter g(x,y) with the kernel size [H,H] 
 M(x,y) = median filter g(x,y) with the kernel size [W,W] 
 L(x,y) = M(x,y) – m(x,y) 
 B(x,y) = threshold L(x,y) at T 
 [HT(theta, rho), theta, rho] = Hough transform of B(x,y) with angle step 
width of A 
 [maxThetaIndex] = Theta index of maximum in hough response 
 maxTheta = value of theta at max index theta(maxThetaIndex) 
end for 
return [thetaWidth, thetaLength ]  = Z rotation of angles from each image 

H = 5, W = 15, A = 0.5 degrees, T = 12 

Crack Detection 
Cracking and crack growth rate of the structural and non structural concrete of the 
upper plenum roof slab is monitored by contract inspectors. The presence and 
growth rate of cracks that form around the hanger anchor points of are of particular 
interest. A growing crack compromises the structural integrity of the anchor 
connection to the roof slab. Inspection is done visually and manually sketching 
cracks that are found and noting their location. During each inspection cycle, 
sketches are compared to assess the growth rate of cracks, and appearance of new 
ones. This method of sketching and comparison is subjective to person performing 
the inspection. Several computer vision based methods were developed in the past 
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that aimed to automate this task [8, 10, 11]. The proposed algorithm improves the 
true and false positive detection rates by combining elements from previously 
developed algorithms. 

Image Preprocessing 
The images taken of the hanger using the Raspberry Pi camera are quite noisy. In 
addition to that, elements in the background, such as joints between concrete 
panels, the hangers, and the T beam appear as lines, as do surface cracks on the 
concrete. A series of preprocessing steps are used to make the surface cracks stand 
out from the background elements. 

Color to Gray Scale Conversion 
Images taken by the Raspberry Pi camera are in color. The following equation is 
used to convert the colored image, I(R,G,B), to a gray scale image, g(x,y) [6]. R, G, and 
B refer to the color channels of the colored image. This conversion reduces the 
number of pixels operations are done on to a third, without loss of information 
about the location of the hanger. 

𝑔(𝑥, 𝑦) =  0.2989 𝐼(𝑅(𝑥, 𝑦)) +  0.5870 ∗ 𝐼(𝐺(𝑥, 𝑦)) +  0.1140 ∗ 𝐼(𝐵(𝑥, 𝑦)) 
 (2.1) 

Subtractive Preprocessing 
The pixel values of a line like structure tend to stand out in comparison to the 
background in the immediate area. Using a median filter on the image of a carefully 
selected kernel size can therefore remove lines that pass through a small window 
that are of a particular width without blurring lines that are larger. When the width 
of a line in a window causes it to take up more than half the window, it will remain. 
Conversely, if the width of a line in the window causes it to take up less than half of 
the window, it will be removed. 
Cracks tend to be thin lines, so by setting the kernel size, H, such that all cracks are 
removed when the median filter is applied, m(x,y), and then subtracting the gray 
scale image, g(x,y), from it, the result is an image, s(x,y), in which the background 
elements are removed, leaving just the cracks. This subtractive preprocessing 
method comes from the approach in [14] 
 
A kernel size, H, of 11 was used. This will result in lines greater than 5 pixels in 
width being removed.  

𝑚(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟(𝑔(𝑥, 𝑦), [𝐻, 𝐻])    (2.2) 
𝑠(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) −  𝑔(𝑥, 𝑦)     (2.3) 
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Fujita Line Emphasis Filter 
The Fujita line emphasis filter [7] was selected as the most accurate technique for 
emphasizing cracks of varying width. Three kernels are constructed from the 
convolution of the Hessian matrix (2.4) with a Gaussian function (2.3) 

Figure 36 - Removal of slight variation like an 
irregularly illuminated condition, shading, or 
blemish. [1] 

Figure 38 - g(x,y) image of cracked 
Concrete 

Figure 37 - m(x,y) median s(x,y) 
shadow image 

Figure 39 - filtered image 
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∇2𝐼(𝑥, 𝑦) =  [
𝐼𝑥𝑥(𝑥, 𝑦) 𝐼𝑥𝑦(𝑥, 𝑦)

𝐼𝑦𝑥(𝑥, 𝑦) 𝐼𝑦𝑦(𝑥, 𝑦)
]      (2.4) 

𝐺(𝑥, 𝑦; 𝜎𝑛) =  
1

2𝜋𝜎𝑓
𝑒

−(
𝑥2+𝑦2

𝜎𝑛
2 )

     (2.5) 

The three kernels, (2.7, 2.8, and 2.9) are the second order partial derivatives of the 
Gaussian function of size HxH. Where 𝜎𝑛 is the standard deviation of the Gaussian. 
These kernels are calculated for N scale factors, which follows equation (2.6).  

𝜎𝑛 = 𝜎1𝑠𝑛−1 , 𝑛 = 1, 2, … 𝑁       (2.6) 

𝜎1 =  𝑠 = √2 , 𝑁 = 4, 𝐻 = 21 
The values for s, 𝜎1, H, and N were determined experimentally in [1]. 

𝐺𝑥𝑥(𝑥, 𝑦) =  𝐺(𝑥, 𝑦; 𝜎𝑛) ∗ 𝐼𝑥𝑥(𝑥, 𝑦)    (2.7) 
𝐺𝑦𝑦(𝑥, 𝑦) =  𝐺(𝑥, 𝑦; 𝜎𝑛) ∗ 𝐼𝑦𝑦(𝑥, 𝑦)    (2.8) 

𝐺𝑦𝑥(𝑥, 𝑦) =  𝐺𝑥𝑦(𝑥, 𝑦; 𝜎𝑛) =  𝐺(𝑥, 𝑦; 𝜎𝑛) ∗ 𝐼𝑥𝑦(𝑥, 𝑦)    (2.9) 

At each coordinate of this 2x2 matrix, the eigen values are calculated from the 
values given by equations 2.7-9, Where λ1(x,y) and λ2(x,y) are the eigen values at a 
particular coordinate in I(x,y), and  λ1(x,y) > λ2(x,y). A particular pixel in I(x,y) being 
part of a line is given by equation (2.10). This is calculated for N scale factors to take 
into account that cracks may be of various widths. The line response of the image is 
given by equation (2.11), which is the maximum of normalized response from the 
set of scale factors. It was determined experimentally in [1] that α = 0.25. R(x,y) is 
shown in figure 41. 

𝜆12(𝑥, 𝑦) =  {

|𝜆2(𝑥, 𝑦)| + 𝜆1(𝑥, 𝑦) , 𝜆2(𝑥, 𝑦) ≤ 𝜆1(𝑥, 𝑦) ≤ 0

|𝜆2(𝑥, 𝑦)| − 𝛼𝜆1(𝑥, 𝑦) , 𝜆2(𝑥, 𝑦) < 0 < 𝜆1(𝑥, 𝑦) <  
|𝜆2(𝑥,𝑦)|

𝛼

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  

 (2.10) 
𝑅(𝑥, 𝑦) =  max

𝜎𝑛

𝜎𝑛
2 𝜆12(𝑥, 𝑦; 𝜎𝑛)    (2.11) 

 
           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 40 - R(x,y) line response Figure 41 - B(x,y) binary 
segmented image 
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Image Segmentation 
The line response image, R(x,y), is converted to a binary image, B(x,y), shown in 
figure 42. A binary threshold value of 164 was selected by analysis of the ROC curve 
shown in figure 44, and false positive curve shown in figure 45. The threshold value 
of 164 yields a false positive rate of 1%. The corresponding true positive rate is 
59.4%.  
Threshold values below 70 were not considered. Below that, the regions are very 
blob like, and are all removed by the region classifier. The ROC curve was 
constructed from a data set of 20 images of cracks. First, truth images were created, 
then for each image, the algorithm was run with a binary threshold value from 70 to 
255. For each threshold value, the number of true and false positives were counted. 
The true positive rate, or sensitivity, was calculated by dividing all the pixels 
correctly found to be in a crack by the sum of crack pixels in the truth images. The 
false positive rate, or 1-specificity, was calculated similarly.  
 
Empirical analysis showed that although the calculated true positive rate was low, 
when looking at the images, all cracks were correctly identified, sans some spurious 
regions, and there were zero false positives. This inconsistency is due to the 
subjective nature of the truth image labeling process. A crack could be labeled 
correctly, but shifted to the side slightly in the truth image, thus resulting in a large 
number of pixels being falsely labeled as being a false negative, and decreasing the 
true positive rate.  

Figure 42 - L(x,y) cleaned image 
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Morphological Operations 
Five morphological operations are applied in the following order. These reduce 
noise in B(x,y) and connect lines that are fragmented. [4] The cleaned image, L(x,y), 
is shown in figure 43 

1. Close: performs a dilation, followed by an erosion operation. [7] 

2. Bridge: Fills in pixel if it has two unconnected neighbors. [7] 

3. Diagonal: Fills in to make 8 connected patterns 4 connected. [7] 

4. Spur: Removes pixels that are only singly connected. [7] 

5. Clean: Removes isolated pixels. [7] 

Region Classifier 
Cracks are characterized as having a perimeter that is much greater than its area. 
This can be expressed by equation (2.12), and a perimeter that is of at least a certain 
length. [12] It was determined experimentally that there was a 98.2% chance of a 
region being a crack if the perimeter is greater than 40 pixels, and a 92.7% change if 
the circularity, F, is less than 0.08. [12] These values were used in our 
implementation as well. The aspect ratio measurement taken in [12] was 
determined not to be reliable aspect to consider due to the high possibility of a crack 
being complexly shaped in the data set we used, rather than linear in the data set 
used in [5]. The output of the region classifier is the image D(x,y), shown in figure 
46. 

𝐹 =
4𝜋∗𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2 < 0.08      (2.12) 

 
 
 
 
 
 
 

Figure 43 - ROC curve performance comparison Figure 44 - False Positive Rate Curve of binary 
threshold levels 
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Algorithm Pseudo Code 
A summary of the algorithm written in pseudo code follows: 
 

Crack Detection Algorithm 

I(r,g,b) = load RGB PNG Image 
g(x,y) = convert I(r,g,b) to grayscale image  
m(x,y) = median filtered g(x,y) with kernel size WxW 
S(x,y) = m(x,y) – g(x,y), create shadow image 
for n = 1:N 
 Calculate sigma of Gaussian at n 
 Construct Gaussian second partial derivative kernels of size H 
 Calculate the second order partial derivatives of Gaussian smoothed image 
 for (i,j) = dimensions of image 
  Calculate the two eigen values of the hessian at I(I,j) 
  Calculate line response at (i,j), normalized for Gaussian variance 
  R(i,j) = max(Rold(i,j), Rnew(i,j)) 
 end for 
end for  
B(x,y) = threshold R(x,y) at T 
L(x,y) = cleaned B(x,y) using binary morphological operations 
for all white regions in L(x,y) 
 calculate circularity and perimeter 
 if (circularity < C) and (perimeter > P) 
  Add region to D(x,y) 
 else 
  discard region 
 end if 
end for 
return D(x,y) 

Figure 45 - D(x,y) output of region 
classifier 

Figure 46 - Original image of 
concrete surface 
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W = 11, A = 0.5 degrees, T = 164, C = 0.08, P = 40, α = 0.25, 𝜎1 =  𝑠 = √2 , 𝑁 = 4, 𝐻 =
21 
reported system status. Due to the nature of the application, the interface provides 
support for username registration and log-in. This currently is only referenced in 
logging, but has obvious potential for more advanced database and record keeping 
in future works.  
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Cost Analysis 

Table of Costs by Order Number 
 
Vendor Part Number Order Number Total 

Amazon B003ZSN600 
1  $73.36  

Amazon RASPBRRY-PCBA512 

Amazon B00E1GGE40 2  $34.44  

Amazon LM2596 3  $9.99  

Amazon B00DCAIRIC 4  $6.23  

Amazon RASPBRRY-PCBA512 
5  $62.23  

Amazon B003MTTJOY 

Amazon B00AO0PCMW 6  $20.00  

Amazon B00E1GGE40 7  $32.00  

Amazon B008Q6Z36Q 7A  $7.61  

Amazon B0050G71ZG 8  $5.59  

Amazon B00AO0PCMW 9  $20.00  

Amazon B008Q6Z36Q 10  $9.98  

Amazon B00AO0PCMW 11  $28.97  

Boston Eengineering Shipping 12  $29.49  

Ebay HNM8X1.25SS 13  $5.00  

80/20 Inc 330297622005 

14  $96.41  
80/20 Inc 220327629990 

80/20 Inc 330503519751 

80/20 Inc 370132603224 

Pololu 1444 

15  $201.19  

Pololu 1493 

Pololu 1308 

Pololu 1939 

Pololu 1208 

Pololu 1555 16  $39.85  

Pololu 1492 

17  $131.75  Pololu 1442 

Pololu 1308 

McMaster-Carr 91292A156 

18  $367.39  

McMaster-Carr 8600N4 

McMaster-Carr 57105K22 

McMaster-Carr 6750K141 

McMaster-Carr 6412K11 

McMaster-Carr 8975K563 

McMaster-Carr 9946K12 

http://www.mcmaster.com/#91292a156/=q3a51d
http://www.mcmaster.com/#8600n4/=q4isj3
http://www.mcmaster.com/#57105k22/=q4iswq
http://www.mcmaster.com/#6750k141/=q4ita1
http://www.mcmaster.com/#6412k11/=q4ithv
http://www.mcmaster.com/#8975k563/=q4iu7n
http://www.mcmaster.com/#9946k12/=q3afhn
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McMaster-Carr 92185A118 

McMaster-Carr 91841A005 

McMaster-Carr 92185A131 

McMaster-Carr 92855A309 

McMaster-Carr 6484K446 

McMaster-Carr 95100A101 

McMaster-Carr 93410A110 

McMaster-Carr 6384K39 

McMaster-Carr 86985K31 

McMaster-Carr 7445A12 

McMaster-Carr 8975K429 

McMaster-Carr 91292A022 

McMaster-Carr 92185A998 

McMaster-Carr 9062K273 

19  $24.90  McMaster-Carr 92185A991 

McMaster-Carr 91841A195 

McMaster-Carr 6655K72 

20  $20.48  
McMaster-Carr 91292A029 

McMaster-Carr 6338K413 

McMaster-Carr 92185A124 

Home Depot 0000-841-583 21  $15.94  

Home Depot PR1088001 22  $5.98  

Home Depot PR1088001 
23 

 $7.54  Home Depot 1/2 inch Dowel 

Micro Center HDMI-DVI 24  $11.96  

Micro Center P-SDH32G10H-GE 25  $19.99  

NEU 3D Printing Studio Printed Parts 26  $70.00  

Star Market Grease Remover 
27 

 $4.29  

Star Market HL EE Gloves MED  $1.49  

  
 

 
  

Total  $1,364.05  
 

Cost Break Down by Category 
 

Mechanical   $613.64  

Electrical  $703.18  

Misc.  $47.23  

 
We believe that the cost of our project considering its capabilities is extremely low. 
Before deciding to develop our own robotic platform we researched many consumer 
available platforms. There were two problems that we discovered during our 

http://www.mcmaster.com/#92185a118/=q3agsf
http://www.mcmaster.com/#91841a005/=q3ahyh
http://www.mcmaster.com/#92185a131/=q3alwu
http://www.mcmaster.com/#92855a309/=q3apyv
http://www.mcmaster.com/#6484k446/=q3b03g
http://www.mcmaster.com/#95100A101
http://www.mcmaster.com/#93410a110/=pz7x67
http://www.mcmaster.com/#6384k39/=q3czkx
http://www.mcmaster.com/#86985k31/=q2xmnx
http://www.mcmaster.com/#7445a12/=q3d120
http://www.mcmaster.com/#8975k429/=q3d29f
http://www.mcmaster.com/#91292a022/=q3d6a6
http://www.mcmaster.com/#92185a998/=pz7ihj
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research. First, there were not many platforms that were larger enough to handle a 
lift tower of the height we required and still be able. Second, the cost of any platform 
that was larger enough was $3,000+ and often did not include electronics. Knowing 
this, the $1,364 that was spent over the course of the project is remarkably low.   

Conclusion 
 
If fully deployed our project would have a profound impact on the standard way 
that tunnel inspection are performed. Our robotic solution would provide a means 
to inspect a tunnel from a remote location while also providing a fully automated 
way to classify, track, and diagnose tunnel structural and nonstructural cracks. 
Providing a safe, efficient, and smart way of inspecting our tunnel infrastructure 
would go a long way to preventing further tragedies from tunnel failures in the 
future.  
 
By developing this platform we were able to successfully apply many concepts that 
we learned from classes, self-studies, and coop. We all felt that the process from idea 
conception until final working prototype was incredibly exciting and rewarding and 
by successfully completing this process we are indeed prepared for the future. 
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