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ABSTRACT
With the rapid deployment of 5G, an important question is whether
5G can support latency-critical apps such as multi-user AR, which
allows multiple users to interact in the same physical space in real
time. Recent studies showed that a popular multi-user cloud-based
AR app (Cloud Anchor) suffers long end-to-end (E2E) latency in
multi-user interactions under both LTE or 5G and hence cannot be
supported by today’s cellular networks. In this paper, we revisit the
feasibility of multi-user AR over wireless networks by experiment-
ing with another popular multi-user AR app, Just a Line, and find
that its E2E latency is in the order of a few 100s of ms over both
LTE and 5G, making real-time multi-user interactions feasible. We
conduct a detailed measurement study of the Just a Line app over
cellular networks and uncover the drastic user-perceived perfor-
mance difference between the two multi-user apps stems from two
fundamentally different architecture designs of performing SLAM:
asynchronous vs. synchronous updates.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Networks → Mobile networks; • Information sys-
tems →Multimedia information systems.
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1 INTRODUCTION
Augmented Reality (AR) promises unprecedented interactive and
immersive experiences to users by augmenting physical objects in
the real world with computer-generated perceptual information. As
such, a complete AR app often needs to perform several challenging
tasks to understand and interact with the physical environment,
such as pose estimation or object detection [1].

While single-user AR can potentially perform AR tasks locally
on the mobile device [10],multi-user AR apps, which allow multiple
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users to interact within the same physical space, critically rely on
the cellular network and often a cloud server to support user in-
teractions. Further, to provide high-quality, interactive experience,
such networked AR apps need to perform the needed AR tasks (e.g.,
pose estimation and synchronization to the same physical environ-
ment) at very low latency, which places high uplink bandwidth
demand on the wireless network. It is because of this stringent
network requirement that networked AR has been widely viewed
as one of the “killer” apps for 5G, e.g., in the AT&T and Microsoft
alliance as well as the Verizon and AWS alliance to showcase 5G
edge computing solutions [2, 7].

Unfortunately, previous studies have shown that cellular net-
works cannot supportmulti-user cloud-basedAR apps. First, Apichart-
trisorn et al. conducted an in-depth measurement study [8] of a
popular multi-user app (Cloud Anchor [3]) that performs the most
basic multi-user interaction, i.e., displaying a virtual object, to study
whether LTE can support the needed QoE of multi-user AR. That
study showed that the latency from the moment a user places a
virtual object in the physical environment to the moment the object
is displayed on another device is 12.5 s in the median case over LTE,
which renders the most basic user interaction in multi-user AR apps
practically infeasible. Motivated by the much higher bandwidth and
lower latency provided by 5G mmWave, in a follow-up study [13],
Ghoshal et al. conducted a comparison of the performance of the
same AR app side-by-side over both LTE and 5G mmWave and
found that 5G mmWave did not reduce the E2E latency of the AR
app compared to LTE in spite of its much higher bandwidth and
lower RTT. Based on the results of these studies, a number of follow-
up works proposed edge-assisted [9] (as opposed to cloud-assisted)
multi-user AR to reduce the E2E latency or a new P2P paradigm for
multi-user AR apps to replace the client-server paradigm [9, 18].

Nonetheless, the findings in [8, 13] were based on experiments
with a single multi-user AR app, which was treated as a represen-
tative example of all multi-user AR apps. While the main building
blocks of Cloud Anchor are indeed shared bymost multi-user, cloud-
assisted AR apps, the way these building blocks are put together
is different in different apps, and these architectural differences
might result in different performance over the same cellular net-
work. Indeed, in this paper, we experiment with another popular
multi-user AR app, Just a Line [6], and find that the E2E latency is
much shorter, in the order of a few 100s of ms, over both LTE and
5G, which allows for real-time interactions between multiple users.
Motivated by the striking difference in the E2E latency of these two
apps, we perform a detailed measurement study of the performance
of the Just a Line app over cellular networks and uncover the root
cause of why this app performs much better than Cloud Anchor.

Our study uncovers a fundamental architectural difference be-
tween the two apps that has a major impact on the user-perceived
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E2E latency. This difference is related to the way the two apps
perform SLAM (Simultaneous Localization and Mapping), which
serves as the foundation for localization in every mobile multi-user
AR app. Cloud Anchor performs SLAM synchronously, i.e., before
every virtual object placement. This coupling of the two operations
– SLAM and virtual object placement – results in a high E2E latency,
as a successful SLAM update always has to be completed before
the resolver can render a virtual object placed by the host. In con-
trast, Just a Line decouples SLAM from the virtual object placement.
SLAM is performed asynchronously in a periodic manner, and the
app always uses the results from the most recent SLAM update
to render a virtual object. The decoupling of the two operations
allows Just a Line to achieve a much lower E2E latency compared
to Cloud Anchor.

In summary, in this work, we revisit the question of whether
today’s cellular networks can support multi-user AR. In contrast to
previous studies that gave a negative answer based on experiments
with a single multi-user AR app, our study reveals that the answer
to this question is more subtle and depends heavily on the app
design, in particular, the way the app performs SLAM, i.e., syn-
chronously vs. asynchronously. In this paper, we focused on the
E2E latency of multi-user AR, similar to [8, 13], and ignored another
important metric, spatial inconsistency [18], i.e., whether the vir-
tual objects appear at the correct locations, with respect to the real
world, on each user’s display. While in our experiments we did not
find any spatial inconsistency visually, in our future work, we plan
to study how the two different SLAM approaches affect the spatial
inconsistency, using appropriate tools and methodologies [18].

2 ASYNCHRONOUS VS. SYNCHRONOUS SLAM
IN MULTI-USER AR

SLAM serves as the foundation for localization in most mobile
multi-user AR apps. To create a common and consistent real-world
coordinate system across multiple mobile devices, the users share
their device coordinates and then SLAM is ran to estimate the
device’s current pose and the real-world coordinate features, be-
fore the virtual objects in the user’s field of view are rendered on
the screen. SLAM is computationally intensive and most popular
AR apps enabled by Google ARCore, Apple ARKit, or Microsoft
Hololens offloadmost of the computations to cloud servers to reduce
the workload on the phones. Based on how SLAM is implemented
in cloud-based AR systems, it can be broadly categorised into two
types: 1) Synchronous SLAM and 2) Asynchronous SLAM. In the
following, we describe in detail the workflow of both types of SLAM
in Fig. 1 via two representative apps, Cloud Anchor and Just a Line,
respectively.
Synchronous SLAM in multi-user AR. A certain class of multi-
user AR applications perform SLAM whenever a change in user ac-
tivity is observed. This could either mean the user changes their cur-
rent position and moves to a new one, or the user adds/manipulates
an overlaid virtual object. We call this reactive approach synchro-
nous SLAM. Cloud Anchor [3] is a popular demo application re-
leased by Google that leverages synchronous SLAM. Fig. 1a shows
the workflow of Cloud Anchor, which allows a user (host) to place
a virtual object in the scene and a second user (resolver) to view
it. The host initiates a connection with a cloud-based Firebase [4]
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Figure 1: Workflow of different types of cloud-based multi-
user AR.
database by creating a room ID (R). The resolver uses the same
room ID and waits for incoming connections from the host via the
cloud.

After an object is placed on the host’s screen, the following events
take place. The host device creates a connection to the ARCore
cloud (1a), and starts uploading its coordinates and real-world
visual information to the cloud (1b). The cloud on receiving the
host’s visual data, performs SLAM, returns the SLAM-computed
world to the host and notifies the resolver to start the resolution
process (1c). The resolver, upon receiving a notification from the
Firebase after a notification delay (2x), initiates a connection to the
ARCore cloud (2a), and uploads its visual data to the cloud (2b). The
cloud then runs SLAM, compares the visual data with the host’s
SLAM-computed data to estimate the pose of the resolver in the
real-world frame, and sends it back to the resolver (2c). The resolver
uses this data from the cloud to estimate the virtual object’s pose
and display it on its screen (2d). The E2E latency is defined as the
time from the initial handshake between the host and the cloud to
the moment the virtual object is displayed on the resolver’s screen,
i.e., it is the sum of 1a, 1b, 1c, 2x, 2a, 2b, 2c, and 2d.
Asynchronous SLAM in multi-user AR. In contrast, another
class of AR applications performs SLAM in a periodic manner, inde-
pendent of the main application task, i.e., virtual object placement.
We call this approach asynchronous SLAM. Just-a-line [6], another
popular demo application released by Google, is an example of a
multi-user AR application performing asynchronous SLAM. In this
app, multiple users draw virtual graffiti in a shared physical space.
The host draws the graffiti on the phone and the resolver sees the
host’s drawing on their phone’s screen.1

1In Just a Line, the two devices can change roles or simultaneously play both roles
during a session. In our experiments, for simplicity, we always keep one device as the
host and the other one as the resolver.
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Fig. 1b shows the workflow of Just a Line. After an initial synchro-
nisation phase, where the devices communicate with each other
via a cloud server to establish a session, the host taps their screen
to start drawing and the app collects the coordinates of the first
batch of drawn points (1a) and uploads them to the cloud (1b) for
processing (c). After the cloud server finishes the processing, it
sends an application-layer acknowledgement to the host and in
parallel sends the coordinates to the resolver, which render the
drawing on their display (2d).

Unlike Cloud Anchor, which allows placement of one object
per session, Just-a-line allows users to continuously draw on their
screens and performs the processing in batches. After the initial
set of coordinates are sent by the host to the cloud, the host keeps
adding the subsequent coordinates to a queue (e.g., 1a’) and uploads
the next batch of coordinates (1b’) to the cloud once it receives
the acknowledgement for the completion of the previous cloud
processing task. The rest of the process – cloud processing (c’) and
rendering on the resolver side (2d’) – follows in a similar manner
to how the first batch of points were processed and rendered on the
resolver end. This sequence of steps is repeated until the session is
ended. Here, we define the E2E latency for a batch of drawn points
as the time from the moment the coordinates of the first point of a
batch are added to the queue on the host side till the moment this
batch of points is rendered on the resolver’s screen. For example,
the E2E latency is the sum of 1a, 1b, c, and 2d for the first batch of
points, and the sum of 1a’, 1b’, c’, and 2d’ for the second batch.

Note that, in contrast to Cloud Anchor, the E2E latency here is
not affected by SLAM. During 1b, 1b’, ..., the host only uploads coor-
dinates but no visual data, during c, c’, ..., the cloud only processes
coordinates, and there are no 2a, 2b, 2c phases, unlike in Cloud
Anchor. After the initial synchronization phase, where both phones
upload their visual data to the server to perform SLAM, SLAM is
performed asynchronously; the resolver periodically sends their
visual data (SLAM updates in Fig. 1b) to the cloud, which performs
SLAM, updates the pose of the resolver in the real-world frame,
and sends it back to the resolver.

3 METHODOLOGY
5G devices and carrier. Recent studies [13, 14, 16] have shown
Verizon’s 5G mmWave performance to be the best in terms of la-
tency and throughput among the major US cellular providers today.
Hence, we selected Verizon’s 5G mmWave service for our experi-
ments in this work. We used two rooted Google Pixel 5 phones for
all our experiments over 5G, LTE, and WiFi networks. For the mea-
surements over LTE, we disabled the 5G radio through the phone’s
settings. For the WiFi measurements, the phone was connected to
an 802.11ac AP.
Experimental Methodology.We conducted our experiments near
a busy street in Boston, MA, 80 ft away from the 5G mmWave
base station (BS); we confirmed via SpeedTest measurements that
this distance yielded the maximum possible downlink and uplink
throughput. The experiments spanned a 1-week period and all the
measurements were done at day time, from 9 am to 5 pm. For 5G
mmWave, we consider two scenarios: (1) static scenarios, when
the users stand and face towards the BS, and (2) mobile scenarios,
when they move in front of the BS in a pseudo-random pattern

incurring self-blockage. Due to the omnidirectionality of LTE and
WiFi signals, the network performance is not affected by blockage
ormobility.We performed the LTE experiments at the same location
as the 5G mmWave experiments, and the WiFi experiments in an
apartment, in the same room where we placed the WiFi AP.
Measurement Tools. To extract the end to end latency of the AR
app, we modified the two apps to log the Unix timestamps and
captured packets with timestamps using tcpdump.

4 RESULTS
4.1 Synchronous vs. Asynchronous SLAM
E2E latency. Fig. 2a compares the E2E latency of Just a Line and
Cloud Anchor in static scenarios. For Just a Line, we repeated
the measurements over 3 different networks – WiFi, LTE, and 5G
mmWave. For Cloud Anchor, we only conducted measurements
over 5G mmWave.

Fig. 2a shows that the E2E latency with Cloud Anchor varies
between 3.8 s and 7.1 s, with a median value of 4.9 s. Although
these values are lower than those reported in [13] (3.9-11.9 s with a
median value of 6.3 s), they still make real-time user interactions
practically infeasible. In contrast, the E2E latency with Just a Line is
an order of magnitude lower, regardless of the underlying network.
The 75-th percentile is 168 ms, and only a few outliers approach
1.5 s. Note that this worst-case latency with Just a Line is still 2.3 s
lower than the best-case latency with Cloud Anchor. Since the E2E
latency with Just a Line is independent of the underlying network,
in the remainder of the paper, we focus on 5G mmWave.
E2E Latency breakdown. To gain insight into the much lower
E2E latency of Just a Line, we plot in Fig. 2b its E2E latency, as
well as the latency of its individual phases over 5G mmWave, in
static vs. mobile scenarios. We observe that the E2E latency remains
unaffected by user mobility. Additionally, all individual app phases
are completed very fast; the 75-th percentile of all four phases – 1a,
1b, c, 2d – is below 80 ms.

The studies in [8, 13] reported that tasks 1b and 1c are the main
contributors to the E2E latency of Cloud Anchor. During 1b, the
host uploads the virtual object’s coordinates along with real-world
visual data to the cloud, and, during 1c, the cloud performs SLAM
and returns the SLAM-computed world to the host. Each of these
two phases can take several seconds to complete (e.g., 0.8-2.6 s
and 1.9-7.5 s, respectively, in [13]). In contrast, in Just a Line, the
host only uploads coordinates of the drawn graffiti during 1b, and
processes those coordinates during c, while the visual data required
for SLAM are uploaded (by the resolver) and processed (by the
cloud) asynchronously, as shown in Fig. 1. As a result, both these
phases complete very fast (at most 400 ms and 1.3 s, respectively),
as shown in Fig. 2b. Fig. 2c shows the CDF of the size of the coor-
dinate messages sent by the host to the cloud and from the cloud
to the resolver, at the beginning of 1b, 1b’, ..., and 2d, 2d’, ..., re-
spectively. We observe that the size of both messages is very small
(99-th percentile 1500 bytes, max 2400 bytes). In contrast, the size
of the messages sent during 1b in Cloud Anchor (including both
coordinates and SLAM updates) was found to be in the order of
a few MB in [8, 13], which explains the difference (an order of
magnitude) in the duration of 1b for the two apps.
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Figure 2: Just-a-line: Latency breakdown and packet size statistics.

Fig. 2b also shows that, in addition to phase c, phase 1a also
exhibits some outliers up to 1.4 s, while 1b and 2d are always com-
pleted very fast. Recall from §2 that, during 1a, the host uploads
the coordinates of a batch of drawing points to the cloud, which
processes them during c. Also recall that the uploading of the next
batch of coordinates can only start after the cloud finishes process-
ing of the current batch and sends a notification to the host. As a
result, if the cloud delays processing of a batch of coordinates (due
to overloading), this delay will also delay the uploading of the next
batch of coordinates, i.e., a long c for a batch of coordinates always
causes a long 1a for the next batch of coordinates. This explains
the outliers observed for 1a and c in Fig. 2b.

4.2 Updates in Asynchronous SLAM
In the previous section, we focused on the E2E latency of Just a
Line and ignored the asynchronous SLAM updates. We next turn
our attention to the periodic SLAM updates and study their period,
size, and impact on E2E latency.
Update interval. Fig. 3a plots the CDF of the SLAM update period
over all static and mobile experiments. We observe that the CDF is
largely bimodal; the SLAM update period is either 0.7 s or 3.1-3.2 s
for most experiments. Interestingly, our experiments showed that
the SLAM update period is not correlated with the user mobility.
Figs. 4a-4d show four example timelines, two in static (Figs. 4a,
4b) and two in mobile scenarios (Figs. 4c, 4d). We observe that the
app can use a short update period in static scenarios (e.g., Fig. 4a)
and a long update period in scenarios involving user mobility (e.g.,
Fig. 4d). Upon closer inspection of our traces, we found that the
SLAM update period is determined based on the dynamism of the
real-world scene captured by the phone’s camera rather than by
user mobility. SLAM updates are sent more frequently when the
phone faces a highly dynamic scene (e.g., a busy street) and less
frequently when it faces a static scene (e.g., a building) regardless
of user mobility.

By inspecting Figs. 4a-4d (and the rest of our traces), we observe
no correlation between the SLAMupdate period and the E2E latency
of Just a Line. These figures show that the E2E latency for most
batches of coordinates is below 200 ms (as mentioned in §4.1),
regardless of the SLAM update period, and outliers are observed
in all four figures. This is confirmed in Fig. 3b, which plots the

E2E latency separately for scenarios with short and long SLAM
update period. We further observe that most E2E latency outliers
occur between two consecutive SLAM update messages (which is
expected, due to staleness of the latest SLAM update), but there are
some exceptions; e.g., in Fig. 4b, the E2E latency spikes to 400 ms
and 500 ms right after the 4th SLAM update message.
Update messages. Figs. 4a-4d also plot the size of the periodic
SLAMupdate messages sent by the resolver to the cloud and the size
of the responses sent by the cloud to the resolver after processing
the SLAM updates. We observe that the size of the updates does
not depend on the user mobility or the SLAM update period. We
also found that in most runs, the size of all SLAM update messages
is roughly constant (e.g., Figs. 4b,4d), but there are a few exceptions
(e.g., Fig. 4c) where the size varies over time. Fig. 3c plots the CDF
of the size of the SLAM update messages to the cloud and the size
of the responses from the cloud in all scenarios. The SLAM update
messages are about 50-60 KB 60% of the time and can be as large as
85 KB. In contrast, the size of the responses from the cloud to the
resolver is much smaller, about 2-3 KB.

The size of the SLAM updates is similar to the size of the visual
data uploaded by the resolver in the case of the Cloud Anchor
app (50-100 KB in [13]) and much smaller than the visual data
uploaded by the host in that app (a few 100s of KB up to a few MB,
as mentioned in §4.1). This shows again the power of asynchronous
SLAM. After the initial synchronization period (studied in the next
section), the resolver in Just a Line only sends small periodic SLAM
updates instead of full visual data, allowing the upload and the
processing of those updates to complete much faster compared
to the upload and processing of SLAM messages from the host in
the case of Cloud Anchor. This is shown in Fig. 3d, which plots
the CDF of the duration of all SLAM update transactions, i.e., the
time from the moment the resolver starts sending a SLAM update
message to the moment it receives the response from the cloud.
We observe that the duration of the SLAM update transactions is
very short, 100-370 ms. This latency is similar to the latency of the
SLAM updates on the resolver side in Cloud Anchor (the sum of 2b
and 2c in Fig. 1a), which was found to be in the order of a few 100s
of ms in [8, 13]. In contrast, the latency of the SLAM updates on
the host side in Cloud Anchor before each virtual object placement
(the sum of 1b and 1c in Fig. 1a) is very long (in the order of 3
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Figure 3: Just-a-line SLAM statistics.
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Figure 4: Just-a-line SLAM update timelines.
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Figure 5: Just-a-line synchronization statistics.

s in [8, 13]), and contributes significantly to Cloud Anchor’s E2E
latency. The asynchronous SLAM updates in Just a Line eliminate
this long latency, keeping the E2E latency short.

4.3 Initial Synchronization
Finally, we study the initial synchronization in Just a Line. Fig. 5a
shows the CDF of the duration of the initial synchronization phase
over all runs. As a reference, we also plot the CDF of the E2E latency
of Cloud Anchor, which involves the synchronization components
(upload and processing of visual SLAM data) in every virtual object
placement. Surprisingly, Fig. 5a shows that the initial synchroniza-
tion phase in Just a Line can be very long, from 5.6 s up to 309 s,
much longer than the E2E latency of Cloud Anchor (3.8-7.1 s).
Understanding high initial synchronization delay.We initially
hypothesized that Just a Line might send larger messages during the
initial synchronization phase compared to Cloud Anchor, resulting

in a longer time to upload the messages and complete the synchro-
nization. To examine this hypothesis, in Figs. 5b, 5c, we plot the
CDFs of all the total bytes uploaded and downloaded, respectively,
during Just a Line’s synchronization phase. The downlink data size,
from the cloud to the host/resolver, is very small, up to 55 KB to
the host and up to 140 KB to the resolver (Fig. 5c). In contrast, the
uplink data size, from the host/resolver to the cloud, is much larger,
up to 7.5 MB from the host, and up to 12 MB from the resolver
(Fig. 5b). The size of the uplink messages in Just a Line is larger
than the size of the same messages in Cloud Anchor in the case of
the host (up to 5 MB in [13]) and much larger in the case of the
resolver (only 0.05-0.12 MB in [13]). Nonetheless, the much longer
synchronization phase in Just a Line compared to the E2E latency in
Cloud Anchor cannot be merely explained by the relative difference
in the message size between the two apps.

We conjecture that the root cause of the much longer synchro-
nization duration in Just a Line lies in the different ways the two
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(a) Short synchronization example.
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(b) Long synchronization example with multiple retries.

Figure 6: Examples of Just-a-line synch. timelines.

apps create synchronization anchors. In phase 1a of Cloud An-
chor, the user of the host device needs to first tap the screen, and
Cloud Anchor uses this tap to perform a hit-test [5] to find the
intersections between the real-world 3D geometry and a virtual
ray consisting of an origin and direction. The intersection is then
used by the host to create an anchor. In our experiments, this way
of creating anchors always succeeded, e.g., even when the phones
faced a busy street, as Cloud Anchor always highlighted the empty
sidewalk near the 5G BS, thereby the anchor was easily resolved.
In contrast, Just a Line tries to automatically create and place the
anchor. We found that this approach succeeded only when the
phones faced a quiet scene (Fig. 6a). But when the phones faced the
same busy street, the synchronization failure rate was very high,
resulting in many retries which made the synchronization time as
long as 300 s (Fig. 6b).

5 RELATEDWORK
Unlike single-user AR (e.g., [10, 11, 15]), there have been very few
works on multi-user AR. A few works [17, 20] focus on application
layer sharing while our work focuses on the impact of the network
on multi-user AR performance. In contrast to [8, 13], which study
multi-user AR performance over LTE and 5GmmWave, respectively,
using Cloud Anchor as a reference app, in this work, we studymulti-
user AR performance using another app, Just a Line. Our findings
are very different from the findings in [8, 13] and reveal the power
of asynchronous SLAM in providing high QoE for multi-user cloud-
based AR apps over both LTE and 5G. A few recent works study
edge-assisted [12, 19] or P2P-based [18] multi-user AR. In contrast,

our work focuses on cloud-assisted multi-user AR, which is the
default approach in most popular AR apps on the market.

6 CONCLUSION
In this paper, we revisited a key question in 5G edge computing: can
5G support multi-user AR? We studied Just a Line, a popular multi-
user AR app different from the one used in prior studies, and found
it achieves E2E multi-user interaction latency in the order of 100s of
ms over both LTE and 5G, making real-time multi-user interactions
feasible. Our detailed measurement study of Just a Line over cellular
networks reveals that asynchronous SLAM, i.e., periodic SLAM
updates in the background, used in Just a Line is what enables its
real-time multi-user interaction latency, significantly lower than in
Cloud Anchor, which uses synchronous SLAM, i.e., blocking SLAM
update before each user interaction. Our study shows asynchronous
SLAM is key to enabling continuous real-time user interaction in
multi-user AR.
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