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Abstract—Low-latency video streaming over 5G has become
rapidly popular over the last few years due to its increased
usage in hosting virtual events, online education, webinars, and
all-hands meetings. Our work aims to address the absence of
studies that reveal the real-world behavior of low-latency video
streaming. To that end, we provide an experimental methodology
and measurements, collected in a US metropolitan area over a
commercial 5G network, that correlates application-level QoE
and lower-layer metrics on the devices, such as RSRP, RSRQ,
handover records, etc., under both static and mobility scenarios.
We find that RAN-side information, which is readily available
on every cellular device, has the potential to enhance throughput
estimation modules of video streaming clients, ultimately making
low-latency streaming more resilient against network perturba-
tions and handover events.

I. INTRODUCTION

Live video streaming traffic is predicted to account for
29.7% of all Internet traffic by the end of 2023 due to the
growing popularity of live video streaming services including
live event streaming, shoppable social live streaming, and e-
sports and gaming [1]. To enable real-time interaction, these
applications require minimal end-to-end latency (also known
as glass-to-glass latency). Latency is defined as the time delay
between video capture and the actual playback at the client,
imposing tight content delivery constraints.

In addition, the dynamic nature of cellular connections,
due to varying network conditions and user mobility makes
it very challenging to ensure a high level of Quality of
Experience (QoE) for streaming users. Video streaming clients
are tasked with adapting the requested video bitrate to the
available throughput, with the objective of ensuring high-
quality uninterrupted streaming. To address the QoE optimiza-
tion challenge, most video streaming applications typically
require accurate throughput estimation, in order to adapt
their streaming bitrate to the current network conditions, thus
ensuring uninterrupted high-quality streaming. Throughput
estimation is typically based on application layer signals that
are updated every few seconds (weighted-averaged throughput
probes) and has proven to be sufficient for Video on Demand
(VoD) streaming. However, low-latency streaming bearing an
additional delivery objective, namely that of timeliness, not
only requires more frequent network-condition information
updates but is also known to have challenges with con-
ventional throughput estimation techniques, due to chunked
transfer encoding.

Concurrently, the latest 5G mobile network technology
is being deployed widely in commercial settings, promising

faster and more reliable connectivity for smartphones, tablets,
and other internet-connected devices. It is expected to deliver
data speeds up to 20 times faster than 4G networks, with
lower latency and higher capacity. This, in principle, opens
the door to a new class of latency-critical applications such
as low-latency live streaming, augmented reality, connected
autonomous vehicles, etc. However, despite these potential
benefits, there is a lack of real-world studies investigating the
behavior of low-latency video streaming on 5G networks. This
paper aims to fill this gap by presenting a study that evaluates
the performance of Low-Latency Dash video streaming over
a 5G network, providing insights into the feasibility of such
applications in real-world settings.

Our study collects client-side QoE metrics using Google’s
ExoPlayer open-source platform and evaluates performance on
5G networks during both peak and non-peak hours, comparing
it to WiFi. Mobility scenarios are also considered, taking into
account dynamic network conditions like handovers and low
coverage that may arise during user movement. Based on the
results of this study, we provide insights into the selection
of player configuration and discuss the potential benefit of
developing a bitrate adaptation algorithm that uses lower-layer
metrics to enhance the user experience of low-latency live
streaming.

II. BACKGROUND

MPEG-DASH (Dynamic Adaptive Streaming over HTTP)
[2] is an industry-wide adopted video streaming standard,
that is compatible with all popular video codecs such as
H.264, H.265, HVEC, and end-user devices. The typical
architecture of the MPEG-DASH client/server system is as
follows. An origin server transcodes the source video con-
tent in multiple representations (resolutions/bitrates) and then
proceeds to segment each representation into smaller files,
namely segments, that are typically 2-10 s in duration. The
way the content has been organized in representations and
segments is described in a manifest file called an MPD (media
presentation description) that is advertised to the video client
at the initiation of the streaming session, along with the
latency targets set for the particular video stream. The client
then proceeds to request every segment sequentially, according
to its adaptive bitrate (ABR) module, i.e., an optimization
function that decides the representation for every segment.
The segments are downloaded at a temporary queue before
decoding and playout, known as the buffer.
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Fig. 1: Latency achieved with CMAF chunks.

DASH has been proven to be ideal for both Video On De-
mand (VoD) and live streaming, offering high-quality stream-
ing with latency in the range of 10-45 s [3]. Nonetheless, to
achieve latency in the order of less than 5 s, namely low-
latency live streaming, the development of chunked transfer
encoding (CTE) with MPEG Common Media Application
Format (CMAF) [4], [5] was required. CTE is one of the
main features of HTTP/1.1 (RFC 7230) [20] that allows the
delivery of a segment in small pieces called chunks. The
fundamental reason behind this development lies in that, for
legacy DASH, the origin server has to wait for an entire
segment to be encoded and packaged before advertising that
segment to the client. This preparation process requires at
least one segment delay. With segment sizes in 2-10 s and
DASH clients requiring multiple segments downloaded even
before playback starts, the added delay to the latency makes
low latency infeasible. In contrast, a chunk can be as small as
a single frame. Therefore, it can be delivered to the client in
near real-time, even before the segment is fully encoded and
available on the hosting server side.

Fig. 1 shows the difference between Legacy DASH and
Low-latency DASH when the hosting server is generating
segments of 6 s length. At the current time, when playback
starts, the encoder has advertised up to segment 3 and segment
4 has not been fully encoded yet. With the Legacy DASH
solution, the client has two options. The first one is to skip
waiting for Segment 4 and start fetching from Segment 3. In
this case, the client could achieve 8 s of latency. The other
option is to wait for segment 4 to be encoded fully. This
way the client will achieve 6 s of latency but has to wait for
additional 4 s before the video starts playing. On the contrary,
for Low-latency DASH, the player can request the chunks 4a
and 4b that are already advertised by the media server and
starts playback as soon as receiving them, thus reducing the
overall latency to 2 s.

Additionally, to achieve low-latency streaming, per design,
video clients allow a very short maximum buffer, typically in
the order of 4 s. As video chunks arrive at the client, they
are temporarily stored in the buffer queue to be consumed in
order at a rate that equals unity, at a playback rate of 1, i.e.,
1 s of video content is played back every 1 s of actual time.
Therefore in a scenario where the content arrival rate is larger
than 1 (requested bitrate lower than available throughput), the
buffer queue would inadvertently grow, and in turn, so would

the latency lag (content ages as it remains in the buffer).
Nonetheless, shorter buffers naturally offer shorter cushions

against throughput variation and/or wrong bitrate adaptation
decisions. For instance, in a case of a sudden drop in the
available throughput, the low-latency video client has a very
short reaction window, before the buffer runs out of video
data, an event that practically constitutes a stall. To recover
from a stall the client is required to fill its queue up to a
minimum buffer value (typically in the order of 1 s) before
playback can resume – all the while falling behind in latency.

There are three ways to alleviate this added latency. The first
pertains to requesting the most recent content from the origin
server, after a stall, practically skipping a part of the video
sequence with direct implications to the continuity of the
streaming experience. The second is to employ a playback rate
higher than 1 (speed up) until the latency lag is minimized,
with implications for the streaming experience again, and
with an increased probability for a ”back-to-back” stall. The
third way is to avoid rebuffering altogether by employing
a conservative adaptation policy and a fast reaction time –
faster than the time required to register a sudden throughput
drop in the throughput estimation module of typical video
players (windowed approach). As we will see in Section V,
especially in scenarios with increased mobility, to avoid stalls,
given the extremely short buffers employed, low-latency bit-
rate adaptation requires dynamics that are refreshed faster than
throughput estimates, and which can indicate a throughput
drop before it even manifests. Thus, to ensure good QoE for
users, it is imperative for the client device to react to dynamic
network conditions.

III. RELATED WORK

Several works have studied low-latency live streaming
over HTTP [6]–[10]. Bitrate adaptation is one of the key
components of the low-latency streaming system and several
works have tried to improve this module [6]–[8]. Other works
aim at reducing the end-to-end latency by focusing on system
configuration parameters, such as buffer size [9], or by using
very short segments over the HTTP/2 protocol [10]. These
works mainly use trace-driven emulation for their evaluation
based on real-world traces collected mostly over WiFi or LTE
networks. In contrast, our work evaluates the performance of
low-latency video streaming over a real-world 5G network.

There is very limited work on evaluating the end-to-end
performance of low-latency video streaming over cellular
networks [11]–[13]. The authors in [13] propose the use
of scalable video coding for low-latency DASH over LTE
networks and evaluate the performance using ns2 simulations.
The works in [11], [12] evaluate the efficiency of low-latency
streaming in a standalone 5G network testbed, focusing on
uplink congestion in 5G networks. Another recent work [14]
proposes new 5G-aware mechanisms for video streaming
over 5G but focuses on volumetric video streaming over 5G
networks, which has very different characteristics compared
to low-latency video streaming.

Overall, the performance of Low-latency live streaming
over real-world commercial 5G networks is mostly unknown.



Through this work, we want to understand the impact of
server-side configurable parameters (segment size, chunk size,
and target latency selection), client-side parameters (i.e.,
buffer size), and lower-layer metrics (i.e., signal strength,
network load) on user perceived QoE.

IV. METHODOLOGY

In this section, we describe our experimental setup and the
data collection methodology. Our setup is shown in Fig. 2.
The video sequence, used for live streaming, was hosted at
an origin server, which performed all the transcoding and
packaging operations along with serving content requests.
A state-of-the-art low-latency mobile video client ran on a
mobile device (smartphone) connected to the cellular network
of a large US operator.

All data collection, at both the application layer and lower-
layers, took place on the mobile device. At the lower-layers,
we collected cellular network throughput, radio signal metrics,
and handover information, while at the application layer,
we collected streaming performance metrics including video
bitrate, rebuffering events, and latency.

Internet

Application Layer
Latency Lag
Rebuffer Events
Weighted Bitrate
Bitrate Switch

RSRP/RSRQ
Handover Events
Network Type

Lower-Layer Hosting Server

Fig. 2: Measurement setup

A. Server and Content Configuration

Our server is a Dell Precision 3340 with an Intel core i7-
10700 CPU and 16GB of RAM running Ubuntu 20.04 LTS.
For video transcoding and packaging, we employed a widely
used and open-source video processing tool, FFMPEG [15],
that supports Low-latency DASH. We used the default encoder
(libx264) to encode the test video sequence at 6 different
bitrates and resolutions following industry standards [16] as
shown in Table I. The generated segments from the FFMPEG
were hosted on an HTTP/1.1 server that enables chunked
transfer encoding.

For content preparation, we focused on segment duration,
chunk duration, and target latency. Different configurations of
these parameters can have a significant impact on the perfor-
mance of the low-latency stream. For example, the longer the
segment size, the larger the target latency. Additionally, the
shorter the chunk, the shorter the expected achieved latency,
but that comes as a cost with the packager on the server and
decoder on the client. Also, with shorter chunk duration, there
can be more idle periods between the partial segments, which
can increase the likelihood of inaccurate bandwidth estimation
at the client. Thus, to study the inter-dependencies between
the segment and chunk durations and the target latency, and to
provide experimental insights into the tradeoffs involved, we

considered a total of 9 profiles as listed in Table II following
the recommendation from [17].

TABLE I: Encoding Profiles.

Resolution 1080P (HQ) 1080P 720P 540P 432P 360P 270P
Bitrate (Mbps) 6 4.5 3 2 1.1 .73 .365

TABLE II: Streaming Profiles. S2-C0.1-L3 denotes segment
size of 2 s, chunk size of 0.1 s, and target latency of 3 s.

Profile Segment (s)-Chunk (s)-Target Latency(s)
1,2,3 S2-C0.1-L3, S2-C0.5-L3, S2-C1-L3
4,5,6 S3-C0.1-L4, S3-C0.5-L4, S3-C1-L4
7,8,9 S4-C0.1-L5, S4-C0.5-L5, S4-C1-L5

B. Client Configuration and Data Collection

We used Google Pixel 5 as the user equipment, and
Google’s open-source ExoPlayer [18] version 2.16.3, which
has native support for low latency, as the video client. While
other video clients were also considered, such as DASH-IF’s
web-browser-based dash.js [19], we chose Exoplayer since it
is offered as a standalone smartphone application and typically
serves as the foundational software for most of the video-
based Android applications. We modified the source code
of the player to change the default buffer settings (initial
buffer duration for playback, default minimum buffer, default
max buffer, and default buffer for playback after rebuffering)
to make it suitable for the low-latency setup. We set the
min and max playback rates of the player to 0.98 and 1.04
respectively. We also modified the default bandwidth estimates
on the player to match them with the average throughput
of the respective networks (WiFi/5G). Next, we implemented
listener functions provided by the player to collect different
QoE metrics. A detailed list of the metrics is given in Section
V.

To correlate how the video-client estimated bandwidth is
affected by lower-layer metrics, we used G-Net track Pro [20],
a network-based tool for collecting lower-layer information.
We collected handover information, signal strength and quality
(RSRP, RSRQ, RSSI), and network technology type with a
granularity of 1 s.

C. Measurement Scenarios

We considered three mobility scenarios: static, walking,
and driving. For static, we first evaluated the performance
of low-latency video streaming over WiFi, where the phone
was connected to the server located just one hop away through
a Netgear Nighthawk x10 802.11ac router. This provided us
with the baseline performance, as the channel conditions were
stable and there were no other clients on the WiFi channel.
For each profile in Table II, we conducted 10 runs.

Next, we evaluated streaming over the 5G cellular network
both during peak and non-peak hours. To identify peak and
non-peak hours, we first identified the cells that the smart-
phone connects to based on its location. Then, we studied the
network load of those cells (by analyzing the cell utilization
pattern data provided by the operator) to determine the most
congested/non-congested periods of the day. We observed that
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Fig. 3: RSRQ [dB] variation in mobility scenarios.
the cells are most loaded during 2-8 PM and very lightly
loaded around 4-7 AM. Thus, we selected these periods to
represent the peak and non-peak hours respectively, and we
conducted again 10 runs for each profile.

For mobility scenarios, we considered both walking and
driving conditions. For walking, we walked in a loop around
a base station with three cells. This ensured that a sufficient
number of handovers (at least 3) and signal strength variations
were observed (presented in Fig. 3a). We also made sure the
phone stayed on 5G most of the time (on average 90% of
the time) during playback. For driving, we similarly chose
a circular route (Fig. 3b), where the phone experienced a
number of handover events and we ran the experiment for
20 mins for a subset of the profiles. We observed that during
the driving experiments the phone experienced on average 10-
15 handover events and stayed on 5G on average 95% of the
time.

V. MEASUREMENT RESULTS AND ANALYSIS

In this section, we delve into the analysis of our low-latency
streaming measurements under the three mobility scenarios.

A. QoE Metrics Calculation

We consider the following metrics for each playback ses-
sion.
Weighted Bitrate. For each video playback session, the
player switches between bitrates to adapt to varying network
conditions. Depending on how long the player stayed on a
particular bitrate, we calculate the weighted bitrate as follows:

Weighted Bitrate =

∑
(bi ∗∆ti)∑

∆ti
(1)

where bi is a video bitrate and ∆ti is the duration of time
during which the video bitrate was bi.
Latency Lag. We calculate the achieved latency by averaging
the per-second latency data extracted from the ExoPlayer logs.
We then subtract the average value from the target value
set at the server. This metric denotes the difference between
achieved and target latency.
Bitrate Switch Count. We count the total number of switches
in bitrate observed during the playback.
Rebuffer Event Count. We count the number of rebuffering
events recorded.

B. Static Scenario

We first consider the static scenario with WiFi and 5G
(Peak and Non-Peak). The results are shown in Table III
and Fig. 4. We treat the Wifi scenario as our baseline, given
that it presents ideal streaming performance for all content
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Fig. 4: Latency Lag in Static Scenario.

profiles, as demonstrated in the high and stable weighted
bitrate and no rebuffering in Table III. It is worth noting that
a rebuffering event can have a large impact on latency, as our
discussion will indicate in the following. While indeed our
content preparation workflow is configured with tight latency
targets (i.e., 3, 4, and 5 s for the different profiles evaluated),
and in spite of employing a state-of-the-art video client in our
experimental setup, latency may still deviate from the target,
considering especially the dynamics between the origin server
and the low-latency client, as explained in Section II.

In particular, we observe in Fig. 4 that, even with min-
imal mobility and good networking conditions (static WiFi
scenario, no stalls, see Table III), the latency lag varies
between 0.5 and 2.0 s, depending on the different content
profiles. This is attributed primarily to non-network-related
inter-dependencies, such as content-encoding and packaging
complexities at the origin server. Additionally, we observe that
for WiFi, the latency lag increases as a function of the segment
duration (2, 3, 4 s) and that, at least for S2 and S4, a chunk size
of 0.5 s seems to be the sweet spot - an insight that could be
used to inform design decisions of video-service developers.

For 5G, we observe a higher average latency lag on Non-
peak than on WiFi, while Peak shows the highest lag in almost
all cases. In parallel, and according to Table III, the client
appears to perform adaptation, especially in the profiles with
shorter segments for the case of non-peak, while all profiles
show some adaptation in the peak case, irrespective of the
segment duration. The more frequently observed instances of
adaptation, along with the higher latency lag indicate that
the Peak hours represent somewhat more challenging network
conditions for low-latency streaming. In non-Peak hours, there
is less cross-traffic to compete with our streaming session in
the RAN, and the client manages to achieve a more stable
average bitrate relative to the case of Peak overall, while at
the same time, rebuffering is less frequent at non-peak vs.
peak across profiles. Nonetheless, both peak and non-peak,
despite adaptation, manage to maintain a high average bitrate
overall.

Another observation concerns the relationship between re-
buffering events and latency lag. Specifically, shorter segments
allow more reactivity in adaptation (which, as a reminder
occurs at the segment level, as opposed to the chunk level)
and thus provide more flexibility toward avoiding stalls and



TABLE III: Weighted Bitrate (W.B.) (Mbps) & Rebuffer Event count (R.E.C.) under static scenario.

Profile WiFi 5G (Non-peak) 5G (Peak)
W.B. R.E.C. W.B. R.E.C. W.B. R.E.C.

S2-C0.1-L3 6.00±0 0 5.87±0.37 0 5.75±0.47 0.4±0.68
S2-C0.5-L3 6.00±0 0 5.88±0.24 0.3±0.48 5.35±1.12 0
S2-C01-L3 6.00±0 0 5.69±0.55 0.1±0.32 5.75±0.75 0

S3-C0.1-L4 6.00±0 0 5.81±0.96 0.1±0.32 6.00±0 0.2±0.42
S3-C0.5-L4 6.00±0 0 5.9±0.38 0 5.84±0.47 0.2±0.42
S3-C01-L4 6.00±0 0 6.00±0 0.1±0.32 5.82±0.53 0.1±0.32

S4-C0.1-L5 6.00±0 0 6.00±0 0 5.55±0.64 0.4±0.7
S4-C0.5-L5 6.00±0 0 6.00±0 0 5.76±0.66 0.1±0.32
S4-C01-L5 6.00±0 0 6.00±0 0 5.86±0.33 0.2±0.42

thus preserving the latency target. Therefore, especially in
the case of peak hours, we observe that the shorter segment
choices serve favorably low latency. Nonetheless, in addition
to using smaller segments, modern-day low-latency adaptation
algorithms would require additional dynamics as inputs, to
become more reactive, as will become even clearer in the
discussion of our mobility results in Section V-C.

Overall, in the case of the static scenario, we are drawing
two main conclusions. First, the performance of low-latency
streaming depends heavily both on the network conditions and
on the configuration of the video player and the origin server.
It is imperative to use the right combination of segment and
chunk duration to configure the content at the origin server,
as well as set a viable latency target that would perhaps need
to be tailored to the expected network conditions (or based on
network load) where the streaming will occur. This should be
one of the primary considerations for video content providers
and video engineers/developers, and perhaps an interesting
area for collaboration between network operators and content
providers, that could focus on setting up a communication
framework to exchange load information to guide latency
target decisions (dynamic low-latency). Second, in our study,
we do not observe large performance differences in terms of
average bitrate and rebuffering when comparing peak and non-
peak hours, which implies that low-latency streaming is able
to support much higher encoding bitrates than the highest
encoded bitrate of 6 Mbps studied in this work – typically
sufficient for encoding a 1080p resolution (AVC codec), as
long as the video clients are equipped with fast low-latency-
specific adaptation modules. This signifies that today’s 5G
production networks are able to support 2K or 4K low-latency
streaming, even at peak network load. While the small screen
of modern smartphone devices will not yield tremendous
perceived QoE benefit at 4K, our observation raises interest
in identifying mobile low-latency use cases that would.

C. Mobility Scenario

In this section, we focus on the impact of mobility on
low-latency streaming. First, we look at the timeline of one
sample walking run and one driving run for the S4-C0.1-L5
profile in Fig. 5. We plot the selected track bitrate, latency lag,
rebuffering events, RSRQ, and handover events over time. We
observe that the cell device experiences a higher number of
handover events (25 vs. 2) and rebuffering events (4 vs. 1)
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Fig. 5: Mobility Scenario Case Study.

while driving against walking. We select the particular profile
under the premise that it registers more events (handovers,
rebuffering), to facilitate our discussion. The signal strength
(RSRQ) also varies significantly during the driving run.

More specifically, for Fig. 5a, we observe that RSRQ
presents a drop between the 2nd and 3rd minute of the
playback that coincides with a handover event. While the
client indeed switches to a lower encoding bitrate, it appears to
not do so in time to avoid a stall. The stall event eventually
causes a sharp increase in latency lag. This occurs because
the client adapts based on the estimated throughput (gray
line), which requires some time to register drops. Additionally,
the throughput estimation is slow to respond to the network
condition change. If the adaptation module was more sensitive
to throughput changes, while also including RSRQ as in input
signal, perhaps the stall might have been avoided. Fig. 5b
represents a similar case, yet now due to the increased mo-
bility while driving, handover events are much more frequent,
and in turn so are stall events. In particular, between the
9th and 10th minute, we observe again the same pattern as
before. A handover triggers a stall with a slight increase in
latency (about 0.5-1 s) and then a back-to-back stall triggers
an adaptation event, which in turn increases the lag by about
2 s. The adaptation should have occurred before either of the
two stalls, especially following the abrupt drop in RSRQ.

Additionally, Fig. 6 plots the QoE metrics over 5G peak
hours under static, walking, and driving scenarios for three
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Fig. 6: Average QoE metrics over 5G (peak) under all mobility scenarios.

profiles. As expected, we see that, as mobility increases, so
does the frequency of adaptation, which in turn results in
lower average bitrate. In all cases, except for the case of
driving for profile S4-C0.1-L5, the ability to down switch
frequently in order to avoid rebufferings indicates a favorable
impact on latency. Of course, the tradeoff comes at a lower
average bitrate, yet this eventually becomes a matter of
QoE prioritization, which app developers need to account for
according to their specific use case (latency over bitrate, etc.).

Overall, as indicated prior, rebuffering events are the main
cause of sharp increases in latency lag. In the face of fluc-
tuating network conditions, the short buffer associated with
low latency runs out quickly causing a stall. The longer the
stall the further the achieved latency will be from the target
value. That effect, in conjunction with the highly dynamic net-
work conditions especially under mobility, constitutes timely
adaptation based on appropriate signals, beyond throughput
estimates, mandatory for low-latency streaming

Therefore, based on the presented results of the mobility
scenarios, we conclude that RSRQ can serve as a key indicator
for QoE optimization. We noticed that each rebuffer event
occurs when there is a sharp drop in RSRQ (e.g., timestamp
2:20th min in Fig. 5a, 9th min in Fig. 5b). A sharp drop in
RSRQ could indicate to the player when to anticipate network
events such as handovers, that could negatively impact user
QoE. Similarly, a stable RSRQ over time could notify the
player of stable network conditions to help switch up bitrates.

In recent years some research works have proposed intel-
ligent ABR algorithms [6]–[8]. These works focus mostly on
client-side metrics (throughput estimation, buffer size, bitrate
switch history). However, there are no works that incorporate
lower-layer metrics, such as RSRQ, into the algorithm design.

VI. CONCLUSION

In this paper, we carried out a first-of-its-kind measurement
study on low-latency live streaming over a commercial 5G
network. We examined low-latency streaming across three
scenarios (static, walking, and driving) and analyzed the
impact of both server-side and client-side configurations on
user quality of experience (QoE). Our extensive experiments
and analysis demonstrated that 5G networks can support low-
latency video streaming, while also revealing the sensitivity of
QoE to network dynamics such as handover events, through-
put fluctuations, and signal strength variations, particularly in

mobility scenarios. We also discussed the potential use of
lower-layer metrics such as RSRQ to improve the accuracy
of throughput estimation and thereby enhance QoE for low-
latency video streaming users.
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