

Poster: Bridging the Gap: E2SM-SENS for ISAC-Native O-RAN Architectures

Rajesh Krishnan
Northeastern University
Boston, USA

Eduardo Baena
Northeastern University
Boston, USA

Dimitrios Koutsonikolas
Northeastern University
Boston, USA

Abstract

Integrated Sensing and Communication (ISAC) enables 6G networks to perform environmental sensing using communication infrastructure. We propose O-RAN extensions for monostatic sensing: (1) sensing dApps at the O-DU for IQ processing; (2) E2SM-SENS, a service model for sensing telemetry. Prototype evaluation demonstrates closed-loop latencies compatible with vehicular perception and UAV tracking use cases.

ACM Reference Format:

Rajesh Krishnan, Eduardo Baena, and Dimitrios Koutsonikolas. 2026. Poster: Bridging the Gap: E2SM-SENS for ISAC-Native O-RAN Architectures. In *The 27th International Workshop on Mobile Computing Systems and Applications (HotMobile '26), February 25–26, 2026, Atlanta, GA, USA*. ACM, New York, NY, USA, 1 page. <https://doi.org/10.1145/3789514.3796262>

1 Introduction

ISAC combines communication and environmental sensing within shared 6G infrastructure. While 3GPP Release 19 and O-RAN Alliance identify ISAC as a key capability, current architectures lack: (1) service models exposing sensing metrics; (2) O-DU frameworks for real-time sensing. We present **the first E2 service model for sensing telemetry** (E2SM-SENS), enabling xApps to subscribe to sensing KPIs through standard O-RAN interfaces.

2 Architectural Extensions

Sensing dApps: ISAC requires sub-ms feedback loops while the Near-RT RIC operates at 10–100 ms [3]. We introduce dApps [2] at the O-DU that process IQ samples directly, extracting delay, Doppler, and AoA.

E2SM-SENS: A new E2 service model enabling structured reporting of sensing KPIs over the E2 interface. KPIs include delay, Doppler shift, AoA, and environmental indicators. Telemetry subscriptions follow standard E2 procedures: xApps request periodic updates (e.g., every 5–100 ms) or event-driven triggers based on threshold crossings. Higher-level objectives are encoded via A1_POLICY_TYPE_ISAC policies, specifying geographic scope, temporal budgets, and sensing priority.

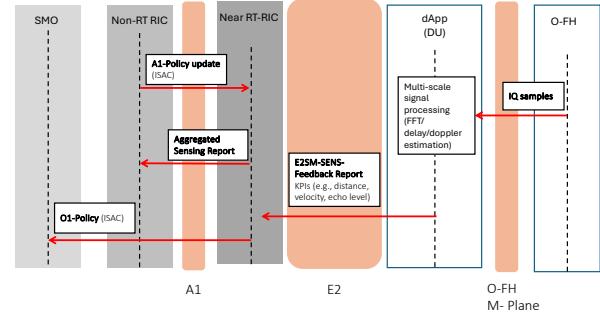
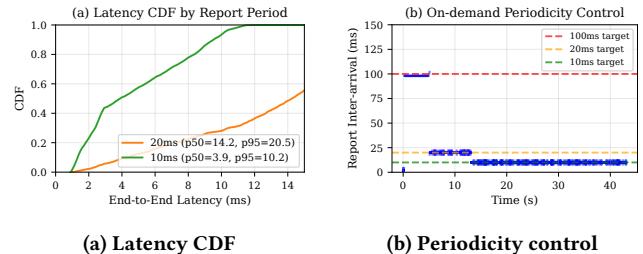



Figure 1: Proposed O-RAN ISAC Control

(a) Latency CDF (b) Periodicity control

3 Evaluation

We implemented E2SM-SENS on FlexRIC [1] with a simplified mock dApp that emulates sensing signal processing, collecting approximately 35000 samples across 10 trials. The dApp publishes FFT-based features via E2SM-SENS to an xApp subscriber.

Results (Fig. 2): Periodicity control (b) tracks requested rates within 0.1 ms of target. Closed-loop latency (a): **4.6 ms median** (p95: 10.2 ms), decomposed as 3.9 ms telemetry + 0.7 ms control overhead. 93.4% of samples below the 10 ms vehicular threshold, 100% below the 20 ms UAV threshold. As shown in Fig. 1, the hierarchical control loop (dApp→xApp→rApp) enables seamless integration with existing O-RAN deployments while meeting real-time ISAC requirements. The E2SM-SENS message encoding adds negligible overhead (<50 μ s per report), preserving compatibility with high-rate sensing scenarios.

References

- [1] Mikel Irazabal, Eunny Kim, Robert Schmidt, and Navid Nikaein. 2023. FlexRIC: An SDK for Next-Generation SD-RANs. In *Proc. ACM CoNEXT*. 411–425.
- [2] Andrea Lacava, Leonardo Bonati, Niloofar Mohamadi, Rajeev Gangula, Florian Kaltenberger, Pedram Johari, Salvatore D’Oro, Francesca Cuomo, Michele Polese, and Tommaso Melodia. 2025. dApps: Enabling real-time AI-based Open RAN control. *Computer Networks* 269 (Sept. 2025), 111342. doi:10.1016/j.comnet.2025.111342
- [3] Michele Polese, Mischa Dohler, Falko Dressler, Melike Erol-Kantarci, Rittwik Jana, Raymond Knopp, and Tommaso Melodia. 2-24. Empowering the 6G Cellular Architecture With Open RAN. *IEEE Journal on Selected Areas in Communications* 32, 2 (2-24).

