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Integrated Sensing and Communication (ISAC) enables 6G net-
works to perform environmental sensing using communication in-
frastructure. We propose O-RAN extensions for monostatic sensing:
(1) sensing dApps at the O-DU for IQ processing; (2) E2SM-SENS, a
service model for sensing telemetry. Prototype evaluation demon-
strates closed-loop latencies compatible with vehicular perception
and UAV tracking use cases.
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1 Introduction

ISAC combines communication and environmental sensing within
shared 6G infrastructure. While 3GPP Release 19 and O-RAN Al-
liance identify ISAC as a key capability, current architectures lack:
(1) service models exposing sensing metrics; (2) O-DU frameworks
for real-time sensing. We present the first E2 service model for
sensing telemetry (E2SM-SENS), enabling xApps to subscribe to
sensing KPIs through standard O-RAN interfaces.

2 Architectural Extensions

Sensing dApps: ISAC requires sub-ms feedback loops while the
Near-RT RIC operates at 10-100 ms [3]. We introduce dApps [2]
at the O-DU that process IQ samples directly, extracting delay,
Doppler, and AoA.

E2SM-SENS: A new E2 service model enabling structured re-
porting of sensing KPIs over the E2 interface. KPIs include de-
lay, Doppler shift, AoA, and environmental indicators. Telemetry
subscriptions follow standard E2 procedures: xApps request peri-
odic updates (e.g., every 5-100 ms) or event-driven triggers based
on threshold crossings. Higher-level objectives are encoded via
A1_POLICY_TYPE_ISAC policies, specifying geographic scope, tem-
poral budgets, and sensing priority.
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Figure 1: Proposed O-RAN ISAC Control
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Figure 2: E2SM-SENS evaluation

(b) Periodicity control

3 Evaluation

We implemented E2SM-SENS on FlexRIC [1] with a simplified mock
dApp that emulates sensing signal processing, collecting approx-
imately 35000 samples across 10 trials. The dApp publishes FFT-
based features via E2SM-SENS to an xApp subscriber.

Results (Fig. 2): Periodicity control (b) tracks requested rates
within 0.1 ms of target. Closed-loop latency (a): 4.6 ms median
(p95: 10.2 ms), decomposed as 3.9 ms telemetry + 0.7 ms control
overhead. 93.4% of samples below the 10 ms vehicular threshold,
100% below the 20 ms UAV threshold. As shown in Fig. 1, the hi-
erarchical control loop (dApp—xApp—rApp) enables seamless
integration with existing O-RAN deployments while meeting real-
time ISAC requirements. The E2SM-SENS message encoding adds
negligible overhead (<50 ps per report), preserving compatibility
with high-rate sensing scenarios.
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