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Chapter 1

Introduction and Caveats

We consider inverse problem in a very broad sense: the desire to extract information regarding an
unknown quantity based on data related via some type of mathematical model to the unknown.
In most all cases of interest here, this model (known as a forward model) is derived from physical
principles relating the data to the desired quantity. Whether explicitly accounted for or not as part
of the processing, the data are typically corrupted by some form of noise. The desired quantity
may be a function of space, time, and/or frequency. The sought-after information is also quite
varied depending on the underlying application. One may require a detailed reconstruction of the
internal structure of a medium; i.e, an image in two dimensions or a volumetric rendering in three.
Such is the case in the vast majority of image restoration problems as well many problems arising
in medical imaging. Alternatively, the goal may be the direct characterization of anomalous areas
in a larger field of regard. For example, in non-destructive test and evaluation, one may not be
concerned with the nominal structure of a sample, but only with knowing whether there exist flaws
and if so where they are located and their morphologies. In these cases and in contrast to imaging
problems where millions of pixel/voxel values may be desired, the required information here may
be nothing more than a small collection of parameters defining the number, location, and shape
characteristics of the anomalies. In more complicated problems, these images and/or objects are
temporally dynamic thereby adding an additional dimension to the problem. Finally we note there
is growing interest for solving inverse problems where multiple quantities are simultaneously to be
determined. The use of ultrasound to recover maps of sound speed and acoustic attenuation is one
example. Optical tomographic techniques can be of use in extracting information regarding the
spatio-temporal dynamics of a number of chromophores (oxygenated hemoglobin, de-oxygenated
hemoglobin, lipids, water, ...) in the human body.

Given the breadth associated just with the simple definition of an inverse problem, it should
come as no surprise that there are a plethora of methods that have been developed in a wide
range of intellectual communities for solving these problems. In many important cases, math-
ematically exact formula can be used as the basis for “inverting” the forward model to obtain
the desired information. Perhaps the best known example here is the use of the filtered back-
projection (FBP) method [47] as applied in computer aided tomography (CAT) and magnetic
resonance imaging (MRI). Closely related is the filtered bakpropagation approach [23] appropri-
ate for problems in fields such as geophysics where diffractive effects are of import. Finally, we
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CHAPTER 1. INTRODUCTION AND CAVEATS 5

mention the more mathematically sophisticated and highly elegant techniques largely under devel-
opment in the mathematics and mathematical physics communities including linear sampling [19],
∂̄ (D-bar) [82],micro-local tomography [16], and dual space methods [20]. These inverse methods
also provide analytic (or nearly analytic) formulae and algorithms for directly obtaining images
or object information from data where the underlying physical model is more complex than that
associated with filtered bakprojection or backpropagation.

At the other end of the inverse problems spectrum are variational methods which rely on numer-
ical optimization for providing the required information. The recovered collection of voxel values
or geometric parameters is defined as that collection of quantities which minimize a cost func-
tion [7,22]. The cost function itself is usually comprised of (a) a term requiring that the extracted
information in some sense be consistent with the measured data and (b) a number of additional
terms used to enforce prior information one may possess concerning properties of the solution. For
example, in the case of image formation problems, such terms usually enforce a degree of smooth-
ness in the reconstructed imagery [13]. The final cost function then represents a balance between
these two competing sources of information: data and prior knowledge. Actually determining the
minimizer of the cost function is the accomplished through the use of numerical methods drawn
from the optimization community. Thus, in contrast to the analytical techniques described in the
previous paragraph which find a home in the mathematical and math physics communities, those
of interest here are more commonly the purview of engineers, applied mathematicians and applied
physicists.

It almost goes without saying that the study and practice of inverse problems is not nearly
as neatly drawn as the last two paragraphs might indicate. The rapid rise in multi-disciplinary
research in the last 15 years or so has seen a concomitant merging of the two classes of methods
defined above: the analytical and the algorithmic. While there certainly exists cutting edge work
in each separately, it would not be a mis-statement to say that the fusion of these techniques is
itself an area of active work.

Perhaps the most telling tale that can be gleaned from the coarse taxonomy presented here
is that inverse problems represents an exceptionally broad area of study which can draw from a
wide range of disciplines. Thus there are many possible directions from which a text on such a
topic can approach the subject matter. The tact taken here is aimed at satisfying the interests of a
mathematically savvy researcher who ultimately wants an algorithm that can be implemented on
a computer. The methods and models addressed here are placed within a vector space/operator
theoretic framework; however ours is by no means a rigorous functional theoretic approach to the
study of inverse problems. Wonderful texts in this category exist such as [28, 49, 69] and it is
neither the goal nor within the author’s expertise to add to this literature. I view the mathematics
as providing a useful and elegant language by which common issues arising across a range of
application and problem structures can be conveniently discussed. To this end, the first chapter
of this manuscript is devoted to a brief overview of the relevant linear vector space mathematics
required for the remainder.

In order to present inverse problems in any comprehensive manner, one must first understand
the underlying forward models. Chapter 3 provides a review of the physical models and related
inverse problems to be encountered in the remainder of the text. Four classes of problems shall
be considered: deconvolution, X-ray tomography, and frequency-domain inverse source and inverse



CHAPTER 1. INTRODUCTION AND CAVEATS 6

scattering scattering associated with the scalar Helmholtz equation. On the assumption that anyone
reading these notes is familiar with basic linear systems theory, deconvolution provides a natural
forward model whose associated inverse problems are very easily understood using basic tools from
Fourier analysis. X-ray tomography (or the Radon transform) is one step up in complexity from
convolution. The utility of Fourier methods in the study of this problem and its ubiquity especially
in medical imaging applications makes it well suited for the analytic-algorithmic balance that is the
focus of this text. Inverse source and scattering problems encountered with the Helmholtz equation
are a step up in complexity and generality again from X-ray tomography. Problems for which the
scalar Helmholtz equation is a valid and useful model abound: medical imaging, nondestructive
evaluation, geophysical prospecting, environmental remediation, remote sensing and surveillance
to name but a few. Just as broad are the classes of instruments and sensors encountered in these
applications whose physics are described by this model: acoustics, scalar electromagnetic (includ-
ing as examples DC resistivity tools, low frequency induction sensors, microwave and RF ground
penetrating radar, up to terahertz imaging tools), photo-thermal, and diffuse optical. The physics
of these problems are significantly more complicated and rich than convolution or the Radon trans-
form. The inverse source problem end up being linear and quite closely related to deconvolution.
The inverse scattering problem is nonlinear; however linearization produces structure very much
analogous to the X-ray case.

Given this background, we next turn our attention to linear inverse problems. By linear inverse
problems we really mean problems whose variational forms can put into some type of linear least
squares structure. Such problems have two components. First, the forward model must be linear.
Convolution, the Radon transform, and linearized inverse scattering fall into this category. In fact,
these are precisely the problems for which elegant and useful analytic inversion formulae exist. Sec-
ond, when dealing with regularization in the context of variational methods, the regularizer must be
quadratic in the desired quantities. These apparent restrictions however still provides for significant
interesting structure and form the basis for a great majority of the inverse methods currently in
practical use. Indeed, this is not a coincidence. Inverse problems which can be connected to linear
least squares formulations are far easier to study than their non-linear cousins. Analytic inversion
formulae are more easily obtained for broad classes of problems encountered in practice. Closed
form solutions exist for the variational formulations of many of these problems. Finally, most all
of the tools used to solve these problems will be encountered in the study of nonlinear problems.

After thoroughly looking at linear inverse problems, we come to their non-linear counterparts
in Chapter 6. Nonlinearity in this case arises from one of two sources: either the model linking
the unknowns to the data is not linear in the parameters to be recovered or the regularization
is not quadratic in these quantities. All geometric inverse methods where we are concerned with
things like size, shape, orientation, and number of anomalies fall into this category. In this text we
concentrate on variational approaches to solving these problems. Generally-applicable decent type
of optimization methods will be discussed. At the heart of these techniques is the need to compute
the gradient of the cost function with respect to the unknowns. Methods for accomplishing this
task will be described again using convolution, X-ray tomography, and inverse scattering as the
driving examples. Finally, we shall briefly discuss current work in the development of closed form
methods for solving an important subset of these problems.

Having stated all of this, it is time now for the caveats. It is important to know what is not
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covered in this manuscript. The short answer is, “Many things.” Connections between variational
approaches to inverse problems and statistical inference and estimation are not described here.
Problems in which the underlying phenomena have a vectorial nature such as electromagnetics
using the full Maxwell’s equation or elasticity are also reserved for more advanced texts on inverse
methods. While there are many important areas where such physics represent the sensors, the level
of detail and additional mathematical machinery required to address these problems put them, in
my opinion, outside of the scope of anything that could be construed as an introductory treatment
of inverse methods. The same holds true for problems whose underlying physics are described
by nonlinear partial differential equations as arise in many facets of acoustics. Finally, as noted
previously, I have decided to leave the detailed and mathematically rigorous functional-theoretic
and harmonic-analytic approaches to the study of inverse problems to other, far more qualified
authors.

The other caveat is associated with the nature of this document. In its current form, this
manuscript represents a transcribed version of a set of lecture notes used by the author in the
teaching of a graduate level class at Northeastern University. As time and resources permit, it
is the hope and desire of the author to add all of the required connective tissue (text, pictures,
problems, references, an index, ...) to these notes which will one day allow them to be called a book.
In that spirit then, all comments, correction, and suggestions should be emailed to the authors at
elmiller@ece.neu.edu and wckarl@bu.edu.



Chapter 2

Mathematical Preliminaries

To establish notation and ensure a consistent understanding of the mathematical bases by the
reader, we begin with a review of linear vector spaces and basic notions of linear operators. Much
of the material in this text exists in the confines of finite dimensional spaces (matrices and vectors)
thus perhaps leading one to wonder as to the necessity of the extra mathematical baggage. This
is not intended to be, nor is it likely to be mistaken for, a tome of functional theoretic methods
in the analysis and solution of inverse problems. Still the restriction of the topic to purely fi-
nite dimensional spaces is too limiting both because the underlying problems arise in these more
mathematically abstract contexts and because there exists a range of solution methods that can
be pursued in these domains whose forms and structures are so similar to the finite dimensional
case and so grapsable by readers with an engineering background that it would be a shame to not
present them.

Thus, here we pursue an engineers solution to the problem of balancing mathematical rigor
against practical utility. Much as basic continuous time signal processing can make use of abstrac-
tions like a Dirac delta function without the need to take first a class in distribution theory, here
we make use of ideas such as Banach and Hilbert spaces, operator adjoints, eigenfunctions and
singular functions without much concern for the subtle and complex issues associated with these
topics that is central to their rigorous study. For more extensive discussions of these and related
topics, the interested reader is referred to [52, 55] which provided much of the motivation for the
material presented here.

2.1 Linear Vector Spaces

Definition 2.1 A linear vector space (or just vector space), X, is a set of elements (called vectors
or functions) closed under two operations, addition and scalar multiplication:

1. Addition: For x ∈ X and y ∈ X, x + y ∈ X.

2. Scalar multiplication: For α a complex number (denoted as α ∈ C) and x ∈ X, αx ∈ X.

While there mare many flavors of linear vector spaces, here we deal with the nicest possible kind
where the following properties are all assumed to hold for x, y, z ∈ X and α, β ∈ C:

8



CHAPTER 2. MATHEMATICAL PRELIMINARIES 9

1. Commutivity: x + y = y + x

2. Associativity: (x + y) + z = x + (y + z)

3. Existance of a zero vector and a unit vector: There is an element 0 ∈ X such that x + 0 = x.

4. Distributivity I: (α + β)x = αx + βx

5. (αβ)x = α(βx)

6. For the scalars 0 and 1, 0x = 0 and 1x = x.

Examples of vector spaces where these properties hold include the following1:

Example 2.1 The real numbers, R

Example 2.2 Standard n dimensional Euclidean spaces, R
n whose elements are taken to be col-

umn vectors of the form

x =


x1

x2
...

xn


where the xi are real valued scalars.

Example 2.3 Semi-infinite length sequences x = (x1, x2, x3, . . . , xj , xj+1, . . . ). Two classes of such
subspaces are those sequences whose first p elements are identically zero and those sequences whose
values converge to zero as j → ∞.

Example 2.4 All real-valued, continuous functions, f(x) on the interval x ∈ [0, 1]

Definition 2.2 The set M is a subspace of a linear vector space if for all x, y ∈ M and α, β ∈ C,
it is the case that αx + βy ∈ M as well.

Definition 2.3 If S and T are subsets of X, the sum of S and T is the collection of all vectors of
the form s + t where s ∈ S and t ∈ T .

From these last two definitions one can prove that if M and N are subspaces of a linear vector
space X, then M + N is a subspace of X as well.

Definition 2.4 A linear combination of the vectors x1, x2 . . . , xn is a sum of the form α1x1 +
α2x2 + · · · + αnxn for complex scalars αi.

Definition 2.5 A vector x is said to be linearly dependent on a set of vectors S if x can be written
as a linear combination of vectors from S. Otherwise, x is said to be linearly independent of the
elements of S. A set of vectors is said to be linearly independent if each is linearly independent
from the others.

1EXERCISE: Show these are vector spaces
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From these last two definitions, one can prove that x1, x2, . . . , xn are linearly independent if and
only if

n∑
i=1

αixi = 0

hold only for all αi = 0. Examples of linear independent and dependent vectors in R
2 are shown in

Fig. 2.1. For the case of linear dependence, choosing the three αi’s identically equal to 1 will yield
the zero vector.

Linearly independent

x1

x2

Linearly dependent
x4

x5

x6

Figure 2.1: Linearly independent and dependent vectors in R
2

Definition 2.6 A finite set of linearly independent vectors x1, x2, . . . xn is said to be a basis for the
vector space X is any s ∈ X can be written as a linear combination of the xi. Finite dimensional
spaces are those whose bases are comprised of a finite number of vectors. Otherwise, the space is
termed infinite dimensional.

Definition 2.7 A normed linear vector space is a vector space, X, equipped with a real valued
function called a norm satisfying the following three properties for x, y ∈ X and α ∈ C

1. Non-negativity: ‖x‖ ≥ 0 with equality if and only if x = 0.

2. Triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖
3. ‖αx‖ = |α|‖x‖

Some examples of normed linear vector spaces include2:

Example 2.5 Continuous functions f(t) on the interval t ∈ a, b with the norm

‖f‖ = max
a≤t≤b

|f(t)|
2EXERCISE
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Example 2.6 Sequences of the form x = {ζ1, ζ2, ζ3, . . . , ζn, 0, 0, 0 . . . } with the norm

‖x‖ =
n∑

i=1

|ζi|

Example 2.7 Continuous functions f(t) on the interval t ∈ a, b with the norm

‖f‖ =
∫ b

a
|f(t)|dt

Such spaces are denoted C[a, b].

Definition 2.8 A Cauchy sequence is a set of vectors x1, x2, . . . such that ‖xn − xm‖ → 0 as
m,n → ∞. Formally, this means that for all ε > 0 there is an N such that ‖xn − xm‖ < ε for
m,n > N .

Definition 2.9 A vector space is complete if every Cauchy sequence converges to a point in that
space.

Definition 2.10 A complete, normed, linear vector space is called a Banach space.

Examples of Banach spaces include:

Example 2.8 C[0, 1]

Example 2.9 The lp spaces consist of those sequences x = {ζ1, ζ2, ζ3, . . . } such that

‖x‖ ≡
( ∞∑

i=1

|ζi|p
)1/p

< ∞

with ‖x‖∞ = supi |ζi|

Example 2.10 The Lp[a, b] spaces 3 are sets of functions f(t) for which

‖f‖ ≡
(∫ b

a
|f(t)|pdt

)1/p

< ∞

with ‖f‖∞ = ess supt |x(t)| where the essential supremum is defined in XXX.

Definition 2.11 A pre-Hilbert space is a linear vector space equipped with a complex valued func-
tion called an inner product defined on X × X and for x, y ∈ X denoted (x|y) which satisfies the
following properties for x, y, z ∈ X and α ∈ C

1. (x|y) = (y|x) with the bar indicating complex conjugation.
3L for the French mathematician Lesbegue.
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2. (x + y|z) = (x|y) + (x|z)

3. (αx|y) = α(x|y)

4. (x|x) ≥ 0 with equality if and only if x = 0.

Definition 2.12 Two vectors, x and y, in a pre-Hilbert space are said to be orthogonal if (x|y) = 0
in which case we write x ⊥ y.

With these properties one can show

1.
√

(x|x) is a norm

2. |(x|y)| ≤ ‖x‖ ‖y‖ with equality if and only if y = 0 or y is a scalar multiple of x.

3. ‖x + y‖2 + ‖x − y‖2 = 2
(‖x‖2 + ‖y‖2

)
4. If x ⊥ y then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

Definition 2.13 A complete pre-Hilbert space is called a Hilbert space

Definition 2.14 Let S be a subset of a pre-Hilbert space, H. The set of all vectors in H that are
orthogonal to S is called the orthogonal complement of S in H and is denoted S⊥.

That is
S⊥ = {x ∈ X|(x|s) = 0 for all s ∈ S}

With this definition of the orthogonal complement we can show that for S and T subsets of a
pre-Hilbert space H the following properties hold:

1. S⊥ is a closed subspace of H. Roughly this means that the limit points of all convergent
series of elements in S⊥ are themselves contained in S⊥.

2. S ⊂ (S⊥)⊥
3. S ⊂ T → T⊥ ⊂ S⊥

4. S⊥⊥⊥ = S⊥

Definition 2.15 A vector space X is the direct sum of two other spaces X1 and X2 if all vectors
x ∈ X have a unique representation

x = x1 + x2

with x1 ∈ X1 and x2 ∈ X2. In this case we write X = X1 ⊕ X2.

Given this notion of a direct sum it is possible to show that if X1 is a closed subspace of a Hilbert
space H then two convenient properties hold:

1. H = X1 ⊕ X⊥
1

2. X⊥⊥
1 = X1
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Definition 2.16 For x ∈ X, we call any s ∈ S for which x− s ∈ S⊥ the orthogonal projection of
x into S.

A graphical illustration of orthogonal projection is provided in Fig. 2.2. Here the vector x lives in
the whole space, X = R

3. The closed subspace of interest is S which in this case is spanned by the
vectors x1 and x2. The orthogonal projection of x into S is the vector x − s where s is part of the
orthogonal complement of S in X. In this simple picture Sperp is spanned by x3.

x3

x2

x1

x

     S

s

x-s

Figure 2.2: The orthogonal projection of a vector, x in R
3 into the x1−x2 plane is the vector x−s.

Armed with this collection of ideas all related to the notion of orthogonality, we come to a
central result in the theory of linear vector spaces which in turn shall be used extensively in the
study specifically of linear inverse problems.

Theorem 2.1 (The Projection Theorem [55, p. 51]) Let H be a Hilbert space and S a closed
subspace of H. For any x ∈ H there is a unique ŝ ∈ S such that ‖x − Ŝ‖ ≤ ‖x − s‖ for any s ∈ S.
That is ŝ is a solution to the following optimization problem

ŝ = arg min
s∈S

‖x − s‖.

Moreover, ŝ is the minimizer if and only if (x − ŝ) ⊥ S.

2.2 Functionals and Operators

In this section we deal with mathematical constructs that represent generalizations of real valued
functions. From an input-output perspective, a function may be thought of as a machine which
takes as input a real number and produces as output again a real number. This idea is somewhat
naturally extended in two ways. First, a functional takes as input a vector in some vector space,
but, like a function, produces a simple real number. Second, an operator takes an element of a
vector space and produces an element of a generally different vector space.

Both linear functionals and transformations have specialized forms commonly encountered in a
technical undergraduate curriculum. If we take as our vector space R

n and elements of this space as
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column vectors then one can obtain a real number from a vector through the use of a dot product.
In this case “multiplication by a row vector” is the linear functional. Alternatively, production of a
new vector y ∈ R

m (with m not necessarily equal to n) can be accomplished by left multiplication of
x ∈ R

n with a matrix A having m rows and n columns. In this case, a transformation is represented
by the matrix A and the action of taking x to y is achieved by matrix multiplication. Clearly for
finite dimensional spaces, linear functionals are special cases of transformations where m = 1.

To obtain a slightly more general, but still hopefully accessible, example of a transformation,
we can turn to the subject of linear time invariant systems in continuous time. It is well known
that the output of such systems is given as the convolution of the input with the system’s so-called
impulse response. If we restrict the input signals to be finite in energy and assume the system is
say causal and stable, the output signals will also be well behaved and we may view the system as a
mechanism that takes as input one class of signals (functions, vectors, ...) and produces as output
more signals (functions, vectors, ...). The transformation then is achieved via the convolution
integral.

In the following sections (and really throughout most of this book), it should be helpful to
fall back on the intuition gleaned from elementary linear algebra, signals and systems and related
classes to provide examples of ideas that at first glance may appear abstract.

2.2.1 Functionals and Dual Spaces

Definition 2.17 A functional is a mapping of x ∈ X to a real number. Here x is a normed linear
vector space.

Symbolically, the action of a functional f on a vector x is denote by f(x). Of particular interest to
us for much of this book are linear functions defined as the following

Definition 2.18 A linear functional is a functional satisfying f(αx + βy) = αf(x) + β f(y) for
x, y ∈ X and α, β ∈ R.

It turns out that linear functionals on a normed linear vector space X are themselves a vector
space if we agree on the following two conventions:

1. (f1 + f2)(x) = f1(x) + f2(x) for any two linear functionals f1 and f2 and x ∈ X.

2. (αf)(x) = αf(x) for α ∈ R, x ∈ X and f a linear functional on X.

Example 2.11 Let X be the Euclidean space R
n so that any x ∈ X can be written

x =


ξ1

ξ2
...

ξn

 .

A linear functional on X takes the form

f(x) =
n∑

i=1

ηiξi



CHAPTER 2. MATHEMATICAL PRELIMINARIES 15

and, depending on the situation, we write this operation as y∗x. That is, a linear functional on
R

n is represented as a row vector y = [η1 η2 . . . ηn] and we can interpret the symbols y∗x as the
common dot product between y and x.

Example 2.12 Consider now L2[0, 1], the Hilbert space of square integrable functions on the
interval [0, 1]. A linear functional in this case is the continuous analog to a dot product; that is
an integral against a weighting function. More formally, a linear functional on L2[0, 1] is f(x) =∫ 1
0 y(t)x(t)dt for y ∈ L2[0, 1].

Continuing with the case of R
n, we know that linear functionals here take the form of row

vectors again in R
n. In other words, in simple Euclidean spaces, one may build a vector space

out of the collection of linear functionals. This new space, called a dual is merely another copy of
R

n. It turns out that such a dual space can be constructed in more general circumstances than
Euclidean spaces, but in order to make sure that they are well defined, the linear functionals have
to be well behaved in the sense that the number they give as output cannot be infinity for any legal
input x ∈ X. This lead then to the following:

Definition 2.19 A bounded linear functional is a linear functional for which |f(x)| < M‖x‖ for
some M < ∞ and any x ∈ X.

The amount of “magnification” provided by a bounded linear functional is captured in its norm:

Definition 2.20 The norm of a bounded linear functional, ‖f‖, is defined in the following three
equivalent ways:

1. inf
{

M
∣∣∣|f(x)| < M‖x‖ for all x ∈ X

}
2. supx �=0

|f(x)|
‖x‖

3. sup‖x‖=1 |f(x)|
Now we can build a general version of a dual space.

Definition 2.21 Let X be a normed linear vector space. The normed dual of X is denoted X∗

and is defined to be the space of all bounded linear functionals on X.

Given an element of the dual space, x∗ ∈ X∗, the action of x∗ on some x ∈ X is represented as
x∗(x) or using angle brackets as 〈x, x∗〉. Some more examples should help further illustrate these
ideas

Example 2.13 As we already know, the normed dual of R
n is again R

n.

Example 2.14 Recall the definition of the sequence spaces lp on page 11. The dual of lp is lq
where q = p

1−p i.e., 1
p + 1

q = 1. All bounded linear functionals on lp take the form y∗(x) =
∑∞

i=1 ηixi

with x ∈ lp and y ∈ lq. Finally, the norm of y ∈ lq is

‖y‖ =

( ∞∑
i=1

|ηi|q
)1/q

.
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Example 2.15 Much as in the case of countable sequences, for the Lesbegue spaces, the dual of
the space Lp[0, 1] is Lq[0, 1] where again 1

p + 1
q = 1. Letting sums go to integrals gives:

y∗(x) =
∫ 1

0
x(t)y(t)dt

‖y‖ =
(∫ 1

0
|f(t)|qdt

)1/q

Example 2.16 If H is any Hilbert space and f a bounded linear functional on H then it turns
out there is a unique y ∈ H such that for any x ∈ H, f(x) = (x|y) and ‖f‖ = ‖y‖

2.2.2 Operators, Adjoints, and the Four Fundamental Subspaces

While a functional is a mapping of an element of a vector space into a real number, a transformation
(or operator) maps vectors in one space into vectors in another. That is, for some x an element
of a normed linear vector space, T (x) is an element y of another space Y . We write this in one of
a number of ways including T : X → Y to indicate that T takes X into Y or y = T (x). It is not
necessarily the case that T is defined for all x ∈ X nor is it necessarily the case that there exists
and x ∈ X such that y = T (x) for any y ∈ Y . This leads us to the following definitions:

Definition 2.22 The domain of T is that subset of X over which T is defined.

Definition 2.23 The range of T is the set of y ∈ Y such that there exists an x ∈ X for which
T (x) = y. Occasionally we use T (D) to indicate the range of the operator T where D ⊂ X is the
domain.

Closely associated with the notions of domain and range are surjectivity, injectivity, and bijectivity:

Definition 2.24 An operator T : X → Y is surjective (or onto) if for every y ∈ Y there is an
x ∈ X such that T (x) = y.

Definition 2.25 An operator T : X → Y is injective (or one-to-one) if T (x1) = T (x2) implies
x1 = x2.

Definition 2.26 An operator which is both surjective and injective is said to be bijective.

From a less formal perspective, a surjective transformation basically fills out all of Y as x varies
over the domain, D ⊂ X. It may well be the case that there is more than one x which maps into
any given y. In the event that each y in the range of T comes from only one x, then we have an
injective operator. If an operator is both injective and surjective it means that every y ∈ Y is
uniquely associated with one and only one x ∈ D.

In the case that the operator satisfies linearity (i.e., T (α1x1 + α2x2) = α1T (x1) + α2T (x2) for
xi ∈ D and αi ∈ C), then it turns out the range is more than just a set. It is in fact a subspace of
Y and is denotes as R(T ). Additionally for linear operators, there is a second subspace of intense
interest
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Definition 2.27 The nullspace of a linear operator T , N (T ), is defined as the set of all x ∈ D
for which T (x) = 0.

As we discuss below, linear operators behave in most respects very much like matrices. Hence
for this class of operators we adopt a more linear algebraic notation and replace T (x) by Tx,
reminiscent of the operation of matrix-vector multiplication.

In the same way that we define bounded linear functionals, bounded linear operators are those
for which ‖Tx‖ < M‖x‖ for some M < ∞ and the induced norm of such operators is

‖T‖ = sup
‖x‖=1

‖Tx‖.

The following are some examples of linear operators:

Example 2.17 Let X = R
n and Y = R

m. Then a linear operator is nothing more than an
m × n rectangular matrix, A, which maps n dimensional vectors into m dimensional vectors. In
cooordinates we have:

yi =
n∑

j=1

Ai,jxj i = 1, 2, . . . m (2.1)

with yi the i-th element of the vector y, xj the jth element of x and Ai,j the element of A on row
i and column j. If m > n then A has more rows than columns and hence possesses a non-empty
nullspace. In this case, given a y ∈ Y , in general there are many x’s for which y = Ax. Hence A is
not injective. If the rank of A is m however then it should not be hard to see that A is however
surjective. Now if m = n and the A has full rank, then this linear operator is bijective. In fact, it
is a well know fact from linear algebra that such matrices possess an inverse. Hence bijectivity is
basically the same as invertability.

Finally, to compute the norm of A, we here consider only the square case for which ‖Ax‖2
2 =

xT AT Ax. Hence from the definition of ‖A‖ we have

‖A‖ = max
‖x‖=1

xT AT Ax,

but this is just a definition (specifically from the Rayleigh quotient) of the maximal eigenvalue of
AT A.

Example 2.18 Let us define the space of interest as X = C[0, 1], the space of all continuous
functions on the interval [0, 1]. The one example (really the canonical example) of a linear operator,
A, on this space is (note the various notations)

y(s) = Ax = (Ax)(s) =
∫ 1

0
K(s, t)x(t)dt (2.2)

The norm of A is

‖A‖ = max
0≤s≤1

∫ 1

0
|K(s, t)|dt
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This example shows that linear operators in a “continuous” setting have essentially the same form
as those in a discrete, matrix-vector setup. Specifically comparing (2.1) and (2.2) shows that the
discrete sum is merely replaced by a continuous integral with the finite dimensional matrix A taking
the form of a function of two variables, K(s, t) (sometimes refered to as the kernel of the operator)
with s the “row” variable and t the “column.”

Example 2.19 A final class of linear operators which we shall encounter throughout this manuscript
is an orthogonal projector. Given an arbitrary element x ∈ X and a subspace F , the Projection
Theorem basically guarantees that there is a closest point f ∈ F to x ∈ X, but does not tell us
how to find f . If X is a Hilbert space, F is finite dimensional, and we know an orthogonal basis for
F , we can explicitly construct a linear operator that takes x to its closest point in F . Specifically,
suppose the set of N mutually orthogonal vectors φn, n = 1, 2, . . . N span F then the orthogonal
projector onto F is the linear operator P : X → F defined as

Pf =
N∑

i=1

(f |φi)φi (2.3)

In the case where X and F are finite dimensional, we can gather together the orthogonal vectors
spanning F into a matrix Φ whose i-th column is just φi. Then (2.3) takes the simpler form

Pf =
N∑

i=1

(φi|f)φi =
[
φ1 | φ2 | . . . | φN

]


φT
1 f

φT
2 f
...

φT
Nf



=
[
φ1 | φ2 | . . . | φN

]


φT
1

φT
2
...

φT
N

 f = ΦΦTf

and we can conclude that an explicit representation for P is the outer-product matrix ΦΦT .
In general, a projector P is any operator which satisfies P 2 = P and P = P ∗.4

Again thinking of the finite dimensional case, one of the most fundamental matrices related to
A is its transpose, AT obtained by “swapping” rows and columns, AT

i,j = Aj,i. The generalization
of transpose to infinite dimensional operators is provided by the adjoint.

Definition 2.28 Say X and Y are normed linear vector spaces and A a linear transformation from
X to Y . The adjoint of A, denoted as A∗, is a mapping from the dual space of Y to the dual space
of X, A∗ : Y ∗ → X∗ defined according to

〈x,A∗y∗〉 = 〈Ax, y∗〉 (2.4)

Moreover, it can be shown that ‖A∗‖ = ‖A‖.
4EXERCISES: Verify these for (2.3) and do the case of nonorthogonal projectors.
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This definition of the adjoint takes some getting used to and is best interpreted one piece at a time.
Let us start by fixing some element in the dual space of Y , y∗ ∈ Y ∗. In this case 〈Ax, y∗〉 is a scalar
function for x ∈ X. Hence, it must be a linear functional on X. In fact, it can be shown that this
linear functional is bounded. Hence, it must correspond to some x∗ ∈ X∗. That is when viewed as
a function of X, 〈Ax, y∗〉 is an element of the dual space of X. That is there is some x∗ ∈ X∗ for
which 〈Ax, y∗〉 = 〈x, x∗〉. We define this element to be A∗y∗.

In the case where X and Y are both Hilbert spaces, more can be said about the adjoint and
in general the discussion simplifies considerably. First, we can make use of the inner product
associated with these spaces to conclude that the adjoint satisfies (Ax|y) = (x|A∗y). Second, if
X and Y are Hilbert spaces, they are also self-dual so A∗ : Y → X. Third, the adjoint of the
adjoint is the original operator, A∗∗ = A. If A = A∗ then the operator is called self-adjoint.
Finally, if A is self adjoint and (x|Ax) ≥ 0 then the operator is called positive semi-definite. Thus
self-adjoint operators represent generalizations of symmetric matrices and positive semi-definite
operators generalize the idea of positive semi-definite matrices. Finally, given a linear operator
A, determination of its adjoint is a fairly straightforward exercise as we now show on a couple of
examples:

Example 2.20 In the finite dimensional case we have X = R
n. Y = R

n, and A an m× n matrix.
To find the adjoint of A we manipulate (Ax|y) to obtain an expression of the form (x| something y)
That “something” must, by the definition be the adjoint. Mathematically we have

(Ax|y) =
m∑

i=1

n∑
j=1

yiAi,jxj (2.5)

=
n∑

j=1

xj

[
m∑

i=1

Ai,jyi

]
(2.6)

= (x|A∗y). (2.7)

Hence the adjoint in this case involves summing over “rows” rather than “columns” and we may
identify A∗

i,j = Aj,i. Thus, in the finite dimensional case, A∗ is just the transpose of A.

Example 2.21 For a slightly more interesting example, let X = Y = L2[0, 1] and

Ax =
∫ t

0
K(t, s)x(s)ds (2.8)

Note the t in the limits of the integral. Following analogous steps to the matrix case we compute

(Ax|y) =
∫ 1

0
dt y(t)

[∫ t

0
ds K(t, s)x(s)

]
. (2.9)

Pictorially, the integration in (2.9) is shown in the left hand side of Fig. 2.3. To accomplish the
equivalent of summing over rows rather than columns as we did for the matrix case, we need to
change the order of integration to that shown in the left side of Fig. 2.3. That is:

(Ax|y) =
∫ 1

0
x(s)ds

[∫ 1

s
dt K(t, s)y(t)

]
(2.10)

= (x|A∗y). (2.11)
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Figure 2.3: Reversing the order of integration to find the adjoint of the operator in (2.8)

That is, by carefully reversing the order of integration, we can express the original inner product
with y as an inner product of x against something that looks like a linear opertator acting on y.
That operator must be the adjoint. Hence we conclude:

(A∗y)(s) =
∫ 1

s
K(t, s)y(t)dt

Provided with the notion of an adjoint and in the case where X and Y are Hilbert spaces, the
nullspace and range of an operator, A provide a very elegant decomposition of X and Y . As shown
in Fig. 2.4, the input space can be decomposed into two orthogonal subspaces, the nullspace and
the range of the adjoint of A. Similarly, Y admits an orthogonal decomposition into the range of
A and the nullspace of A∗ 5 Mathematicaly then we have the following relationships

R(A) = [N (A∗)]⊥ and R(A∗) = [N (A)]⊥

so that we can write
X = N (A) ⊕R(A∗) and Y = N (A∗) ⊕R(A)

In finite dimensions, it is not hard to show for example that the nullspace of A is orthogonal to
the range of A∗. Indeed, say that we have a vector xn ∈ N (A). This means that Axn = 0. Next
suppose that xr ∈ R(A∗). This means there is a vector y for which A∗y = AT y = xr. Now we have
xT

r xn = yAT xn = y
(
AT x

)
= 0 since xn is, by assumption, in the nullspace of A. Hence a vector in

N (A) is perpendicular to one in R(A∗).

2.2.3 Eigenanalyis and the Singular Value Decomposition

To generalize the ideas of eigenvectors and eigenvalues as discussed in an introductory treatment
of linear algebra, let us briefly review the case of the convolution integral which arises in the study

5Technically, the overbars in Fig. 2.4 indicate that one must consider the closure of the range of A and its adjoint
in defining these subspaces. Roughly speaking, the closure of a space is the space itself plus all limit points (which for
whatever reason are not included in the definition of the space) associated with convergent sequences in that space.
Intuitively, one can think of the closure as the interior of the space plus its “boundary.” This may be visualized in 2
dimensions as e.g., the internal points of a circle (it’s interior) plus the boundary of the circle (the limit points).
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Axr

Axn

Ax = A(xn+xr) 
= Axn

Figure 2.4: Four fundamental subspaces induced by an operator acting on two Hilbert spaces.

of linear systems theory. For a system that is both linear and time invariant, the output, y(t) due
to an input x(t) may be computed as

y(t) =
∫ ∞

−∞
h(t − s)x(s) ds (2.12)

where h(s) is known as the impulse response of the system; that is the output seen when the input
is a Dirac delta function, δ(t).

It is well known that an alternate way of obtaining y(t) is via the use of Fourier transform
analysis. Here we take the Fourier and inverse Fourier transforms to be defined according to

X(ω) = F(x) =
∫ ∞

−∞
x(t)eiωt dt = (x(t)|e−iωt) (2.13)

x(t) = F−1(X) =
1
2π

∫ ∞

−∞
X(ω)e−iωt dω = (X(ω)|eiωt). (2.14)

In other words, the Fourier transform of a signal x at the frequency ω is the inner product of
that signal with the function eiωt with an analogous interpretation holding for the inverse Fourier
transform.6 With these definitions, we have

y(t) =
1
2π

∫ ∞

−∞
H(ω)

(
x(t)|e−iωt

)
eiωtdω. (2.15)

That is, the convolution operator may be evaluated in three steps:

1. Compute the Fourier transform of x by taking the inner product of x with the set of “basis”
functions, eiωt. Unlike our previous discussion, these basis functions are indexed by a con-
tinuous variable ω, rather than i = 1, 2, . . . , but the basic idea is the same. The important
insight here is to think of the Fourier transform as a mathematical prism that analyzes x(t)
into its constituent sinusoidal components.

6To define an inner product, we do of course require an underlying vector space. For simplicity we take this
space to the L2[−∞,∞] and conveniently ignore all of the subtleties associated with issues like the convergence of the
integrals, the existence of δ functions and such. These important details may be found in more advanced mathematics
texts such as XXX.
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2. Weight each of the Fourier coefficients by a factor H(ω). In the signal processing literature,
this weighting function is known as a filter, a terminology we shall adopt in throughout this
text. The resulting weighted input is Y (ω) the Fourier transform of the output signal, y.

3. Reassemble (synthesize) the resulting output signal y(t) through the use of the inverse Fourier
transform

Thus, the Fourier transform is said to turn the fairly complicated linear operator convolution into
simple multiplication. In a sense, if one wants to compute a convolution, the “right” domain
in which to work is not t, but rather ω where the operation is trivially done on a frequency-
by-frequency basis. The reason this is true is that complex exponentials are the eigenfunctions
of convolution. Without being too precise at this point, an eigenfunction of an operator A is a
function that remains unchanged up to a complex scaling when passed through A. Mathematically,
for φ and eigenfunction of A, we have (Aφ)(t) = λφ(t) with λ ∈ C. In the case of convolution with
an impulse response h(t), the eigenfunctions are of the form eiωt and the corresponding λ are H(ω)
and clearly depend on ω.

In moving forward, it is useful to understand that this well-known example involving convolution
and the use of Fourier transforms embodies just about all of the components of the far more general
class of linear operators and the inverse problems associated with them:

1. We have a linear operator. In this case the kernel of the operator K(t, s) is a function only
of the difference of the arguments, t − s. In general this will not be the case.

2. We have a set of orthonormal eigenvectors (or eigenfunctions). For convolution they are the
complex exponentials and are functions of a continuous variable, ω. For most of the problem
we shall encounter, the eigenfunctions are indexed by the natural numbers, n = 1, 2, 3, . . . .

3. For each eigenvector, we have an associated eigenvalue. For the convolution problem, the
eigenvalues are generally complex numbers. For most of the remainder of this text, the
quantities playing the role of the eigenvalues will be real values and non-negative. In any
case, it is customary to call the collection of eigenvalues the spectrum of A whether or not
the eigenvectors come from a Fourier basis..

4. These eigenvectors represent the natural basis in which to examine A. Specifically by ex-
pressing x in the eigenbasis of A, the action of A is simple multiplication one eigenvalue at a
time.

5. Using the eigenstructure of A, evaluating Ax is a three step process: analysis-filtering-
synthesis. For the convolution problem, analysis and synthesis are done using the same
set of functions, the complex exponentials. As we move forward we shall see that two sets of
orthonormal functions are required: one for analysis and a different set of synthesis.

Given this example, we can now discuss the eigenstructure of a linear operator in a slightly
more formal manner [52, Section 15.3].

Definition 2.29 For A : X → X a bounded linear operator and X a normed space, the scalar λ
is said to be an eigenvalue of A and the function φ an eigenfunction if Aφ = λφ; that is if φ is in
the nullspace of A − λI with I the identity operator on X.
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By imposing additional structure on A significantly more can be said concerning its eigenvalues
and eigenfunctions. If A is self-adjoint and compact7 then the following can be shown to hold:

1. The eigenvalues of A are all real.

2. At least one eigenvalue is not equal to zero.

3. The nullspace of A − λI, N (A − λI), are finite dimensional.

4. For λi �= λj, N (A − λiI) ⊥ N (A − λjI).

5. Say we order the eigenvalues so that |λ1| ≥ |λ2| ≥ . . . and define the operator Pn : X →
N (A − λnI) to be the orthogonal projector onto the nullspace of A − λnI. Then we can
decompose A as

A =
∞∑

n=1

λnPn.

Thus, the action of A on a vector x can be expressed as

Af =
∞∑

n=1

λn

Nj∑
j=1

(f |φn,j)φn,j (2.16)

where {φn,j}Nj

j=1 are an orthonormal set of vectors spanning N (A − λnI) and we have made
use of the structure of an orthonormal projector defined on page 14.

6. If we take Q to be the orthonormal projector of onto N (A), then any x ∈ X can be written
as

x = Qx +
∞∑

n=1

Pnx =

[
Q +

∞∑
n=1

Pn

]
x.

That is we have a resolution of the identity in that we can write I = Q+
∑∞

n=1 Pn. Moreover,
we have deconposed the space X into a set of mutually orthogonal spaces [IS THIS TRUE
WITH Q?] and thus can write X = [

⊕∞
n=1 N (A − λnI)] ⊕N (A)

To gain an intutive understanding as to the import and utility of an eigendecomposition of an
operator, let us consider a specific, finite dimensional case given by the matrix

A =

 1.4698 −0.5223 −0.1634
−0.5223 1.4848 −0.1297
−0.1634 −0.1297 0.0453

 . (2.17)

By direct calculation we see that A has three eigenvalues, {2, 1, 0} and three orthonormal eigen-
vectors that can be arranged as columns in a matrix, Φ, which to four significant digits is

Φ = [φ1 | φ2 | φ3] =

−0.7036 −0.6926 0.1588
0.7105 −0.6894 0.1412
0.0117 0.2122 0.9772


7A compact operator is one for which all convergent sequences φn ∈ X generate continuous, convergent subse-

quences Aφn[CHECK THIS]
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Figure 2.5: Eigen-structure of A in (2.17). The red vectors are the standard basis in R
3. The blue

vectors are the orthonormal vectors φ1, φ2 and φ3 representing the eigenbasis for A.

Thus, we can write A = ΦΛΦT with Λ the diagonal matrix formed from the three eigenvalues. The
orthonormality of Φ implies that

Λ = ΦT AΦ (2.18)

That is the matrix of eigenvectors diagonalizes A. Because ΦT = Φ−1, the right hand side of (2.18)
is a similarity transformation of A; essentially a representation of A in a basis whose coordinate
vectors are given by the eigenvectors. To see why such a representation is, in a sense, the “natural”
one for A, consider the action of A on an arbitrary vector x:

Ax = ΦΛΦTx (2.19)

=
3∑

i=1

φiλi

(
φT

i x
)

(2.20)

where (2.20) is equivalent to (2.15) in the convolution case or (2.16) in the general case. Equation
(2.20) says that we can apply A to x using the same three steps we followed for the convolution-
Fourier example:

1. Analysis: Compute φT
i x = (φi|x) = χi. This operation can be interpreted in a number

of equivalent ways. Each inner product is basically the projection of x onto each of the
three natural axes used in representing A; i.e. the blue vectors in Fig. 2.5. Thus the scalar
φT

i x is the “amount” of φi in x. Alternatively, by the orthonormality of Φ, we have that
‖χ‖2

2 = xT ΦΦTx = xT x = ‖x‖2
2 . That is, multiplication of x by ΦT leaves the length of the

vector unchanged. A linear transformation possessing this property is basically a rotation.
In this case the vector χ is a rotation of x into the coordinate system whose axes are given
by the eigenvectors of A.
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2. Filtering: Compute the vector χ1 = Λχ. That is χ1,i = λiχi. In other words the action
of A on a vector already in the eigencoordinate system of A is simply scaling along each of
the coordinate axes. Hence in the Φ basis, multiplication by the matrix A is replaced by the
simpler operation of three scalar multiplications.

3. Synthesis: Compute Φχ1 which is just the rotation from the Φ coordinate system back to
the original.

Finding an eigendecomposition for an arbitrary linear operator is no small task and indeed
is the subject in its own right of many texts and much research. Here we demonstrate through
an example on technique that can be used: turning a linear integral equation into a differential
equation whose solution can be determined by standard methods. Toward this end, consider the
operator [52, Example 15.13]

(Af)(x) = g(x) =
∫ π

0
K(x, y)f(y) dy (2.21)

with

K(x, y) =

{
K1(x, y) = 1

π (π − x)y 0 ≤ y ≤ x ≤ π

K2(x, y) = 1
π (π − y)x 0 ≤ x ≤ y ≤ π

(2.22)

so that
g(x) =

∫ x

0
K1(x, y)f(y) dy +

∫ π

x
K2(x, y)f(y) dy. (2.23)

We claim that g satisfies the boundary value problem

d2

dx2
g(x) = −f(x) g(0) = g(π) = 0. (2.24)

This is shown by elementary calculus. Differentiating (2.23) once with respect to x and recalling
Laplace’s rule for differentiation of the limit of an integral yields

d

dx
g(x) =

∫ x

0

d

dx
K1(x, y)f(y) dy +

∫ π

x

d

dx
K2(x, y)f(y) dy + K1(x, x)f(x) − K2(x, x)f(x)

but K1(x, x) = K2(x, x) = 0. Next, since d
dxK1(x, y) = −y/π and d

dxK2(x, y) = 1 − y/π a bit of
algebra and one more derivative yield

d2

dx2
g(x) =

d

dx

[∫ x

0
− y

π
f(y) dy +

∫ π

x

(
1 − y

π

)
f(y) dy

]
= −x

π
f(x) −

(
1 − x

π

)
f(x) = −f(x)

The boundary condition follows by substitution of x = 0 and x = π directly into (2.23) and using
the definitions of K1 and K2.
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Now let us return to the eigenproblem Aφ = λφ with A defined in (2.21). Differentiating twice
and using (2.24) yields

d2

dx2
[Aφ] = −φ

= λ
d2

dx2
φ

with the boundary conditions φ(0) = φ(π) = 0. It is readily verified that a unit norm solution to this

boundary value problem is φn(x) =
√

2
π sin nx for n = 1, 2, . . . and 0 ≤ x ≤ π assuming λn = 1

n2

and hence these are the eigenfunctions and eigenvalues of (2.21). Moreover, these eigenfunctions
are mutually orthogonal, (φn|φm) = 0 for m �= n. Hence each of the Pn subspaces is spanned by a
single eigenfunction and we can write

(Af)(x) =
∞∑

n=1

1
n2

(f |φn)φn(x) (2.25)

=
2
π

∞∑
n=1

1
n2

sinnx

∫ π

0
f(y) sin ny dy =

∫ π

0
f(y)

[ ∞∑
n=1

2
n2π

sin nx sinny

]
dy (2.26)

and we conclude that the eigen-decomposition of K is

K(x, y) =
∞∑

n=1

2
n2π

sin nx sinny

To obtain an analysis-filtering-synthesis interpertation for the vast majority of operators that
are not self adjoint, we move from the notion of an eigenvector-eigenvalue decomposition to the
singular value decomposition (SVD). The SVD is like an eigendecomposition for the square of A.
With operators though there are two natural ways of obtaining a square, namely AA∗ and A∗A.
In general, these two are not the same (if they are, A is said to commute with A∗8), but they are
both self-adjoint and fit into the eigenanalysis framework we have just developed. Thus, it turns
out that there are two sets of singular vectors in an SVD, one for each way of squaring A and
remarkably, a single set of singular values. More formally we have the following [52, Section 15.4]

If K(x, y) is square integrable9 and we let (Af)(x) =
∫

K(x, y)f(y) dy then the operators
L = A∗A and L∗ = AA∗ are compact and positive semi-definite and A∗A and AA∗ have the same
set of eigenvalues, σ2

k. If we further take uk and vk as the solution to the eigenproblems

Luk = σ2
kuk (2.27)

L∗vk = σ2
kvk (2.28)

then

1. The set uk are an orthonormal basis for [N (A)]⊥; that is, the set of f ’s not put to zero by A.
8Must check if this is an “if and only if” for self-adjoint?
9Need to define square integrable kernels



CHAPTER 2. MATHEMATICAL PRELIMINARIES 27

2. The set vk are an orthonormal basis for [N (A∗)]⊥; that is, the closure of the range of A.

3. The action of A on a vector f can be written as

(Af)(x) =
∞∑

k=1

σk(f |uk)vk(x) (2.29)

and we define

Definition 2.30 The singular value decomposition (SVD) of an operator A with a square inte-
grable kernel K(x, y) is composed of

1. The set of orthonormal vectors uk called the right singular vectors satisfying (2.27)

2. The set of orthonormal vectors vk called the left singular vectors satisfying (2.28).

3. The non-negative square roots of the eigenvalues of L and L∗, σk, called the singular values
of A.

Generally the SVD is computed such that the singular values are ordered σ1 > σ2 > σ3 > ... > 0.
Equation (2.29) is just what we are looking for in terms of a convenient way of describing how

A works. First there is an analysis step using the basis formed from the uk. For this reason the
quantities (f |uk) are often called generalized Fourier coefficients. Next the singular values are used
to filter each generalized Fourier coefficient. Finally, the vk are used to synthesize the output.
The structure of (2.29) also makes clear the relationship of the singular vectors to the range and
nullspace of A. If for all k, f ⊥ uk, then clearly Af = 0. Hence the uk span the space of vector
orthogonal to the nullspace of A. Similarly, since every Af is composed of a linear combination of
the vk and the vk are orthonormal, they must span the range of A.

Following the path we have taken before, to gain a more intuitive understanding of the SVD
we examine in some detail its structure for finite dimensional operators, that is matrices. Thus, let
A be a matrix with m rows and n columns. In this case, the SVD of A is of the form

A = V ΣUT =
[
V1 | V2

] [ Σ1 0k,n−k

0m−k,k 0m−k,n−k

] [
UT

1

UT
2

]
(2.30)

with UT U = In, V T V = In, 0k,l the k × l matrix of zeros, In the n × n identity matrix and

Σ1 =


σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0
...

. . . . . . . . .
...

0 . . . 0 0 σk

 .

The matrices associated with U and V are sized as follows: U : n× n, U1 : n× k, U2 : n× n− k,
V : m × m, V1 : m × k, and V2 : m × m − k. Thus for f ∈ R

n and y ∈ R
m we have:

y = Af =
k∑

i=1

σi

(
uT

i f
)
vi (2.31)
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where ui is the i-th column of the matrix U and similarly for vi.
From this way of writing A, we obtain a very convenient way of characterizing the four funda-

mental subspaces. The nullspace of A is comprised of all those vectors for which Af = 0. If f is in
the linear span of the k vectors of U1, then, since the σi > 0, Af �= 0. Hence the nullspace of A is
spanned by the columns of U2. Because U is orthonormal, the columns of U1 must be a basis for
[N (A)]⊥. Similar statements can be made about V and the range space of A. [EXERCISE].

2.3 Exercises

2.1 Here we examine some interesting gradient calculations. To start, we define the following:

• The derivative of a scalar function y with respect to a vector x ∈ Rn is the column
vector, ∂y/∂x whose ith entry is ∂y/∂xi where xi is the ith element of the vector x.

• The derivative of a vector, y ∈ Rm with respect to a vector x ∈ Rn as the matrix, ∂y/∂x
whose entry on row i, column j is ∂yj/∂xi.

Given these definitions prove the following

(a) Chain rule: If z = y(x) ∈ Rr then ∂z/∂x = (∂y/∂x)(∂z/∂y).
(b) ∂

∂xAx = AT

(c) ∂
∂xxTAx = Ax + ATx. Specialize to the case where A is symmetric.

(d) Let the invertible matrix A be a function of a scalar variable, x. Show that ∂A−1/∂x =
−A−1 (∂A/∂x)A−1. Hint: chain rule A(x)A−1(x) = I.

(e) Letting Xr,c be the element of the matrix X on row r and column c show that ∂
(
AX−1B

)
/∂Xr,s =

−AX−1Er,cX−1B where Er,c is the matrix of all zeroes except for a 1 in row r and col-
umn c.

2.2 Here we want to look at the least squares problem in a Hilbert space. Say that {yi}n
i=1

generate a closed, finite dimensional subspace M of a Hilbert space H.10 For an arbitrary
x ∈ H we want to find that vector xm ∈ M which is closest to x in that ‖x−xm‖ is minimized.

1. Argue that the desire to minimize ‖x−xm‖ is equivalent to finding a collection of scalars
{an}n

i=1 which minimize      x −
n∑

i=1

aiyi

     (2.32)

2. Let a be the vector of the ai coefficients. Using the projection theorem, show that the
a must satisfy a matrix-vector problem of the form

Ga = b (2.33)

where G is symmetric and is termed the Gram matrix. What is the ijthe entry of G
and what are the elements of b?

10Recall that a subspace generated by a set of vectors is nothing more than all vectors which can be written as a
linear combination of the set in question. It is not necessarily the case that this set is a basis.
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3. Prove that G is invertible if and only if the vectors yi are independent.

2.3 Adjoints of operators appear throughout reconstruction and inverse theory. In this problem
we will study such adjoints operators. Recall, given a linear operator L : X �→ Y, the adjoint
L∗ is defined by the relationship:

〈y, Lx〉Y = 〈L∗y, x〉X (2.34)

for all x, y, where 〈·, ·〉X denotes the inner product in the space X and 〈y, Lx〉Y denotes the
inner product in the space Y.

(a) Suppose the linear operator is represented by a real integral equation of the first kind of
the form:

Lx(t) =
∫

K(t, τ)x(τ) dτ (2.35)

and we take the usual inner product between two real functions u(t), v(t):

〈u, v〉 =
∫

u(t) v(t) dt (2.36)

What is the corresponding adjoint operator in this case? An operator is termed “self-
adjoint” when it equals its adjoint. What property must the kernel satisfy for the linear
operator to be self-adjoint?

(b) Next consider the case of LTI filtering or convolution:

Lx(t) =
∫

h(t − τ)x(τ) dτ (2.37)

What is the adjoint operator to convolution? What condition does the impulse response
have to satisfy for corresponding convolution operation to be self-adjoint?

2.4 For integral equations where the observed quantity can be viewed as the output of an LTI sys-
tem one is often lead to consider discrete representations with a corresponding convolutional
structure. In this problem we investigate such discrete LTI inverse problems, i.e. problems of
the form:

y(i) =
L∑

j=1

h(i − j)x(j) = h ∗ x (2.38)

where the nonzero portion of h(i) is of length P and that of x(i) is of length L and ∗ denotes
linear convolution.

(a) If we let y be the vector of y(i) elements and x be the corresponding vector of x(i)
elements, what is the matrix C relating y and x through linear convolution y = Cx?
What special form does it have? Note that the Matlab function convmtx will generate
the linear convolution matrix C for a given h(i) and problem size.
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(b) Since (2.38) represents a convolution we know that Fourier techniques should be useful.
In particular, since the problem is discrete the appropriate tool is the discrete Fourier
transform (DFT), which may be efficiently found using the FFT algorithm. But recall
that the product of the DFT coefficients of two sequences actually corresponds to the
circular convolution of the two sequences. In general, what length N circular convolution
must be used to ensure that the circular convolution of h(i) and x(i) produce the same
results as the linear convolution of these sequences? How are the corresponding periodic
sequences h̃ and x̃ related to h and x? Write a Matlab routine cconv.m to perform
the N -point circular convolution of two sequences (Hint: Use the Matlab fft routine).

(c) Given a sequence h(i), what is the matrix C̃ that performs the N -point circular convolu-
tion of this sequence with a length N vector (assuming N > P )? What special form does
it have? How is it related to C? Using your routine cconv.m, write a Matlab function
cconvmtx.m to create C̃ for an arbitrary h and N (Hint: Consider the relationship
between circular convolution with the unit coordinate vectors and the columns of C̃).
Note that y = C̃x̃.

(d) The DFT pair of a discrete sequence x(n) of length N is most commonly defined as:

X(k) =
N−1∑
n=0

x(n)e−j2πkn/N k = 1, . . . , N

x(n) =
1
N

N−1∑
k=0

X(k)ej2πkn/N n = 1, . . . , N

As usual, let X denote the vector of coefficients X(k) and x denote the vector of the
points x(n). Then X and x are related by a matrix F through X = Fx, i.e. the matrix
F takes the DFT of a sequence. The Matlab function fft generates the N point DFT
X of x. Using this function, write another Matlab function dftmtx.m to generate the
matrix F for an arbitrary N (Hint: Use the same approach as in part (c) and relate the
DFT of the unit coordinate vectors to the columns of F ). Write F−1 (the inverse DFT
matrix) in terms of F itself (Hint: Note that two different columns of F are orthogonal).

(e) Let Y = Fy, H̃ = Fh̃ and X̃ = Fx̃ be vectors of DFT coefficients. Using the fact that
y = Cx = C̃x̃, where C̃ represents a circular convolution, together with the relationship
between the DFT and circular convolution, show that the matrix C̃ = FC̃FH/N is a
diagonal matrix, where FH denotes the complex conjugate transpose of F . It is a general
fact that circulant matrices are diagonalized by the DFT. In terms of operations on the
rows and columns of C̃ what does FC̃FH/N represent? Verify these relationships for
a numerical example, i.e. show that y = C̃x̃, Fy = (FC̃FH/N)Fx̃ = H̃. ∗ X̃, and that
FC̃FH/N is indeed diagonal.

(f) What is the relationship between the elements on the diagonal of C̃, the DFT of the first
column of C̃, and the DTFT of the original impulse response h? How are the diagonal
elements of C̃ related to the eigendecomposition and the singular values of the circular
convolutional matrix C̃. What must the eigenfunctions of C̃ be? How is the conditioning
of the periodic system related to C̃? What is the physical interpretation of this result?
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2.5 A large number of inverse problems require the solution to a linear least squares problem of
the form:

f̂ = arg min
f

‖y − Kf‖2
2 +

NL∑
i=1

λ2
i ‖Lif‖2

2 (2.39)

where K is a generally non-square matrix of size M × N , y and f are appropriately sized
vectors, λi are scalars, and Li are a Pi × N matrices.

1. Show that the solution to (2.39) is equivalent to solving

f̂ = arg min
f

‖y1 − K1f‖2
2 (2.40)

for some vector y1 and matrix K1.

2. Show that f̂ is in fact the solution to a linear system of equations defined explicitly by y,
K, Li, and λi. Find that system and comment on the conditions for that linear system
to have a unique solution.

2.6 Let v1, . . . , vk be a basis for a finite-dimensional space, V. It follows from the definition of a
basis that any vector v ∈ V can be written in the form:

∑k
i=1 αivi for some set of αi. Show

that the choice of αi in this representation is unique.

2.7 (a) Let M be a closed subspace of a Hilbert space H. The operator P (called the projection
operator onto M) defined by Px = xm where x = xm + xn is the unique representation
of x ∈ H with xm ∈ M and xn ∈ M⊥. Show that the projection operator is linear and
has norm equal to 1.

(b) Show that a bounded linear operator on a Hilbert space H is a projection operator if
and only if P 2 = P (indempotent) and P ∗ = P (self-adjoint).

(c) Two projection operators P1 and P2 on a Hilbert space are said to be orthogonal if
P1P2 = 0. Show that two projection operators are orthogonal if and only if their ranges
are orthogonal

2.8 Let M and N be orthogonal closed subspaces of a Hilbert space H and let x be an arbitrary
vector in H. Show that the subspace M ⊕ N is closed and that the orthogonal projection of
x onto M ⊕ N is equal to xm + xn where xm is the orthogonal projection of x onto M and
xn is the orthogonal projection of x onto N .



Chapter 3

A Collection of Forward and Inverse
Problems

This chapter is concerned with the development of the classes of forward models and associated
inverse problems that will drive most all of the inverse methods we describe subsequently. As dis-
cussed in Chapter 1, four classes of problems are of interest: deconvolution, X-ray tomography, and
inverse source and inverse scattering problems encountered when dealing with a scalar Helmholtz
type of equation. For deconvolution and inverse scattering, the physics of the problem can be
captured equally well using the tools of differential equations (ordinary as well as partial) or inte-
gral equations. Both formulations are presented here. Linear inverse problems are most naturally
suited to an integral formulation. In the nonlinear case, there are advantages and drawbacks to
either method as we discuss later. Unlike deconvolution and inverse scattering, tomography and
the inverse source problems both are most easily modeled using integral equations.

3.1 Deconvolution

Convolution is perhaps the first nontrivial linear integral operator encountered at the undergraduate
level in the study of ordinary differential equations or linear systems theory. It arises when one
wishes to determine the solution to a linear constant coefficient differential or equation with zero
initial conditions. While multi-dimensional forms of deconvolution are certainly of interest in a
wide range of applications, here we restrict ourselves to the 1D, “temporal” case. Instances of the
inverse source problem will be used to illustrate three dimensional deconvolution problems later
in this chapter. The image processing literature provides copious examples of image restoration
problems which basically are two dimensional deconvolution problems.

As indicated in the last paragraph, the modeling structure giving rise to a convolution is an
N -th order ordinary constant coefficient differential equation:[

1 +
N∑

n=1

an
dn

dtn

]
g(t) =

[
M∑

n=0

bn
dn

dtn

]
f(t) (3.1)

with initial conditions that g and its first N−1 derivatives are all zero. Taking the Fourier transform

32
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of both sides of (3.1) and rearranging gives G(ω) = H(ω)F (ω). As discussed in § 2.2.3, this implies

g(t) =
∫

h(t − s)f(s) ds (3.2)

where h(t) is the inverse Fourier transform of the frequency response of the system

H(ω) =
∑M

n=0 bn(iω)n

1 +
∑N

n=1 an(iω)n
(3.3)

Taking the input to the system to be a Dirac delta function, f(t) = δ(t), we see from (3.2) that
g(t) = h(t). Thus the function h(t) is also said to be the impulse response of the system. The
linearity of (3.1) and the fact that the a and b coefficients are independent of time can be used to
show that the impulse response is all we need to completely characterize the behavior of such a
system with zero initial conditions.

Another way of interpreting the impulse response that will be of use later is as a “Green’s
function.” To make the link clearest, consider the special case where M = 0 and b0 = 1. In this
case the problem of computing g from f may be written using operator theoretic notation as:

(Dg)(t) = f(t) D =
N∑

n=0

an
dn

dtn
(3.4)

plus the initial conditions. But we know that the solution to this problems is given by

g(t) = (Af)(t) =
∫

h(t − s)f(s) ds (3.5)

where h is the inverse Fourier transform of H(ω) =
[
1 +

∑N
n=1 an(iω)n

]−1
. Thus, symbolically at

least we conclude that
(ADg)(t) = g(t) = (Af)(t) (3.6)

so that A is a left inverse of D. That is, the inverse of the differential operator D (plus initial
conditions) is the integral operator A. The kernel of this operator is called the Green’s function
for the problem. More specifically, the Green’s function is defined to be the response of the system
at time t to an impulse source at time s; that is as solution to (Dh)(t, s) = δ(t − s). By the time
invariance of the problem though h(t, s) = h(t − s).

To conclude, the discussion in this section has been concerned with convolution, the calculation
of the output of a linear time invariant system to an arbitrary input. The deconvolution problem is
basically the inverse of this: the recovery of the input, f(t) given knowledge of g(t) and h(t) for all
time. To zeroth order, the solution is quite straightforward. If we pass g through a system whose
impulse response is the inverse Fourier transform of H−1(ω), simple Fourier analysis shows that we
should recover f . While this may be true in theory as we shall see in § 5.2, difficulties arise both
in the event that ‖H(ω)‖ = 0 for any ω, and more subtly, when ‖H(ω)‖ is “small” compared say
to the amplitude of noise in the system at frequency ω.
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3.2 X-ray Tomography

X-ray tomography represents perhaps the most basic inverse problem where we must determine the
internal structure of a medium based on data obtained externally. The application of this method
is perhaps best known in the context of medical imaging and various forms of nondestructive test
and evaluation where it forms the basis for Computer Axial Tomography (CAT). The mathemat-
ical model for X-ray tomography that we develop here though is descriptive of a far broader class
of sensing modalities than just CAT. Indeed, the analytics underlying the other medical imaging
mainstay, Magnetic Resonance Imaging (MRI) are, for entirely different reasons, identical to those
of CAT as is also the case for many newer imaging modalities such as Positron Emission Tomogra-
phy (PET) and Single Photon Emission Computed Tomography (SPECT). Finally, under certain
simplifying assumptions, the use of synthetic aperture techniques in radar signal processing also
admit an X-ray tomographic-type of model.

To a very good approximation, X-rays travel through any reasonable medium in a straight line.
To measure the rays after they pass through the region of interest then, we place a detector directly
on across from a source of X-rays as shown in Fig. 3.1. While they do not scatter from their path,
the effect of the material is to attenuate the intensity of the X-rays. The fractional attenuation in
the beam as it passed though an infinitesimal length of the path ds is proportional to the length
along the path multiplied by the density of the material, f(x, y). Mathematically this relationship
takes the form

∆I

I
= −f(x, y)ds. (3.7)

Assuming an intensity IS at the source, (3.7) can be integrated to give the intensity at the detector,
ID as

ID = IS exp
{∫

ray
f(x, y) ds

}
⇒ ln

IS

ID
=
∫

ray
f(x, y) ds. (3.8)

Thus, X-ray tomography refers to the problem of recovering f(x, y) from the integral of this quantity
along lines.

Clearly, many such ray integrals will be required to have any hope of determining f(x, y).
Depending on the application and the instrumentation, a number of options exist for collecting
tomographic information including parellel beam, fan-beam, helical beam and cone beam [47]. The
simplest case to analyze is the parallel beam case which is shown in Fig. 3.1. Here a line of detectors
is arranged across from a line of sources. The configuration is rotated around the object. Hence
the data are collected as a function of θ, the angle made by the sources and detectors with the x
axis, and t, the length along the detector array.

To arrive at a final model requires the analytical specification of the lines over which the
integration takes place as functions of t and θ. As shown in Fig. 3.2, let p = [x y]T be a point in 2D
and uθ = [cos θ sin θ]T be a unit vector in the direction θ. Geometrically the quantity uT

θ p is the
projection of p in the direction θ. Now, a point is on the t− θ ray if this projection is in fact equal
to t. That is, the line of integration is the locus of points in the plane for which t = x cos θ + y sin θ
which we write formally as δ(t − x cos θ − y sin θ). The final X-ray tomographic model is

g(t, θ) =
∫ ∞

−∞
f(x, y)δ(t − x cos θ − y sin θ) dx dy. (3.9)
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y

x
t

g(t,θ)

θ
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Sources located along this line

Receivers located 
along this line

Figure 3.1: Parallel beam X-ray tomography

This mapping from f(x, y) to g(t, θ) is known as the Radon transform of f . The transform itself as
well as a wide range of generalizations has received considerable attention in the pure and applied
mathematics, physics, and engineering communities. The interested reader is referred to [47,69] for
additional information. In this text, we are only concerned with the most basic form of the Radon
transform as given in (3.9).

3.3 Inverse Source and Inverse Scattering Problems

3.3.1 The Helmholtz Model

A key physical characteristic of the X-ray tomography problem is the assumption that the rays
of energy propagate in straight lines through the medium only undergoing attenuation. In many
application areas, it is necessary to account for a wider range of mechanisms by which energy can
interact with the host medium. Most notable among these complicating factors is the process of
scattering which essentially causes the rays to deviate from straight lines. To account for scattering
effects, forward models more complex than the Radon transform are required. Here there are many
options of vastly varying complexities depending on the sensor and its intended use. For problems
involving electromagnetic sensing technologies (DC fields, eddy currents, radar, and even optical),
the exact model is provided by the Maxwell’s equations and requires detailed description of the
space-time variations of three electrical and three magnetic field components. Similarly, the use
of mechanical vibrations (e.g. acoutics) to excite a medium yields an exceptionally complex model
governed by the laws of elasticity. Both the Maxwell’s equations and elasticity in their most general
forms are far to complex to be of any practical use in an introductory study of inverse problems.
Indeed in both cases, many issues of forward modeling are current active areas of research.
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Figure 3.2: The geometry of parallel beam tomography

Luckily however, under certain reasonable simplifying assumptions, many inverse problems
for electromagnetic, acoustic as well as other sensors can be reasonably modeling using a scalar
Helmholtz-type of equation or its zero frequency limit, Poisson’s equation. In addition to the
applicability of this model, it also represents a useful first step in moving beyond the Radon
transform for two reasons. First, the Helmholtz model provides a reasonably tractable example of
the inherently nonlinear nature of inverse problems whose phenomenology is governed by processes
more complex than attenuation. Second, powerful methods of linearizing these inverse problems
are easily illustrated within the context of the Helmholtz equation.

The scalar Helmholtz equation of interest here is a partial differential equation governing the
spatial distribution of a field, φ(r). In all cases of practical interest, this model is obtained as
a result of the use of a time harmonic excitation, eiωt, for a physical problem whose temporal
behavior is governed by a wave equation. Thus, φ (as well as other quantities in the model) are
also functions of the temporal frequency ω; although for notational simplicity, this dependence is
not usually made explicit. Two classes of problems are of interest: those for which the domain is
closed and those for which it is open. Closed problems involve fields in some finite region of space,
Ω, which is bounded by a collection of boundaries, ∂Ω. Open problems have no such boundaries
but rather require that the field be computed over all points in space. In both cases, the basic
governing equation is the same. Analogous to the requirement of specifying initial conditions for
(3.1), for closed problems we must specify a set of boundary conditions the field or its gradient must
satisfy on ∂Ω. For open problems it turns out that the asymptotic requirements on the behavior
of the field as |r| → ∞ serve the same purpose as boundary conditions.

The most general governing equation we shall use here is:

∇ · D(r)∇φ(r) + k2(r)φ(r) = f(r) r ∈ Ω (3.10)
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where ∇ is the gradient operator, f is any source located in the medium, D(r) plays the role of
a possibly space-varying real-valued diffusion constant and k2(r) represents the “wave-vector.” To
accommodate lossy media k2 will in general be complex. Three classes of boundary conditions are
typically considered:

Dirichlet φ(r) = bD(r) r ∈ ∂Ω (3.11)

Neumann
∂φ(r)
∂n

= bN (r) r ∈ ∂Ω (3.12)

Robin (or mixed) αφ(r) +
∂φ(r)
∂n

= bR(r) r ∈ ∂Ω (3.13)

where and ∂φ/∂n ≡ n̂·∇φ(r) is the projection of the gradient with n̂ the outward unit normal of the
region. For open problems in three dimensions, the field φ(r) is required to satisfy the Sommerfeld
radiation boundary conditions [30, page 87]

rφ(r) bounded and r

[
∂φ(r)

∂r
− ikφ(r)

]
→ 0 as r → ∞ (3.14)

where r = |r|.
It is useful to think of (3.10) plus the boundary condition as a space domain equivalent to (3.1).

Given an input function f and the relevant initial or boundary values, the left hand sides of both
(3.1) and (3.10) represent the differential equations that the output must satisfy. Moreover, the
ability to solve for g(t) in (3.1) though the use of convolution with an impulse response, has a direct
analog in the case of (3.10) where the kernel of the integral is commonly referred to as a Green’s
function. Unlike the time domain problem where the role of the initial conditions (always zero)
is somewhat innocuous, the impact of the boundary conditions along with the specific structure
of D and k2 are quite central to finding a Green’s function. This makes the analytical as well as
numerical determination of the Green’s function a difficult problem in general and one for which a
detailed treatment is not really required here.

To demonstrate the applicability of this model, in Table 3.1, we summarize the particular
structure it assumes for a variety of application areas. The information in this table is by no means
exhaustive. For example, the acoustics entry implicitly assumes a loss-free medium. In the case
of electromagnetics, we have not taken into consideration vector effects or the possibility that the
magnetic permeability might be space varying. Such generalizations are certainly possible, but will
change the precise mathematical form of the quantities D and k2. Additional details can be found
in the references. The physical quantities represented in the Table 3.1 for each application are as
follows:

3.3.2 Green’s Functions

In the context of inverse problems, it is typically the case that Green’s functions are derived for
problems with significant symmetry. The quantity D is generally constant and k2 is a function of
at most one spatial variable, say z in Cartesian coordinates or radius, r, in cylindrical or spherical
coordinates, thereby resulting in a layered medium. In these cases, the Green’s function is usually
obtained for open domain problems. Certainly the most straightforward Green’s function to derive
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Application φ D k2 Reference

Acoustics Pressure 1/ρ(r) ω2/c(r)2 [18, § 1.2]

Scalar
Electromagnetics

Electric field 1 ω2µ0

(
ε(r) + iσ(r)

ω

)
[50, § 1.5]

Electrostatics Electric Potential σ(r) 0 [14]

Photothermal NDE Thermal Wavefield κ(r) iωρ(r)c(r) [64]

Diffuse Optical To-
mography

Diffuse photon density
wavefield

1/3µ′
s(r) µa(r) − iω

c [1]

Acoustics
ρ = density

c = speed of sound

Scalar Electromagnetics
µ0 = magnetic permeability of free space

ε = electrical permittivity

σ = electrical conductivity

Electrostatics σ = electrical conductivity

Photothermal NDE
κ = thermal conductivity

ρ = density

c = specific heat

Diffuse optical tomography
µ′

s = reduced optical scattering coefficient

µa = optical absorption coefficient

c = speed of light

Table 3.1: Form of Helmholtz equation for specific applications. In all cases ω represents angular
frequency of the assume time-harmonic excitation.
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and the one use predominately in practice is for the case where both D and k2 are constant. For
simplicity, let us assume that D = 1. In this case, the Green’s function is defined as the solution to
the Helmholtz equation satisfying the Sommerfeld condition for a point source located at r = r′:

∇2g(r, r′) + k2g(r, r′) = −δ(r − r′) (3.15)

where the minus sign on the source is a convention followed in e.g. the electromagnetics community
and the dependence of g on the source location as well as r is always made explicit.

To solve for g(r, r′) in 3D and for this problem specifically it is useful to take advantage of two
important facts. First, there is no loss in generality in assuming that r′ = 0. Intuitively, because k2

does not depend on space the solution will only depend on the location of r relative to r′, i.e. r−r′.
Hence we may as well take r′ = 0, derive the solution as a function of r and then replace r ← r−r′.
Second, because the source δ(r) is isotropic (the same no matter which direction we look), g(r) will
also be isotropic. That is, when viewed in spherical coordinates, it will depend only on the radial
variable, r = |r|, and not the two angular ones. Using these facts and writing the radial part of the
Laplacian in spherical coordinates implies that g must be the solution to

1
r

∂2

∂r2
[rg(r)] + k2g(r) = δ(r). (3.16)

For r �= 0 we can multiply (3.16) through by r and conclude that the function rg(r) must satisfy

d2

dr2
[rg(r)] + k2 [rg(r)] = 0 ⇒ rg(r) = Ceikr ⇒ g(r) = C

eikr

r
.

To find the constant C, we integrate the Helmholtz equation over a sphere of radius ε around the
origin and take the limit ε → 0:∫

r<ε

[∇2g(r) + k2g(r)
]
dr = −

∫
δ(r)dr.

Now, the right hand side is minus one times the integral of a delta function over all space, or just
−1. To find C we note first that

k2

∫
g(r)dr = 4πk2

∫ ε

0
r2g(r)dr (3.17)

which goes to 0 as ε → 0. Next, by Gauss’ theorem,∫
dr∇2g =

∮
dSr̂ · ∇g = 4πr2 dg

dr


r=ε

(3.18)

where the middle integral is over the surface of the sphere. Substituting (3.16) for g and simplifying
yields −4πC = −1 ⇒ C = 1

4π . Hence in terms of the case where r′ �= 0 we the constant medium
Green’s function is

g(r, r′) =
1
4π

eik|r−r′|

|r − r′| . (3.19)
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Moreover because (3.10) is a linear differential equation, by superposition, we know that the field
for an arbitrary source f(r) is

φ(r) = (Gf)(r) =
∫

g(r, r′)f(r′)r′ =
∫

g(r − r′)f(r′)dr′. (3.20)

That is, a three dimensional convolution. In other words just as the time invariance of the co-
efficients in (3.1) led to a convolution, the independence of D and k2 on space here lead to a
convolution-type of input-output relationship.

To make this point clearer and also provide some insight as to how Green’s functions can be
computed for more general problems, consider the geometry for which the fields are required for
all r = (x, y, z) only where z > 0 and at z = 0 we require the field to be zero. This structure is one
example of a halfspace geometry where symmetry remains in the variables x and y, but is broken
for z. In electromagnetic applications the zero boundary condition on the field (an example of a
Dirichlet condition, (3.11)) may be thought of as having a perfectly electrically conducting lower
halfspace. For acoustics, the requirement of zero field corresponds to a sound-soft lower halfspace.
The use of Neumann or Robin conditions also lead to tractable results for the Green’s function and
are considered in the problems.1 Finally there are a number of methods for calculating Green’s
functions where the fields are required in both the top and the bottom halfspaces; however such
techniques go well beyond the scope of the material of interest here.

To obtain the Green’s function for the Dirichlet condition at the interface we use the method
of images. Recall that the Green’s function is desired for all r and r′ in the upper halfspace, z > 0.
To qualify as a Green’s function for this problem all we need a function that satisfies the Helmholtz
equation for z > 0 and is equal to zero at z = 0. Consider the function gdhs (for Dirichlet half
space)

gdhs(r, r′) = g(x, y, z, x′, y′, z′) − g(x, y, z, x′, y′,−z′). (3.21)

This function corresponds to placing two sources into a homogeneous medium; one at x′, y′, z′ and
a mirror source at x′, y′,−z′. By linearity, gdhs satisfies the Helmholtz equation. By inspection, it
is equal to zero at z = 0. Thus it must be the Green’s function for the problem. 2

It should be noted that this halfspace problem is still symmetric in x and y because the only
variation in the medium are in the z direction. Hence it is easily verified that gdhs is a function
only of x−x′ and y− y′. That is, the homogeneity of the problem in these two dimensions yields a
Green’s function with a convolutional form in these two variable. For z, the first term in gdhs is of
the form z − z′, but the second term is a function of z + z′ and hence possesses a structure slightly
more general than just a convolution in z.

3.3.3 The Inverse Problems

Associated with the Helmholtz equation (as well as its cousins in acoustics, electromagnetics, trans-
port and so forth) are two broad classes of inverse problems: inverse source and inverse scattering.
For the inverse source problem we passively acquire field data at the boundary of a region of space
and attempt to recover internal structure of a source of field located within the medium. Many

1EXERCISE: Neumann halfspace Green’s function
2EXERCISE: Green for reflecting boundary
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astronomy imaging problems have this flavor; for example recovering the structure of a point source
such as a star based on data acquired after the fields have passed though the Earth’s turbid at-
mosphere. Similarly, passive sonar problems associated with in ocean acoustic propagation can be
cast in this framework. 3

In contrast to inverse source problems, for inverse scattering problems, we are able to actively
excite the medium with the hope of developing an estimate of the space (and perhaps time) varying
properties of the medium. The use of seismic sources and hydrophone detectors to image the
Earth’s sound speed as a function of space is but one example of an inverse scattering problem
encountered in geophysical exploration [8]. Inverse scattering problems are encountered in fields
such as nondestructive evaluation where low frequency electromagnetic waves are used to excite
eddy currents in a material sample from which we seek a map of the electrical conductivity [11].
In medical imaging, near infrared radiation is employed to excite diffuse photon density waves in
tissue so that we can image the spatial structure of the tissue’s optical absorption and scattering
parameters [74]. From this information, tissue oxygenation can then be inferred in order to localize
cancerous tumors or detect brain activity.

Mathematically, the inverse source and inverse scattering problems are quite distinct. Referring
to (3.10)), the inverse source problem basically requires the determination of f(r) from observations
of φ assuming the medium parameters, D and k2 are known. Conversely, the inverse scattering
problem allows us to manipulate the sources with the objective of recovering the unknowns D
and/or k2. As we now discuss, the inverse source problem is linear while the inverse scattering
problem is nonlinear in the relationship between the data and the desired quantities.

The linearity of the inverse source problem for f(r) follow directly from equation (3.20. While
the right hand side of this equation with its convolution form is true only for the problem where the
medium is spatially homogeneous, the middle part of the equation is true for any Green’s function.
That is the fields observed are the integral of the sources against the Green’s function. For example,
gdhs (3.21) could be used in place of g(r, r′) if we were dealing with a halfspace problem with a
zero Dirichlet condition at z = 0. When the medium is homogeneous, (3.20) is a multidimensional
deconvolution problem whose structure is quite similar to that of (3.2). From this mathematical
similarity however one should not conclude that the difficulty of these problems is comparable.
For (3.2), one generally has access to the time series g(t) for all time. On the other hand, for
most inverse source problems, we are provided data on a restricted subset of the boundary of the
medium. Almost never (except in the case of image restoration) do we have a “full data” situation.

Heuristically at least we can count dimensions to see the difference in these problems. For
the temporal problem we have full time domain data in the form of g(t) (one data dimension)
to determine the structure of a temporal signal, f(t) (one object dimension). The parity here
implies very roughly that there is at least some hope that the deconvolution problem solvable. For
the inverse source problem in the best case the observed data is collected on a full surface (two
dimensions) while we seek the spatial structure of f in three space dimensions. Thus, there is one
more degree of freedom in the object space than is provided by the input. Thus intuitively, one
would expect that in general, for the inverse source problem, the data will not provide sufficient
information to determine the entire structure of the source function. In general, this is true. More
technically, in the inverse source literature, one find frequent study of reference made to so-called

3More examples would be nice
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invisible sources or non-radiating sources. These are non-zero functions f(r) which give rise to zero
fields on the boundary of the medium. That is, a non-radiating source is a function that lives in
the nullspace of the operator (Gf)(r). That this operator typically has a nullspace in turn is a
consequence of the dimensional deficit in the data space. Finally, while temporal problems may
well have nullspace issues, the availability of full data allow for the use of straightforward Fourier
analysis methods from which the nullspace of the operator is readily understood in terms of the
spectrum of the impulse response of the system. Indeed, the zeros H(ω) define the nullspace.

As discussed previously, the goal of the inverse scattering problem is to determine the spatial
(and perhaps temporal) structure of D(r) and k2(r) given boundary field data collected in response
to a number of applied sources. To bring out the most salient issues associated with this problem,
here we restrict discussion to a special (although still widely applicable) problem: estimation of
k2 assuming it is static as a function of time. Development of an analytical model begins with
the decomposition of k2(r) into two components a background part, k2

b (r) and a perturbation (or
scatter component) k2

s(r):
k2(r) = k2

b (r) + k2
s(r). (3.22)

The background component is intended to represent the nominal structure of k2 which is assumed
known a priori to the inverse process. Thus the inverse problem amounts to finding the perturbation
from the background, k2

s(r). In practice, k2
b (r) is chosen such that the Green’s function associated

with the background-only problem is easily computable. For example, taking k2
b to be constant

yields a homogeneous medium for which the Green’s function is given by (3.19). To see why this
is useful, we rewrite the Helmholtz equation as[∇2 + k2

b (r)
]
φ(r) = f(r) − k2

s(r)φ(r) (3.23)

plus the associated boundary conditions.
Say we know the Green’s function g(r, r′) for the background problem i.e. the problem where

ks(r) = 0. In this case we can integrate both side of (3.23) against the Green’s function to obtain

φ(r) =
∫

g(r, r′)f(r′)dr′ −
∫

g(r, r′)k2
s(r

′)φ(r′)dr′. (3.24)

We make the observation that the first term on the right hand side of (3.24) is just the field that
is generated when k2

s = 0. By definition though, this must be the background field (also known as
the incident field) which we label φb(r). The second term on the right hand side of (3.24) is the
scattered field that arises because of the presence of the perturbation (or scatterer) in the medium.
This field we denote by φs(r). Note that in the scattered field integral k2

s(r)φs(r) plays the same
role as f(r) in the background field calculation. Thus we interpret k2

s(r)φ(r) as a secondary source
which exists in the medium.

The physical intuition behind the mathematics is that field in the medium, φ(r) on the left
hand side of (3.24) is due to two components: a background due to the applied source f(r) and
a scattered term due to the perturbation in the medium. The strength of this secondary source
(how “bright” it is) is proportional to the amount of field over the source and the contrast of the
perturbation. Clearly though, we have a problem here since φ(r) exists on the right and left sides
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of (3.24). That is, φ is defined implicitly by this model. To determine the field explicitly, we move
the scattered field component to the left hand side of (3.24) which we now write as[

I + Gk2
s

]
φ(r) = φb(r) (3.25)

where
Gk2

s
(φ)(r) =

∫
g(r, r′)k2

s(r
′)φ(r′)dr′ (3.26)

Eq. (3.25) is known as the Lippman-Schwinger integral equation. Thus we see that the total field
φ is formally given by applying the inverse of I − Gk2

s
to both side of (3.25)

φ(r) =
[
I + Gk2

s

]−1 (φb)(r). (3.27)

To complete the derivation of the inverse scattering problem for k2
s(r) we substitute (3.27) into

(3.24) and rearrange to get

φ(r) − φb(r) = φs(r) =
∫

g(r, r′)k2
s(r

′)
{[

I + Gk2
s

]−1 (φb)
}

(r′)dr′. (3.28)

Thus, assuming that the incident field is known perfectly, we can subtract it from the total field to
arrive at the “data” for this problem, observations of scattered field. These observations are related
to the desired unknown k2

s(r) trough the scattered field integral on the right side of (3.28). It is
important to note however that this relationship is quite nonlinear. While the explicit presence of
k2

s in the integral is linear, the operator I + Gk2
s

also depends on k2
s . Hence so too will its inverse

thereby resulting in an overall model that is nonlinear in k2
s .

This type of dependence significantly complicates the inverse problem. For linear problem
such as deconvolution, X-ray tomography, and the inverse sorce problem, the full power of the
vector space ideas can be brought to bear both on the analysis of and solution to the problem.
Moreover, as discussed in the next chapter, these tools also yield a rich variety of explicit analytical
inversion formulae for recovering the unknown given the data. When the problem is not linear, the
mathematical tools required to obtain both useful and deep insight as well as fast inversion methods
are less developed. Those that do exist (such as the ∂̄ method of [82] are based on mathematical
principles whose level of sophistication and abstraction is well beyond that of linear vector spaces.

Much more common for the nonlinear problems however is the use of the physical model in the
context of an optimization problem. The estimated k2

s is that function which extremizes (maximizes
or minimizes depending on the context) a cost function which includes a term requiring fidelity
to the data. Thus the tools of mathematical optimization and numerical analysis (for solving the
forward problem) play a key role in the development of these methods. Chapter 6 will provide
details on this topic.

Perhaps the most common approach to dealing with inverse scattering problems is linearization.
If k2

s(r) is small in amplitude relative to the background and nonzero over a region of space small
relative to the wavelength of the fields probing the medium, then the first Born approximation is
known to be valid. Physically, this form of interaction of fields with perturbations is known as
diffraction and the problem of recovering k2

s from such data is termed diffraction tomography.
While there are many ways of deriving the Born approximation [18,47], the opertator theoretic

approach to the inverse scattering problem we have pursued here suggests a very straightforward
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Figure 3.3: Depiction of (a) single and (b) multiple scatter interactions of a field with a pertubation

technique. The Lippman-Schwinger equation requires the inverse of the operator I−Gk2
s
. Formally,

we can use the scalar geometric series (1+a)−1 = 1−a+a2 −a3 . . . valid for |a| < 1 in the current
setting to arrive at: [

I − Gk2
s

]−1 = I − Gk2
s

+ Gk2
s
Gk2

s
− . . . . (3.29)

Retaining only the first term in (3.28) and noting that (Iφb)(r) = φb(r) results in the first Born
model

φs(r) ≈
∫

g(r, r′)k2
s(r

′)φb(r′)dr′ (3.30)

which is linear in the unknown k2
s(r). One can derive so-called n-th order Born models by retaining

n terms in the series. It is easy enough to verify that the resulting model has a dependence on k2
s

which is polynomial in nature with terms up to and including
[
k2

s(r)
]n.

Physically, the model in (3.30) captured the first order interaction of the fields with the per-
tubation in k2 and hence is often referred to as a single scatter approximation. To understand
this concept a bit more intuitively, consider the case where k2

s(r) = aδ(r − r1), a single point like
reflector with “reflectivity” a and the source is a point source at rs. In this case the incident field
is G(r, rs) and the scattered field is then G(r, r1)aG(r1, rs). This is expression can be physically
interpreted as follows. First, the source creates the field G(r, rs). Second this field interacts with
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the only scatterer in the medium, the object at r1. Roughly speaking, interaction here means that
the scatterer responds to the incident field by setting up a secondary field. The strength of that
field is the product of the amount of field provided by the initial source at the location of the
scatterer, G(r1, rs), and the reflectivity of the scatterer itself, a. Because the scatterer is acting a
point source , the spatial distribution of the resulting field must be that of the Green’s function for
the problem for a source located at r1. Hence we see the term G(r, r1). Pictorially, this interaction
is captured in Fig. 3.3(a). The source creates field. The field scatters from the perturbation. The
resulting scattered field is observed at r. We denote this first order interaction as rs → r1 → r

Now consider a slightly more complicated example where k2
s(r) = aδ(r − r1) + bδ(r − r2). The

scattered field now is just the superposition of the contributions from each of the two components
of k2

s , G(r, r1)aG(r1rs) + G(r, r1)bG(r2, rs). This situation is shown in Fig. 3.3(b) with the solid
lines which indicates the observed field as the sum of the contributions from the two scatterers.
Not captured by this model though are the multiple-interactions (known as multiple-scatter) of the
incident fields with objects at r1 and r2. For example, the second order interactions rs → r1 →
r2 → r (dashed lines in Fig. 3.3(b)) and rs → r2 → r3 → r are not taken into account. Higher
order cases follow easily. In fact, it is not hard to show that n-th order scattering can be exactly
captured by including n terms from (3.29) thereby obtaining the n-th order Born approximation.

3.4 Discretization Methods

Much of this manuscript is concerned with the solution to discretized forward and inverse problems.
As seen in this chapter, the continuum forms of the models of interest fall into one of two classes:
partial/ordinary differential equations or integral equations. The study of computational methods
for these problems represents a field of work in its own regard with a vast and highly interesting
literature [43,51,79,80]. Here we provide a brief introduction to a couple of the more common and
easily implementable discretization techniques and provide citations to references containing more
thorough treatments of each approach.

The material in this section is devoted primarily to discretization methods for the Helmholtz
models in § 3.3. In the case of the convolutional methods in § 3.1, signal processing oriented texts
such as [77] provide highly readable and quite useful coverage of a variety of sampling methods.
The ordinary differential equations literature e.g. [27] contains extensive coverage of advanced
techniques, such as Runge-Kutta, for solving ODEs. Finally, one method for discretizing the Radon
transform model, (3.9), is discussed in the problems at the end of this chapter. 4 More generally,
the methods of moments, which we cover as a tool for discretizing the Helmholtz equation, can be
used here as well. See [43] for an example.

Finite Difference Methods

Perhaps the most straightforward means of producing a discrete representation of a partial differen-
tial equation is through the use of finite differences. Assuming the functions we wish to approximate
are sufficiently smooth, the basic idea behind finite difference is to approximate derivatives using a

4EXERCISE: Build Radon model w/ partial voluming
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Taylor series expansion of the function up to second order

f(x0 + δ) = f(x0) + δ
df(x0)

dx
+

δ2

2
d2f(x0)

dx2
+ O(δ3) (3.31)

where e.g. df(x0)/dx is the first derivative of f evaluated at x0 and O(δ3) mean that the error in
the value of f(x0 + δ) goes top zero as the cube of δ.

For the problems of interest here, we require derivatives up to second order. By evaluating (3.31)
at +δ and −δ and performing a bit of algebra yields the following central difference approximation5

to the first derivative:
df(x0)

dx
=

f(x0 + δ) − f(x0 − δ)
2δ

+ O(δ3). (3.32)

where the notation O(δn) indicates that the remaining terms in the power series are all of the form
akδ

k for k ≥ n. Similarly, to obtain an O(δ2) approximation to the second derivative of f we can
use

d2f(x0)
dx2

=
f(x0 + δ) − 2f(x0) + f(x0 − δ)

δ2
+ O(δ2). (3.33)

Equations (3.32) and (3.33) provide really all that is necessary to obtain a discrete representation
for the Helmholtz equation and its associated boundary conditions.

As a specific example, consider first the case where we want to solve

[∇2 + k2]φ = 0 (3.34)

on the two dimensional L × L square shown in Fig. 3.4 subject to the boundary conditions

−∂φ(x, 0)
∂y

= bN,left(x)
∂φ(x,L)

∂y
= bN,right(x) (3.35)

φ(0, y) = bD,top(y) φ(L, y) = bD,bot(y) (3.36)
5May want to add material on forward and backward difference as well
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To keep the development simple, we break the square into an Nx×Ny grid of points spaced uniformly
in x and y with grid spacing ∆. In Figure 3.4, Nx = Ny = 8. We shall refer to these points using
one of two ordering schemes. On the one hand, it may be convenient to label quantities location
at the point i rows from the top and j columns from the left side of the grid as e.g. φ(xi, yj) or
just φi,j for i = 1, 2, . . . , Nx and j = 1, 2 . . . , Ny. Alternatively, we may lexicographically order the
points by “stacking” one row on top of the other and refer to φ(rn)6 or φn where n = 1, 2, . . . , NxNy

and is related to i and j via n = i + (j − 1)Nx. 7

Recalling that in 2D,

∇2 =
∂2

∂x2
+

∂2

∂y2

we can use (3.33) at any point (i, j) in the grid to discretize (3.34) as

φi−1,j − 2φi,j + φi+1,j

∆2
+

φi,j−1 − 2φi,j + φi,j+1

∆2
+ k2

i,jφi,j = 0. (3.37)

In theory, this formula provides Nx × Ny linear equations in Nx × Ny unknowns. Switching to n
ordering we can gather the φi,j into a vector

x =


φ1

φ2
...

φNxNy

 .

Eq. (3.37) then can be used to define a matrix A and a vector b = 0 such that Ax = b. The
entries of A along any given row will consist of 1’s, -2’s, and k2

n
8 in order to affect the summation

with the corresponding elements of x implied by (3.37).
This simple idea fine for all of the points (i, j) corresponding to solid circles in Fig. 3.4; however

for the open circles, (3.37) requires knowledge of points outside of the grid. For points on the left
edge of the grid i = 1, 2, . . . , Nx and j = 1 we need values for φi,0. On the right edge we require
φi,Ny+1. On the top and bottom, φ0,j and φNx+1,1 are called needed. To accommodate these points
we make use of the boundary conditions.

For the top and bottom of the grid, the Dirichlet conditions indicate exactly what the field
values should be. This information can be used in the equations governing the fields values one
row from each of these sides. In the case of the second row of points, i = 2, for j = 2, 3, . . . , Ny − 1
(3.37) is

φ1,j − 2φ2,j + φ3,j

∆2
+

φ2,j−1 − 2φ2,j + φ2,j+1

∆2
. + k2

2,jφ2,j = 0.

but the boundary condition is φ1,j = bD,top(yj). Hence after some algebra we get

φ3,j + φ2,j−1 + φ2,j+1 + (−4 + ∆2k2
2,j)φ2,j = −bD,top(yj). (3.38)

6With a slight abuse of notation, here we let r represent a point in two dimensions whereas previously we have
been using it to denote a point in 3D.

7EXERCISE: n → i, j and 3D
8EXERCISE: Show this
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Figure 3.5: Two Dimensional Square Grid for Inhomogeneous Diffusion

Eq. (3.38) and its counterpart for all points along row Nx − 1 are then used in place of (3.37) for
building the appropriate rows of the A matrix and b vector.

For the left and the right sides of the grid we use the centered approximation of the first
derivative

−∂φ(0, y)
∂y

≈ φi,0 − φi,2

2∆
and

∂φ(L, y)
∂y

≈ φNx+1,j − φNx−1,j

2∆

and the Neumann boundary conditions to conclude

φi,0 = φi,2 + 2∆ × bN,left(xi) (3.39)
φi,Ny+1 = φi,Ny−1 + 2∆ × bN,right(xj) (3.40)

As with the discussion surrounding (3.38), eqs. (3.39) and (3.40) can be used to eliminate φ0,j and
φNx+1,j from (3.37) for points (i, j) = (1, j) and (i, j) = (Nx, j) resulting in alternations to the
corresponding rows of A and elements of b 9.

Within the context of the Helmholtz model, one further complications to the use of finite
differences comes though the introduction of an inhomogeneous diffusion coefficient D(r) in (3.10).
Expanding the first term on the left hand side of (3.10) in Cartesian coordinates we obtain:

∇ · [D(r)∇φ(r)] =
∂

∂x
D(x, y, z)

∂

∂x
φ(x, y, z)+

∂

∂y
D(x, y, z)

∂

∂y
φ(x, y, z) +

∂

∂z
D(x, y, z)

∂

∂z
φ(x, y, z) (3.41)

One way of achieving a finite difference discretization of this differential operator is to assume that
the samples of D(r) exist on a grid that is offset by ∆/2 from that used for φ and k2 [1]. This is

9EXERCISE: Build A & b
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shown in Fig. 3.5 where we reproduce the grid used previously this time using the stars to identify
the points where D(r) is evaluated. The use of first order differences yields for the x term in (3.41)

∂

∂x
D(x, y, z)

∂

∂x
φ(x, y, z) ≈

1
∆

{
D(i +

1
2
, j)
[
φ(i + 1, j) − φ(i, j)

∆

]
− D(i − 1

2
, j)
[
φ(i, j) − φ(i − 1, j)

∆

]}
(3.42)

with similar formulae holding for the y and z components.
In our discussion of finite difference methods, we have been very careful to consider only closed-

domain problems where the Dirichlet, Neumann, and Robin conditions are imposed on the bound-
aries. Infinite domain problems can certainly be addressed though the use of finite difference
methods. However because the domains for these problems are infinite and computers have finite
memory it is necessary to terminate the grid in some manner that makes the resulting finite di-
mensional system reproduce the true physics. This is not at all easy. For example, one might
be tempted to solve the problem on a large grid and just set the fields at the boundary (now well
removed from where we are really interested in observing the fields) to zero. This strategy produces
difficulties for two reasons. First, we must solve a problem larger than necessary which means there
is a large computational cost to this naive approach. Second, and more troubling, is that the use
of this imposed boundary condition does not replicate the physics. Rather than solving an open
problem, we are solving a problem in a large “box” with imposed Dirichlet conditions. The two
are not the same and as a result the accuracy of the solution will suffer, perhaps considerably.

Thus, there has been extensive work in the development of absorbing boundary conditionss
(ABCs). ABCs are methods for terminating the grid in ways that eliminate or at least minimize
the numerical artifact. Some of these methods are based on the Sommerfeld radiation condition [73],
but many other approaches have also been put forth [85]. Ultimately, building robust ABCs that
work for wide classes of possible problems is far from easy and well beyond the scope of this
manuscript.

A last element of the finite difference method to address is the choice of ∆, the sampling rate.
As is well known in the signal processing literature, the Shannon sampling theorem states that one
must sample a band-limited temporal signal at a rate at least twice as fast as the highest frequency
one expects to be present. Failure to sample at this rate or higher results in artifacts known as
aliasing [77, Section 4.2]. The same reasoning can be applied to our problem as well with the result
being that one needs a sampling rate, ∆, that is at least half the shortest wavelength (equivalent
to twice the highest spatial frequency) expected to be encountered in the solution to the problem.
For most applications, the wavelength information is related to the structure of k2. As a simple
example, for the scalar electromagnetic problem detailed in Table 3.1, in the case where σ = 0 nd
ε is constant, it is know that the wavelength is

λ =
2π

ω
√

µ0ε
.

Similar formulae hold for the other problems detailed in Table 3.1.
When the media are inhomogeneous, the determination of the wavelength is not as easy as the

use of a formula. In practice this is addressed in two steps. First, one generally has some idea
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as to the nominal structure of the region being investigated as was the case when we assumed a
background value for k2(r). This information can be used to place a conservative bound on the
minimum wavelength. Second, in the sampling rate used is typically far higher than that which
the Shannon theory would prescribe. Practical computational methods for problems like the ones
of interest here sample at between 10 and 20 times per wavelength.

As we have seen both through the development here and via the exercises at the end of this
chapter, finite difference methods yield a matrix-vector system of linear equations that need to be
solved in order to determine the values of the field at the sample points in the grid. These linear
systems are noteworthy for two reasons. First, the presence of the sample values of D and k2 within
the entries of the matrix further demonstrates the nonlinearity of the inverse scattering problem.
Indeed, if we let k2 and d represent the vectors of lexicographically ordered samples of k2(r) and
D(r) then the finite difference system may be written

A(k2,d)x = b ⇒ x = A−1(k2,d)b. (3.43)

The nonlinear dependence of A−1 on the elements of k2 and d means that the data we have for
the inverse problems, the samples of the field located x also are related in a nonlinear manner to
these desired unknowns.

The second feature of A is its sparse structure. Because A arises from the discretization of a
differential operator, very few elements on any given row differ from 0. Thus, even while A may
have a huge number of rows and columns, the number of nonzero elements that need to be stored in
a computer are much more modest. To exploit this structure in solving for x, one commonly does
not build A−1 explicitly. Rather, there exist a collection of techniques for finding x that generate a
sequence of iterates x(0),x(1), . . . converging to A−1b and requiring only routines that compute the
product of A and AT with input vectors. The sparse structure of A implies that such operations
can be done quite efficiently. These solution techniques are known as Krylov subspace methods
and essentially represent a class of algorithms that generalize the well known conjugate gradient
method to cases where A is not symmetric and positive definite. Details on their implementation
and use can be found in [79].

Method of Moments

While finite differences are most easily employed in the solution of closed domain partial differential
equations, open domain problems where the Green’s function is known or can be calculated are
well suited to discretization by the method of moments. We concentrate here on the application
of this approach to the Lippman-Schwinger integral equation (3.25) and the Born approximation
(3.30).

The method of moments is based on the representartion of a function as a linear combination
of a set of pre-defined basis elements:

f(r) =
N∑

i=1

fibi(r) (3.44)

where the fi are unknown coefficients and the bi are the basis functions. A variety of common
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Figure 3.6: Piecewise constant and piecewise linear basis functions for method of moments

choices are made for the bi(r). In some cases, one may choose to use Fourier-type of functions:

bi(x, y, z) = sin (mx) sin (ny) sin (pz)
bi(x, y, z) = cos (mx) cos (ny) cos (pz)

where m = 1, 2, . . . Nm, n = 1, 2, . . . Nn, and p = 1, 2, . . . Nz and there is some ordering scheme like
the one discussed previously for mapping a triple (m,n, p) into an index i. Illustrated in Fig. 3.6
are a couple of popular choices for one dimensional basis functions. In the top of the figure are
functions capable of producing piecewise constant (stair-step) representations of f(r). A piecewise
linear possibility is shown in the bottom of Fig. 3.6.

Multi-dimensional basis functions can be obtained as separable combinations of the one di-
mensional elements; i.e. bi(r) = bi(x, y, z) = bn(x)bm(y)bp(z) where again we assume an ordering
capable of taking the triple (m,n, p) to the single index i. It is easy enough to verify that in two
dimensions, the separable basis obtained by using the piecewise constant basis at the top of Fig. 3.6
corresponds to typical image pixels that have a value of one on a rectangular region and are zero
everywhere else. 10

Within the context of inverse methods, these basis functions are used for two discretization
tasks. On the one hand they are frequently employed in nonlinear inverse methods as a means of
numerically solving the Lippman-Schwinger equation, (3.24) for the fields φ. Additionally, basis
function expansion is a common tool in the reduction of general linear inverse problems to forms
amenable to solution on a computer.

To discretize the Lippman-Schwinger equation in a manner well suited to the ultimate problem
10EXERCISE: Plot basis elements in 2D and 3D



CHAPTER 3. FORWARD MODELS & INVERSE PROBLEMS 52

of determining k2
s we start by assuming basis expansions for φ(r), φb(r), and k2

s(r)

φ(r) =
N1∑
i=1

φibi(r) (3.45)

φb(r) =
N2∑
j=1

φb,jcj(r) (3.46)

k2
s(r) =

N3∑
k=1

fkdk(r). (3.47)

Using (3.45) – (3.47) in side of (3.24) yields

N1∑
i=1

φibi(r) =
N2∑
j=1

φb,jcj(r) −
N1∑
i=1

φig̃i(r) (3.48)

where

g̃i(r) =
N3∑
k=1

fj

∫
g(r, r′)bi(r′)dk(r′) dr′.

Reduction of (3.47) to a matrix vector problem is achieved by taking the inner product of both
sides of (3.48) with bi(r). Specifically, we have in matrix form

Bφ = Cφb − Gφ (3.49)

where φ is the length N1 column vector of coefficients in the expansion of φ(r) in (3.45), similarly
for φb and the elements of B, C and G are

Bi,j =
∫

bi(r)bj(r) dr i = 1, 2, . . . , N1, j = 1, 2, . . . N1

Ci,j =
∫

bi(r)cj(r) dr i = 1, 2, . . . , N1, j = 1, 2, . . . N2

Gi,j =
∫

bi(r)g̃j(r) i = 1, 2, . . . , N1, j = 1, 2, . . . N1.

Finally, assuming B is invertible (which follows if and only if the φi(r) are linearly independent)11,
we can solve for the unknown vector φ as12

φ = (B + G)−1 Cφb (3.50)

To use these basis functions in the discretization of linear inverse problems (deconvolution, X-ray
tomography, inverse source and Born-based inverse scattering) requires two pieces of mathematical

11EXERCISE: Prove
12EXERCISES: Implement for pixel basis
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preparation. First, we begin by noting that all linear inverse problems of interest here take the
form of an integral equation relating the data, g(r) to an object f(r)

g(r) =
∫

K(r, r′)f(r′)dr′ (3.51)

where we have been a bit cavalier in our denotation of the independent variables of the object, r′,
and those of the data, r. For deconvolution, these quantities are both scalar. For X-ray tomography,
the input variables are space, r′ = (x, y) while the output variables are those of the Radon transform
r = (t, θ). In the case of inverse source and linearized inverse scattering, r ranges over the region
of space where the data are collected while r′ takes values in the volume (for 3D) or image plane
(in 2D) where f is defined.

Second, (3.51) is written in terms of the continuum variables r. In reality, the data available
for inversion are sampled functionals of these quantities. For simplicity, we assume here these
functionals are linear13. To be consistent with the mathematical structure developed in Chapter 2
and which we shall use later in this manuscript, this implies the existence of a vector space, X,
holding our objects, f(r) as well functionals li i = 1, 2, . . . , N mapping this space into components
of a data vector. For now, we shall take X to be the Hilbert space of square integrable functions
defined over an appropriate domain, −∞ to +∞ for temporal problems and some compact set of
R

2 or R
2 for spatial inverse problems. The simplest such functional is that which “samples” f(r)

at ri, the location of the i-th sensor

gi = (li|g) =
∫

δ(ri − r′)g(r′)dr′. (3.52)

More generally, this linear functional approach provides sufficient flexibility to handle sensors which
perform weighted integrals of the continuum data over finite sized apertures:

gi = (li|g) =
∫

wi(r)g(r)dr (3.53)

where the weighting functions are (a) sufficiently well behaved to assure the existence of the integral
(b) typically functions of r − r′, and (c) typically sharply peaked around the location of the i-th
sensor, r = ri.14. Making use of the general model (3.51), results in

gi =
∫ (

K(r, r′)|li(r)
)
f(r′)dr′

=
∫

dr′
[∫

drwi(r)K(r, r′)
]

f(r′). (3.54)

13Nonlinear functionals do play an important role in many applications. For example, in many optical imaging
problems the sensors do not provide the full complex electric field φ(r), but only its magnitude integrated over a
“pixel” in a CCD array [35, page 49]. That is the i-th data point is well approximated as

gi =

Z
i−th pixel

|φ(r)|2dr.

14EXERCISE: Gaussian and diff. of Gaussian
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Upon substitution of (3.44) into (3.54) and rearranging we obtain

gi =
∑

j

Ki,jfi (3.55)

Ki,j =
∫

wi(r)K(r, r′)bj(r′) dr dr′. (3.56)

Finally, arranging the gi and fj into vectors and the Ki,j into matrices yields the final form of the
discretized linear model

g = Kf (3.57)

There are a two issues that arise in consideration of the use of the method of moments. First,
creating the matrices B, C, G and K requires the evaluation of multi-dimensional integrals. With
judicious choices for the various basis functions, some of these calculations can be done in closed
form (see exercises). In many cases, analytical expressions for these integrals do not exists so
numerical procedures must be employed. There are a variety of methods for performing these
calculations and a large number of canned software packages available for use. We refer the reader
to [21] and [76, Chapter 4] for more information. Second, the various matrices and vectors associated
with both the discretized Lippman-Schwinger and linear forward model are often complex. As we
show in the exercises at the end of this chapter, by separating the real and imaginary components,
it is possible to still obtain a matrix-type of relationship between the coefficients of the input object
and the output samples. 15

Toeplitz Matrices and Deconvolution

Before leaving the issues of discretization, we touch briefly on the issue of matrices associated with
shift invariant, that is, convolutional, problems. There are two reasons for this discussion. First,
the matrices associated with these problems have a clearly identifiable structure which is easily
captured both mathematically as well as visually. Thus, these matrices provide a nice (perhaps
quintessential) example by which we can begin to build up some intuition about inverse problems
by actually looking at their components. Second, as indicated above, these matrices have signficant
structure. While it is somewhat beyond the scope of this manuscript, a key issue associated with
numerically solving inverse problems arising in two and three dimensional applications is compu-
tational complexity. Writing down a solution is one thing. Implementing it in some reasonably
efficient manner is quite another. As discussed in greater detail in [48, 88], the structure inherent
in these matrices leads to extremely efficient algorithmic implementations.

In one dimension, a convolutional operator is one for which the kernel K(t, s) is a function not
of t and s separately, but of their difference, t − s. Most methods for discretizing such integral
equations result in matrices where this structure is preserved in that the element on row m and
column n is not a function of m and n individually, but of m − n. So Km,n = Km−n. As an
example, consider a problem

g(t) =
∫

K(t − s)f(s) ds

15EXERCISE: Re & Im system
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(b) A Toeplitz matrix arising from the discretiza-
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Figure 3.7: 1D discrete convolution matrix

which, upon discretization yields

g(n) =
∑
m

K(n − m)f(m).

Let us suppose that the discrete impulse response contains 31 coefficients, plotted in Fig. 3.7(aa),
while the sampled form of f(t) contains 100. The goal now is to build a matrix K such that Kf = g
where f and gmb are vectors containing g(n) and f(n). For a discrete convolution problem with
an impulse response of length M and input signal of length N , the length of the output vector
will be M + N − 1 [77, Section 5.3.1]. Hence g ∈ R

119 so K will be of size 130 × 100. Due to the
convolutional structure of the problem, Km,n = Km−n = K(m−n) where we assume K(n) is equal
to zero for n < 0 and n > 31.

In Figure 3.7(b), we display an “image” of the resulting discretized convolutional operator. That
is, the pixel on row m and column n of the image is color-coded according to the value of Km,n.
Under this scheme an identity matrix would appear as an image with a single narrow stripe running
from the top left corner to the bottom right corner. Visually, the m − n dependence is seen in the
“stripes” along the diagonals. Matrices possessing this structure are called Toeplitz [88, Chapter
5]. Moreover, we see by looking at this matrix that its action on a vector will be local in the sense
that the nonzero structure on any given row of K is restricted to a fairly small portion of the full
100 possible elements.

In two dimensions, Toeplitz-like structure is also seen, but the situation is a bit more complex.
A discrete two dimensional convolution takes the form

g(i, j) =
∑
p,q

K(i − p, j − q)f(p, q). (3.58)
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Figure 3.8: Kernel for 2D Convolution Problem

We would like to write (3.58) in the standard matrix-vector form g = Kf . To do so requires that
we establish an ordering which maps row-column indices such as (i, j) or (p, q) to a single index n
or m for the column vectors g and f . Here we employ what is known as a lexicographical ordering
scheme whereby the vector f is obtained by “stacking” the columns of f(p, q) one on top of the
other. Assuming that p = 1, 2, . . . , R and q = 1, 2, . . . C then the following transformations between
(p, q) and m = 1, 2, . . . RC ordering are readily verified for this ordering method:

(p, q) to m : m = R(q − 1) + p (3.59)

m to (p, q) q = 1 +
⌊

n − 1
R

⌋
(3.60)

p = n − R(q − 1) (3.61)

For this ordering scheme, the matrix K takes on form known as block Toeplitz with Toeplitz
blocks (BTTB) [88, Chapter 5]. This term is best understood via an example. A two dimensional
11 × 11 blurring kernel is shown in Fig. 3.8. Generalizing the 1D case, assuming an 15 × 15 input
image, the resulting output image will be of size 11+ 15− 1× 11+ 15− 1 or 25× 25. The resulting
matrix K will be of size 252 × 152 = 625× 225 and is shown in Fig. 3.9. The lexicographic ordering
of the input and output images result in a block structure for K. Each block is of size 25× 15 and
is itself a Toeplitz matrix. Additionally, the blocks themselves have a Toeplitz pattern. Thus, the
(1, 1) block of 25× 15 elements is the same as blocks (2, 2), (3, 3) etc. Similarly blocks (1, 2), (2, 3),
(3, 4), are equal.

3.5 Exercises

3.1 Often times in programming solutions to multidimensional inverse problems, it is necessary
to generate a unique ordering of the pixels in an image or voxels in a discretized volume.
Say we have an image represented by an array of numbers, I(m,n) where 1 ≤ m ≤ M and



CHAPTER 3. FORWARD MODELS & INVERSE PROBLEMS 57

Figure 3.9:

1 ≤ n ≤ N . In Matlab, we can “transform” this image into a vector via the colon operation
I1D = I(:) and access elements of I1D using the index i which runs from 1 to N ×M . Note
that “:” basically stacks the columns of I. See Figure 3.10 for an example of how this works
in the case of a 4 × 4 image.

(a) To access the pixels in an image one-by-one we can either write a pair of nested for
statements that loop over columns and rows (or rows and columns) or we can write a
single for loop that iterates over the index i. Which ordering, rows-then-columns or
columns-then-rows gives provides the access to the elements of the image as is induced
by the Matlab colon operator?

(b) Write a pair of functions which translate between (m,n) and i. The first function
should take as input only m, n,M, and N and return the corresponding value of i which is
consistent with the ordering imposed by “:.” The second function should take only i,M,
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Figure 3.10: Example of index transformation in 2D. Row-column pixel indices are sorted into a
linear array of numbers from 1 to 16.

and N and return the corresponding m and n. For full credit, these functions should be
as simple as possible. Verify that these functions work.

(c) In Matlab, the command A = rand(3,2,4) creates a 3D “volume” of size 3×2×4 filled
with random numbers. As with images, A1D = A(:) is a stacked form of the values in
A. Now, voxels indexing requires three quantities: m, n, and p. Repeat the first two parts
of this problem now for the 3D case. Note that doubly nested for loops become triply
nested loops etc.

3.2 In this problem we consider a model arising in the use of thermal waves for non-destructive
evaluation. In 1D, the thermal wavefield, u(x), for a time-harmonic source can be shown to
satisfy the ordinary differential equation in the absence of sources(

d

dx2
− σ2

)
u(x) = 0

where σ =
√

iω/α, ω is the frequency of operation, and α is known as the thermal diffusivity.

(a) Define the Green’s function, G(x, x0) for this problem as the solution to the ODE(
d

dx2
− σ2

)
G(x, x0) = − 1

α
δ(x − x0).

Argue that the most general form of G(x, x0) is Aeσx + Be−σx. Where A and B are
constants whose values are to be determined from the boundary conditions.

1. It can be show that G is continuous across x0 as a function of x, but has a discontinuous
first derivative. Show that for a homogeneous medium in which G must go to zero as x
goes to ±∞, we have

G(x, x0) =
1

2ασ
e−σ|x−x0|

(b) Now determine G for the case of a semi-infinite medium where G(0, x0) = 0 and as
x → ∞, G(x, x0) → 0.

3.3 An alternate way of linearizing the Helmholtz equation is via the Rytov approximation.
While the end results is quite similar to Born, the small differences make Rytov far more
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widely applicable than Born (see the next problem set). Supressing explicit dependence on
r, consider the PDE for the field u

(∇2 + k2)u = 0.

Supose we assume that the solution to this equation takes the form

u(r) = eφ(r).

where φ is a generally complex valued phase function.

(a) Show that φ satisfies
(∇φ)2 + ∇2φ + k2

0 = −o(r)

where o(r) = k2
0(r) − k2

s(r) is the object function we wish to image.

Similar with the Born approximation, we decompose the phase function, φ into a background
and scattered part: φ = φb + φs where the background phase function is by definition the
phase function associated with the background field, ub(r) = eφb(r).

(b) Since the background field solves the background scattering problem, argue that

k2
b + (∇φ)2 + ∇2φ = 0

(c) Show now that φs satisfies

2∇φ0 · ∇φs + ∇2φs = −(∇φs)2 − o(r)

(d) Assuming that u0(r) is a plane wave so that ∇2u0 = k2
0u0 and using the fact that

∇2(u0φs) = ∇((∇u0)φs + u0(∇φs)) show that

(∇2 + k2
0)(u0φs) = −u0

[
(∇φs)2o(r)

]
(e) Using the above result, conclude that under a certain assumption we haveφs(r) = uB(r)

u0(r)

where uB(r) is the Born scattering function∫
G(r, r′)u0(r′)o(r′)dr′

What is the required assumption? This is the Rytov aproximation.

1. In practice, we do no measure the Rytov phase, but rather the total field, u(r). Assume
we can perfectly subtract the incident field, u0, to effectively measure the scattered field,
uB(r). Show that the Rytov forward model is, in terms of quantities we measure or
know,

u0(r) ln
(

us(r)
u0(r)

+ 1
)

=
∫

G(r, r′)u0(r′)o(r′)dr′
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3.4 Here we want to develop a Born-like approximation for the problem

∇ · σ(r)∇φ(r) + k2(r)φ(r) = 0 (3.62)

where both σ and k2 can vary.

1. Prove that ∫
V

a(r) [∇ · (b(r)∇c(r))] dr = −
∫

V
[∇a(r) · ∇c(r)] b(r)dr

where r is a point in three-space and V is the volume of integration, a, b and c are all
differentiable, and b = 0 on the boundary of V .

2. Let us assume in (2.2) that σ(r) = σ0 + σs(r) and k2(r) = k2
0 + k2

s(r) where σ0 and
k2
0 (the background material parameters) are both constants. Show that for ks and σs

“small” we have to first order that the scattered field can be written

φs(r) = −
∫

V
∇r′G(r, r′) · ∇φ0(r′)σs(r′)dr′ −

∫
V

G(r, r′)φ0(r′)k2
s(r

′)dr′ (3.63)

where G is the Green’s function for the background problem.

3. Explain how the above result can be used in the contaxt of an inverse problem.

3.5 Here we want to build a routine for constructing the system matrix for a Born-based inverse
problem at least for a simplified problem. The basic setup for the problem is shown in
Figure 3.11. We assume that k2

s is restricted to be nonzero over a very thin region of space
of size δ × Y × Z meters with δ very, very small and centered at the point x0.

The Green’s function for this problem is

G(r, r′) =
eik0|r−r′|

4π|r − r′|

where |r − r′| =
√

(x − x′)2 + (y − y′)2 + (z − z′)2. For this because δ is so small you may
assume that x = x′ = x0. Also, k0 can be an arbitrary complex number.

Point source transmitters (blue dots) and point receivers (orange dots) are arrayed at arbitrary
locations around the square d meters from the edge. The data for the inverse problem will be
comprised of observations of the scattered field for all source-receiver pairings. More formally,
the ith source is taken to be aiδ(r−rS,i) where ai is the amplitude (a real number) and rS,i is
the location in 3D of this point source. Each source gives rise to a scattered field, φs(r) which
we observe at position rR,j . Here i = 1, 2, . . . , NS and j = 1, 2, . . . , NR. The data obtained
for this problem is the NS ×NR vector of complex valued scattered fields associated with all
source-receiver combinations.

1. Write a first kind linear integral equation relating k2
s(r) to the scattered field data:

φs(rj) =
∫

V
K(rj, r

′)k2
s(r

′)dr′ (3.64)
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Figure 3.11: Setup for inverse scattering type of problem

2. Say we break space up into an NZ×NY array of pixels. Develop a method for discretizing
(2.4) by sampling r′ at the center of each pixel.

3. Write a piece of code which takes as input the following

• x0 and δ in meters
• Z and Y in meters
• Integers Nz and NY

• The NS 3D locations of all sources (positions all in meters)
• The NR 3D locations of all receivers (positions all in meters)
• The complex number k0 in meters−1.

and produces as output the NSNR × NZNY system matrix that maps the pixel values
for k2

s into the data vector.

4. One row of your matrix is a function of two variables since r′ = (y′, z′) and thus may
be thought of as an NZ × NY “image.” Explain why we can think of each pixel in that
image as the sensitivity of the datum for that row to a unit change in the corresponding
pixel of k2

s .

5. Generate the matrix for the case where

• x0 = 1 and δ = .001
• Y = 1 and Z = 1
• Nz = Ny = 40
• NS=1 and the location is (xS , yS , zS) = (1,−0.1, 0.5)
• The NR = 1 and the location is (xR, yR, zR) = (1, 1.1, 0.5)
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• The complex number k2
0 = (1)2.

Your K matrix now has only a single row. Plot an “image” of the real and imaginary
parts of this row. Explain any structure you see.

6. Repeat the above but for k0 taking on the following values: {10, 25, 10 + .1 ∗ √−1, 10 +√−110+10∗√−1}. Usding the Matlab imagesc command, plot the real and imaginary
parts of the “image” of the kernel for all of these cases being sure that they all have the
same colorscale (see the caxis command). How do these changes in the backgorun d
wavenumber impact the structure of the matrix? Qualitatively at least, will the resulting
inverse problem be better posed or less well posed?

7. Now let us change things a bit. As shown in Figure 3.12, lets us say we put N transducers
equally spaced on each side of the 2D region we are imaging. Each transducer acts as a
source which produces fields that are measured at all 4N point. Thus a single scattering
experiment yields a total of 4N × 4N complex valued points of data. Hence assuming
we discretize the medium into an array of Ny × Nz pixels, we could write the model in
the form ycx = Kcxf where ycx is the length 16N2 complex valued data vector and Kcx

the discretized Born kernel. What is typically done however is to break Kcx and ycx
into real and imaginary components so that the overall model is of the form:

y =
[

real{ycx}
imag{ycx}

]
=
[

real{Kcx}
imag{Kcx}

]
f ≡ Kf

Thus the “data” vector is of length 32N2 while the system matrix has 32N2 rows and
NyNz columns.

Region to be imaged

N sensors per side

Figure 3.12: Setup for Part (g)
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For this part of the problem, please examine the nature of the singular structure of the
system matrix as we vary N and k0. Specifically, plot on a log scale the singular values
for the system matrices obtained for all combinations of the following parameter sets:

• N ∈ {1, 5}
• The real part of k0 ∈ {0, 25}.
• The imaginary part of k0 ∈ {0, 10} .

For all of these experiments take Ny = Nz = 30, Z = 1, Y = 1, x0 = 1, d = .1, δ = .01.
Explain how adding sensors and varying the structure of the background medium impact
the ability to recover an image.

3.6 A common problem in fields ranging from medical imaging to atmospheric physics is the
reconstruction of objects from so-called projection data. More precisely, under this schemeAs
we have ddiuscussed, for X ray tomography, the data, g(θ, t), are related to the object, f(x, y),
via a linear transformation called the Radon transform, which is of the form:

g(θ, t) = (Rf)(θ, t) =
∫ ∞

−∞

∫ ∞

−∞
δ(t − x cos θ − y sin θ) f(x, y) dx dy (3.65)

where δ(x) is the Dirac delta function.

1. In x−y space, plot δ(t−x cos θ−y sin θ). How does this function change as the variable
t changes? What about θ? In what sense is y(θ, t) a projection of f(x, y)?

2. Derive an explicit expression for (R∗g)(x, y), the adjoint operator for (2.16). What is
the physical interpretation of the Radon transform adjoint? Is the Radon transform
operator self-adjoint?

3. Based on your previous answers, if we have a finite-dimensional representation of the
projection operator as the NθNt × N2 matrix T , so y = Tx, what is the backprojection
operation on the data y?

4. For most practical problems, f(x, y) is contained in some finite region of the plane.
Assume that this region corresponds to the unit disc centered at the origin. Show that
under this assumption the following relationship is true for any reasonably well behaved
(specifically, square integrable) function F (t)∫ 1

−1
g(θ, t)F (t) dt =

∫
disc

f(x, y)F (x cos θ + y sin θ) dxdy (3.66)

5. Use (2.17) and a judicious choice of F (t) to prove the projection-slice theorem.

6. Now assume that g(θ, t) is sampled at a finite number of points in θ-t space: gi,j =
g(θi, tj), i = 1, . . . ,Mθ and j = 1, . . . ,Mt. Assume we order these pairs first by t then
by θ. Under this discretization scheme nd using the “pixel ordering” methods fromt he
first problems set, show that the vector g of projection samples may be related to the
vector f of object coefficients fi via a matrix-vector equation of the form:

g = Tf. (3.67)
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What is the analytical expression for the ijth element of T ? Assume that f(x, y) is
supported in a square region centered about the origin.

7. On the class web site you will find a tar file radon.tar.gz with Matlab code to per-
form projection of a field. Given a matrix, f, representing a 2-D field and a vector
theta, holding a collection of angles between 0 and 180 degrees, the function call rou-
tine radon(f,theta) finds the projection of f at the angles specified in theta. Note
that the number of samples per projection are determined automatically by the routine
and is not under the users control. Also in the tar file is a routine makeb.m, which can
be used to create unit coordinate fields (i.e. fields with zeros everywhere but one pixel
location). Using these routines write a Matlab routine projmtx.m that generates the
matrix T for a given square array size N and vector of angles. Note: to save space the
routines generate output in sparse matrix format, which needs to be converted using
full for certain Matlab functions.

8. Using projmtx.m generate T for the case of N uniformly spaced angles from 0 to 180
degrees for N = 4, 8, 16. Look at the matrices using the function spy. Is this a shift-
invariant system? What is the dimension of the null space of T for the various N? For
N=16, use the Matlab function null to find vectors (images) in the null space of T .

3.7 One common class of inverse problems is concerned with determining the temperature distri-
bution in a region of space at some time in the past based on measurements of the temperature
at the present time. Here we will examine the associated forward problem.

The most basic form of the inverse heat conduction problem is to determine the initial temper-
ature on the boundary of a medium (i.e. the temperature at time t = 0) from corresponding
boundary observations at time t = T with T > 0. For simplicity, we will assume that the
region of space is a line (i.e. we have a one dimensional problem) extending from x = 0 to
x = π and that we are interested in the dynamics of the problem from time 0 through time T .
For our model, the heat propagation is well described using the so-called diffusion equation

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2
(3.68)

subject to the boundary conditions

u(0, t) = u(π, t) = 0 0 ≤ t ≤ T (3.69)

and the initial conditions
u(x, 0) = f(x) 0 ≤ x ≤ π. (3.70)

The function u(x, t) is the temperature on the bar at position x and time t.

(a) Assuming that u(x, t) can be written as v(x)q(t), show that v(x) and q(t) must indi-
vidually satisfy two constant coefficient ordinary differential equations. What are these
equations? Be sure to indicate the initial or boundary conditions for each equation.
(Hint: This procedure of solving a partial differential equation is known as separation of
variables and is thoroughly described in most mathematics texts on partial differential
equations or most engineering texts on electromagnetics.)
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(b) Your answer from the previous part should indicate that v(x) satisfies an ODE of the
form

Dv(x) + λv(x) = 0 (3.71)

where D is some differential operator and λ is a constant. The problem is to find all v(x)
which satisfy this ODE and the associated boundary conditions. For each such solution,
there will be a corresponding λ. The solution is known as an eigenfunction and the λ is
the associated eigenvalue.
A typical method for solving the ODE for v(x) is to write this function as

v(x) =
∑
n

anψn(x) (3.72)

where each of the ψn(x) satisfies the ODE as well as the boundary conditions and the ai

are coefficients to be determine later. Using Fourier methods, determine the ψn(x) and
λn for this problem.

(c) Using the results of (b), solve the ODE for q(t). Note that the solution should depend
on the index n in (3.72).

(d) The results of (b) and (c) should indicate that u(x, t) is of the form

u(x, t) =
∑
n

βnqn(t)ψn(x). (3.73)

Determine the values of βn such that (3.73) is satisfied.

(e) The inverse problem of interest is to determine f(x) from observations of u(x, t) taken
at time t = T . Let g(x) ≡ u(x, T ). Show that

g(x) =
∫ π

0
K(x, y)f(y)dy. (3.74)

by explicitly identifying the SVD of K(x, y).

3.8 Another common inverse problem is that of numerical differentiation. The idea here is that
the data we are provided, g(x), is related to the object of interest, f(x), via the integral
equation

g(x) ≡ (Af)(x) =
∫ x

0
f(y)dy (3.75)

where x ∈ [0, 1] and y ∈ [0, 1].

(a) Identify K(x, y) for this problem. Show that the problem is equivalent to a deconvolution
problem. What is the impulse response?

(b) We want to find the SVD for this problem. That is, we want to determine µn, un(x)
and vn(y) such that

K(x, y) =
∑
n

µnun(x)vn(y). (3.76)
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Recall from class that determination of these quantities is closely tied to solving the
eigen-problem A∗Au = µ2u. Thus, we must first determine the operator A∗A. Show
that

(A∗g)(y) =
∫ 1

y
g(x)dx. (3.77)

What is the integral operator for (A∗Af)(x)?

(c) Using the results of (c), show that any u which satisfies A∗Au = µ2u for the numerical
differentiation problem also satisfies the ODE

µ2 d2u(x)
dx2

+ u(x) = 0 (3.78)

subject to the boundary conditions u(1) = u′(0) = 0 where u′(x) = du(x)/dx. Sketch a
u which satisfies these boundary conditions.

(d) Solve for all µn and un(x) which satisfy (3.78).

(e) Using the defining equations for the SVD discussed in class, find gn(y).

(f) In this and the previous problem, you obtained the SVD for two different integral oper-
ators. Each of these operators is a function of two variables and thus may be regarded
as an image.

(a) Using Matlab, provide a mesh plot or image plot for the heat conduction and
numerical differentiation kernels. For the heat problem, try T = 0.1 and T = 3.
(Note: you will need to select some value Nmax at which to terminate the infinite
sums. Be sure to indicate how you did this.)

(b) What characteristic of the mesh or image of the differentiation kernel indicates that
this is in fact a deconvolution problem?

(c) Sines and cosines are the eigenfunctions for shift invariant (i.e. convolutional) prob-
lems. The SVDs for both the heat conduction and differentiation problems were
composed of sines and cosines. The plot for the differentiation problem indicated
that it was in fact shift invariant. The image for the heat kernel did not share this
structure. What is going on?

3.9 Recall the heat conduction problem in which we were interested was the reconstruction of the
initial temperature distribution over a region from observations of the temperature at some
later time. Letting f(x) be the temperature at time t = 0 and g(x;T ) be the temperature
measured at some time t = T > 0, then we showed that the following relationship holds

g(x;T ) =
∫ π

0
K(x, y;T )f(y)dy (3.79)

K(x, y;T ) =
∞∑

n=1

e−n2T sin nx sinny (3.80)

where 0 ≤ x, y ≤ π.
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1. Discretize this system using the Galerkin method with flat-top functions for a particular
value of T . The infinite sum in (3.80) should be truncated at that N for which the
corresponding eigenvalue is < 1e-10. Assuming that we want to sample the highest
frequency in the problem using 5 basis functions per wavelength, how does this choice
of N affect the number of unknowns in the problem? Show that the end result of the
discretization provides a decomposition of the discrete operator as the product of three
matrices the middle which is diagonal. Is this an SVD? The result of this problem should
be a Matlab file which produces a matrix representation of K when given an end time,
T .

2. Without resorting to the SVD, prove that the discrete problem must have exact nullspace
of rank at least 1. (Hints: Look at the operator and consider the boundary conditions.)

3. Now we want to see how this system behaves as we change T for two different sets of
initial conditions. Suppose that f1 is a flat-top function of unit norm which is non-
zero over π/3 ≤ x ≤ 2π/3, f2 is a flat-top function of unit norm which is non-zero for
π/4 ≤ x ≤ 3π/3 and that we want to look at the system for equally spaced values of
time between T = 0.1 and T = 5.

(a) To make things easy, determine the finest discretization (i.e. largest values of N and
largest number of basis functions) which will be needed for any time, T in the range
of interest. For the remainder of the problem, you should build discretized matrices
at this resolution.

(b) For each time instant of interest you should write Matlab code which build both
the K matrix and the data vectors for the two different initial conditions.

(c) How does the data for these two different sets of initial conditions evolve as time
progresses? What about the singular values of the K matrix at each time? Look
at the quantity δ(T ) = ‖g1(x;T ) − g2(x;T )‖ where gi(x;T ) is the data vector cor-
responding to fi. Despite the fact that ‖f1 − f2‖ is constant over time, δ(T ) is
changing. What does the behavior of δ(T ) tell you about how difficult it will be to
recover f from g as time goes on? How is this supported by the behavior of the
singular values?



Chapter 4

Analytic Methods for Linear Inverse
Problems

As discussed in the introduction to this manuscript, there are two broad ways of addressing inverse
problems. In many circumstances, the physics of the problems is so complex that there is no
choice but to start by discretizing the model and using tools of numerical analysis and optimization
theory to obtain a solution. On the other hand in a surprisingly broad range of application areas
there is sufficient mathematical structure that it is possible to analytically invert the underlying
continuum model to obtain either a closed form expression or a step-by-step algorithm for obtaining
the continuous object f(r) from generally continuously available data g(r), g(t, θ), etc. Clearly at
the end of the day, implementation of these methods on a computer requires discretization. In
those cases where this step can delayed however, significant insight into the problem and deep
connections across a wide range of problem areas is achievable.

More specifically, in this chapter we concentrate on a class of problems whose solution can be
obtained through the use of Fourier methods. Specifically, in a sense that we make more precise
shortly, the Fourier transform of the data can be related in closed form to that of the object.
Thus, inversion is quite closely tied to inverting the Fourier transform. Clearly, one dimensional
deconvolution is the quintessential example of such a problem. Referring to (3.5), the Fourier
transform of the data is the product of the transform of the input and the frequency response of
the underlying linear time invariant system. Thus inversion requires only multiplying the data by
the reciprocal of the system frequency response and then performing an inverse Fourier transform.
In the language of § 3.1 we have

f(t) =
1√
2π

∫
G(ω)
H(ω)

eiωtdω. (4.1)

Ignoring for the time being what this means when H(ω) = 0, it turns out that the fundamental
structure embodied by (4.1) is at the heart of inverse methods for a wide assortment of spatial
inverse problems.

This class of inverse methods share the common structure that the data are weighed integrals
of the object observed over what are essentially, linear apertures. This is clearly the case for CAT
as discussed in Chapter 3 where the weighting function is a Dirac delta. For applications such

68
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Figure 4.1: Geometry of Synthetic Aperture Radar Problem.

ultrasonic medical imaging and geophysical exploration using electromagnetic and acoustic waves
the Born model represents an accurate approximation to the true physics. For these problems, one
frequently employs a linear array of receivers to record the fields produced by collection of remote
sources [8, 23, 24]. The Born kernel provides the weight here. As a final example, we consider the
case of synthetic aperture radar (SAR) imaging, a sensing tool used in geophysical remote sensing
and military surveillance [15, 46, 68, 83]. One common approach to SAR has an airborne platform
probing with radar pulses as it circles a spot on the earth. As illustrated in Fig. 4.1, the data
collected from any one pulse is a time series related to the field backscattered from the earth.
Assuming, among other things, a flat earth, each element of that time series is well approximated
as an integral of the earth’s reflectivity function over a line located d = tc meters from the radar
with c the speed of light. Thus, as the aircraft circles, each time series carries essentially the same
information as a single CAT projection.

The common underlying Fourier structure that makes CAT, SAR, and Born imaging similar to
(4.1) is obtained by analytically relating the one dimensional Fourier transform of each projection
to a piece of the two dimensional Fourier transform of the object. As we shall detail shortly, for
problem where the data are line integral, such as CAT and SAR, this “piece” is a line though
the 2D frequency domain origin. For Born, the line is replaced by a circle. Ultimately then, the
collection of projections provides direct observation of a portion of the 2D spatial Fourier transform
of f . Thus, inversion can be carried out by inverse Fourier transform, as in (4.1). Alternatively,
the structure of these regions can be exploited to obtain another class of algorithms in which each
projection is filtered, “smeared” back into the image region, and the smeared results from each
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Figure 4.2: The Fourier Slice Theorem for X-Ray Tomography

projection are coherently summed. Within this chapter we discuss both options.

4.1 Inverting the Radon Transform

The first step in developing a closed form inverse formula for the Radon transform is deriving the
well known Fourier Slice Theorem. Let us recall that the forward Radon transform defined in (3.9)
is

g(t, θ) =
∫ ∞

−∞
f(x, y)δ(t − x cos θ − y sin θ) dx dy (4.2)

where g(t, θ) is the projection of the object f(x, y) at angle θ, and distance along a linear aperture,
t. The Fourier Slice Theorem states that the 1D Fourier transform with respect to t of g is equal
to the 2D Fourier transform of f(x, y) along a line in 2D Fourier space tilted at the angle θ with
respect to the horizontal axis. The two dimensional spatial Fourier transform of f is defined as:

F (kx, ky) =
∫ ∫

f(x, y)e−i(kxx+kyy) dx dy. (4.3)

There are a number of ways of proving the Fourier Slice Theorem some of which make use of certain
rotational properties of the 2D Fourier transform [12, page 157] and others which rely on a change
of variables [47, Section 3.2]. Our approach here is based on (4.2) directly along with the sifting
property of δ functions. Taking the 1D Fourier transform of g(t, θ) with respect to t yields

G(ω, θ) =
∫

dt

[∫ ∫
dx dy f(x, y)δ(t − x cos θ − y sin θ)

]
e−iωt (4.4)

=
∫ ∫

dx dy f(x, y)
[∫

dt δ(t − x cos θ − y sin θ)e−iωt

]
(4.5)

=
∫ ∫

dx dy f(x, y)e−i[ω cos θ x+ω sin θ y] (4.6)

= F (kx, ky)|kx=ω cos θ,ky=ω sin θ = F (ω cos θ, ω sin θ). (4.7)
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Figure 4.3: Filters used for X-ray tomography

As shown in Fig. 4.2, evaluation of G(ω, t) by allowing the Fourier variable ω run from −∞ to
+∞ is equivalent to proceeding along the line though the kx −ky origin in 2D Fourier space canted
θ radians from the kx axis. Moreover, as we collect projections by varying θ, we acquire spatial
Fourier information about f in polar coordinates. Thus to recovery of f(x, y) from projection data
amounts to inverting a 2D Fourier transform in polar coordinates. The resulting technique is known
as the filtered backprojection (FBP) or convolution backprojection (CBP) algorithm.

To derive FBP, we begin with the two dimensional inverse Fourier transform

f(x, y) =
1

(2π)2

∫ ∫
F (kx, ky)ei(kxx+kyy)dkx dky. (4.8)

Now change variable from Cartesian coordinates, (kx, ky) to polar coordinates, (ω, θ):

kx = ω cos θ ky = ω sin θ (4.9)

to arrive at

f(x, y) =
1

(2π)2

∫ 2π

0

∫ ∞

0
F (ω, θ)ωeiω[x cos θ+y sin θ]dθdω (4.10)

Next, we make use of the easily proved identity 1 F (ω, θ + π) = F (−ω, θ). Using this fact and
recalling that the definition of t = x cos θ + y sin θ allows us to write (4.10) as

f(x, y) =
1

(2π)2

∫ π

0
Q(t, θ)dθ =

∫
Q(x cos θ + y sin θ) dθ (4.11)

where Q is

Q(t, θ) =
∫ ∞

−∞
G(ω, θ)|ω|eiωtdω (4.12)

Thus, the recovery of f from the projections g(t, θ) proceeds in two steps. First, we form Q
according to (4.12). Second, we integrate these Q in a manner dictated by (4.11). Each of these
steps deserves further discussion.

Eq. (4.12) is nothing more than an inverse Fourier transform of a product in the Fourier domain
between the transformed projection and the function |ω|. Hence for a given θ, Q(t, θ) is a filtered
version of the corresponding projection where the frequency response of the filter is the absolute

1EXERCISE: Prove it
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value of ω. Recall that the Fourier transform of the derivative of the signal is iω times the transform
of the signal itself. Thus the |ω| response seen here amounts to the differentiation of each projection.
The frequency response of such a filter grows without bound as ω increases. Thus in practice, noise
in the data at high frequencies would tend to be amplified by the filter. As illustrated in Fig. 4.3,
to counter these effects one typically implements an approximation to |ω| which is linear over the
band where useful data is to be found and roles off to zero at high frequencies. Details concerning
the construction of such filters can be found in [47, Chapter 3].

The formation of f from the filtered projections is achieved through the integration in (4.11).
This process, commonly called backprojection, involves “smearing” each filtered projection into the
image plane and then adding the results angle by angle. This last step of addition is just the
integral over angle in (4.11). The smearing interpretation is illustrated in Fig. 4.4. For a given θ,
the integrand in (4.11) is Q(t, θ) evaluated at the point t = x cos θ + y sin θ. In the x − y plane,
we know from § 3.2, that this relationship among t, θ, x and y describes a line offset by t from the
origin and at an angle π/2 + θ from the x axis. So, (4.12) indicates that we assign all points on
this line the value Q(t, θ). Vary t for a fixed θ then creates a ”smear” of Q(t, θ) along a region of
space angles π/2 + θ from the x axis.2

4.2 Diffraction Tomography: Inverting the Born Approximation

Many of the ideas used in inverting the Radon transform are evident even for the more complicated
physical problem of solving the linearized inverse scattering problem, i.e. developing a diffraction
tomography imaging scheme to parallel the X-ray tomography case. Recalling the discussion in
§ 3.3.3, the problem we face is recovery of f(r) = k2

s(r), the perturbation in the wavenumber
from the nominal background, given observations of the scattered field φs(r). Under the Born
approximation, the two are linked via the linear model:

φs(r) =
∫

g(r, r′)φb(r′)f(r′)dr′. (4.13)

with g(r, r′) the Green’s function for the problem while φb is the background field; that is the field
when f(r) = 0.

Developing an analytical inverse formula for (4.13) is by no means trivial. The precise structure
depends quite heavily on the specifics of the problem including

• Is the imaging problem two dimensional or three?

• The geometry of the problem. What is the structure of the background? Is it homogeneous?
Is it layered? Are there boundaries? These issues all impact quite dramatically the analytical
structure of the Green’s function as well as the form of the incident field.

• The type of sources being used to create the incident field. In some cases, plane waves are
employed. In other instances, point sources are used. To apply these methods to real data,
the radiation patterns of the transmitters and receivers need to be taken into account either
though some sort of calibration stage or directly in the modeling.

2Need to add more material here. Some ideas: fan beam, cone beam, parallel beam in 3D, implementation issues.
Also, a picture with f(x, y), F (kx, ky), Q(t, θ) and the final reconstruction.
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Figure 4.4: Graphical illustration of backprojection operation. The values of the projection g(t, θ)
are smeared back into the image plane along lines of constant t.
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Figure 4.5: Diffraction tomography

• The nature of the medium. Is there loss or attenuation? Is it dispersive? Is it isotropic?

Variations in these three issues lead to different inverse schemes. It is not our intention here to
exhaustively discuss all of these possibilities. Rather, we consider the most basic problem and
leave the reader to explore the literature for variations and extensions. To be more specific, we
are interested in two dimensional imaging using plane wave excitation for a homogeneous, loss-
free isotropic medium. As shown in Fig. 4.5, we assume that the data are collected along linear
apertures oriented parallel to the plane wave fronts of constant phase. While not necessarily the
most realistic setting, this one is the closest to that of the X-ray tomography problem we just
discussed. Thus, the parallels between the two are easily seen thereby providing the reader with a
strong basis for examining more complex (and realistic) problems.

Given these choices, the specifics of the problem are as follows. First, the choice of an incident
field generated by a plane wave yields a background field of the form

φb(r) = e−ik·r = e−i(kxx+kyy) (4.14)

where kx and ky are the components of the wavevector k. By substituting (4.14) into the Helmholtz
equation

∇2φb(r) + k2
bφ(r) = 0

and performing a bit of calculus and algebra3, we see that (4.14) is a solution if and only if the
dispersion relation

k2
x + k2

y = k2
0 (4.15)

is satisfied by kx and ky. For our problem, k2
0 is equal just 2πω/c where ω is the temporal frequency

3EXERCISE: Do the math
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Figure 4.6: A plot of the phase of a plane wave with kx = 3 and ky = 1.

and c the speed of propagation in the medium. Assuming the dispersion relation is satisfied, the
resulting field is everywhere constant amplitude with phase fronts that are linear functions of space.
To see this we note that (4.14) implies constant phase for all values of x and y for which kxx + kyy
is constant. As illustrated in Fig. 4.6, this is just a line in x − y space whose slope is determined
by −kx/ky . The second implication of our choice of problem structure is the Green’s function. In
2D g(r, r′) is not given by (3.19), but rather

g(r, r′) =
−i

4
H

(1)
0 (k0|r− r′|) (4.16)

where H
(1)
0 is the first kind Hankel function of order zero, [2, Chapter 7]. While this function

may not be immediately familiar to the reader, its behavior is quite similar to that of the three
dimensional Green’s function in (3.19). Defining the scalar ρ = |r− r′|, shown in Fig. 4.7 are plots
of the real and imaginary parts as well as magnitudes and phases of

eik0ρ

ρ
and H

(1)
0 (k0ρ)

function for c = 1 and ω = 3. We see both oscillate at a spatial frequency equal to λ = 2π/k0 = 1/3
and have a linear phase structure. It is shown in e.g. [50] that the asymptotic form of the Hankel
function as ρ → ∞ is

H
(1)
0 (x) ≈

√
2

πx
ei(x−π/4)

quite similar to (3.19) except for the slightly slower rate of decay in magnitude and the phase shift.
Thus while the specifics differ between two dimensions and three, the basic physics are qualitatively



CHAPTER 4. ANALYTIC METHODS FOR LINEAR INVERSE PROBLEMS 76

quite similar so that intuition and understanding developed for the simpler 2D problem will carry
over quite nicely when examining more complicated cases.

Just as the basis for filtered backprojection is the Fourier-Slice theorem, the inverse method
we develop here, known as Fourier Backpropagation, rests on close relationship between the one
dimensional Fourier transform of the data along an aperture and the two dimensional transform of
the object. Specifically, as indicated in Fig. 4.5, rather than evaluating the 2D transform along a
line in kx−ky space, the contour is a semi-circle through the origin. The radius of the semi-circle is
equal to k2

0 = 2πω2

c2 and the orientation of the circle depends on the angle of incidence of the plane
wave relative to the x axis.

This result implies that the information conveyed by the data regarding the structure of the
object is inherently limited in a linear inverse scattering problem. Suppose that we are able to
acquire data at all angles around an object. In the case of the Radon transform problem the Fourier
slice theorem indicates that this level of angular diversity in the measurements yields information
about f over the whole spatial Fourier plane. That is, in the absence of noise, the object can
be exactly recovered from full X ray tomography data. This is not the case for linearized inverse
scattering. Indeed, assuming we probe with a single frequency, the union of the semi-circular arc in
Fourier space is a circle of radius

√
2k2

0 . Thus in this ideal case, the data provide information only
about the low spatial frequencies of the object. Thus without the use of a priori information as part
of the reconstruction method (see Chapters 5 and 6), one can only hope to obtain a bandlimited
representation of the unknown.

Because k0 is proportional to the frequency, ω, we see that larger bandwidth can be obtained
as we probe with higher frequencies. In other words, the ability to resolve high spatial frequency
structure in an object requires correspondingly high temporal probing frequencies. Such a result
should not be surprising in light of well known resolution theorae in optics which state that the
ability to unambiguously distinguish closely spaced point-like objects requires the probing radiation
have a frequency inversely proportional to the spacing [10]4. Moreover because the semi-circles
become lines though the origin as ω → ∞ we recover X-ray tomography as a high frequency limit
of diffraction tomography.

To derive the Fourier-Diffraction theorem requires a spatial frequency domain decomposition
of the incident field and the Green’s function. That is, referring to (4.14), we need to be able to
represent these quantities as superpositions of plane waves. Clearly, this is already the case for the
incident field. For the Green’s function, such a plane wave decomposition is not particularly easy
to derive [18, Section 2.2], but certainly does exist and is given as

H
(1)
0

(
k0

∣∣r− r′
∣∣) =

1
π

∫ ∞

−∞
1√

k2
0 − κ2

e
i
“
κ(x−x′)+

√
k2
0−κ2|y−y′|

”
dκ (4.17)

where r = [x y]T and similarly for r′. For notational simplicity it is common to define γ =
√

k2
0 − κ2.

This equation essentially states that we can construct the Hankel function as a weighted sum of
two dimensional plane waves whose spectral components exist in the spatial Fourier domain at
very specific locations (kx, ky) = (κ,

√
k2
0 − κ2) = (κ, γ). As κ proceeds from −∞ to +∞, γ is

imaginary for |κ| > k0 and real for |κ| ≤ k0. For real the (κ, γ) traces out a semi-circle in kx − ky

4EXERCISE: Rayleigh diffraction limit
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Figure 4.7: Structure of Green’s functions in two and three dimensions
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space. The wavevector k for these propagating waves is purely real. Alternatively, when γ is
imaginary, the wavevector acquires an imaginary ky component and plane waves in (4.17) possess
and exponential decay in y. Because such evanescent waves have negligible impact for problems
where the sources and receivers are more than a couple of wavelengths separated (so-called far field
imaging problems), they were initially ignored when deriving diffraction tomography [23]. However
many applications arising in the twenty year since DT was discovered are not characterize by such
length scales. Such problems are termed near field in recognition of the fact that the scattering
is taking place within a couple of wavelengths of the sensors. Thus, there has been considerable
interest in this period of time in the development of tomographic inversion formulae which make
use of these decaying waves.

To use (4.17) in relating the 1D Fourier transform of the data to the 2D transform of the object,
let us assume for a moment that we illuminate with a plane wave traveling in the +y direction
and measure the scattered field along the line y = y0 where y0 is sufficiently large that it does not
intersect the region to be imaged. In this case, the incident field is eik0y. Using this fact and (4.17)
in (4.13) yields

φs(x, y = l0) = − i

4π

∫ ∞

−∞

dκ

γ

∫
f(x′, y′)ei(κ(x−x′)+γ(l0−y′))eik0y′

dx′ dy′. (4.18)

By recognizing ∫
f(x′, y′)e−i(κx′+(γ−k0)y′) dx′ dy′

as F (κ, γ − k0), the two dimensional Fourier transform of f evaluated at kx = κ and ky = γ − k0,
we see that (4.18) can be written as

φs(x, y = l0) = − i

4π

∫ ∞

−∞

1
γ

ei(κx+γl0)F (κ, γ − k0)dκ. (4.19)

Now, we evaluate the 1D Fourier transform of φs with respect to t, that is, along the line where
the fields are observed. By definition we have

Φs(ω, l0) =
∫

φs(t, l0)e−iωt dt.

The transform of the right hand side of (4.19) with respect to x requires only the evaluation of∫
ei(κ−ω)xdx which is 2πδ(ω − κ). Hence after a bit of algebra, we conclude

Φs(κ, l0) = − i

2
√

k2
0 − κ2

eil0
√

k2
0−κ2

F (κ,
√

k2
0 − κ2 − κ) (4.20)

which is the desired result. Specifically, the transform of the data when viewed as a function of
κ traces out the locus of points kx = κ, ky =

√
k2
0 − κ2 − κ in the (kx, ky) plane. Imposing the

condition that |κ| < k0 so that the square root remains real-values, this set of points corresponds
to half of the circle defined by the equation

k2
x + (ky + k0)2 = k2

0;
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Figure 4.8: Coordinate Systems for Filtered Backpropagation

a circle of radius k0 that passes though the origin. While this derivation was based on the as-
sumption that the incident wave was propagating in the +y direction, physically, there is nothing
preferred in the setup of the problem to this orientation. By rotating the direction of incidence, one
would obtain a rotated semi-circular contour. Mathematically demonstrating this is the subject of
an exercise at the end of this chapter.5

Fig. 4.8 provides another manner of parameterizing this contour which will be of use in subse-
quent discussion. Any point on the semi-circle can be represented as the vector k0(s − s0). The
quantity s0 is a unit vector in the spatial Fourier domain pointing in the same direction as the
incident field, ϕ0. The unit vector s on the other hand is at an angle χ with respect to the κ axis.
As χ changes, we sweep out the points on the desired semi-circular arc. By the Fourier-Diffraction
theorem, these points are directly related to the receiver line over which the scattered data are
collected.

These geometric ideas are central in deriving the Filtered Backpropagation algorithm to obtain
a direct reconstruction formula for the recovery of f from the Born-type data. While the derivation
of the algorithm is a bit tedious, it is also instructive as many of the steps represent generalizations
of those encountered in developing the Filtered Backprojection methods in § 4.1. We begin with
the inverse Fourier transform for f(x, y),

f(x, y) =
1

(2π)2

∫
dkx

∫
dkyF (kx, ky)ei(kxx+kyy). (4.21)

A sequence of two changes of variable are made to transform the integration from kx and ky to
variables more relevant to the underlying problem. Specifically, the ultimate goal is a double

5EXERCISE: rotating the FDT.
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integral over all incidence angles, ϕ0, and then along κ, the Fourier variable conjugate to t. As
shown in Fig. 4.8, there is a one-to-one correspondence between κ and points on the semi-circle at
angle ϕ0. Hence, by using κ as a variable of integration, we shall be able to obtain an inversion
scheme that explicitly accesses the data in the format that they are provided by the physics of the
problem. The changes of variable which achieve this are as follows:[

kx

ky

]
→
[

χ
φ0

]
→
[

κ
φ0

]
(4.22)

via [
kx

ky

]
= k0(s − s0) with s =

[
sinϕ0

cos ϕ0

]
s0 =

[
sin χ
cos χ

]
(4.23)

and then
cos χ =

κ

k0
sinχ =

γ

k0
γ =

√
k2
0 − κ2 (4.24)

Upon making these changes and being careful with the required Jacobian calculations we arrive at

f(x, y) =
1
2π

k0

2

∫ π

−π
dϕ0

∫ k0

−k0

dκ

γ
|κ|F (k0(s − s0)) eik(s−s0). (4.25)

Now we make use of the following two facts:

1. Under the Born approximation the Fourier diffraction theorem, (4.20) states

F (k0(s − s0)) = i2γ Φs(κ, l0)e−il0γ

2. If we use the η − t coordinate system in Fig. 4.8, then

k0(s − s0) = κt + (γ − k0)η

to express (4.25) as

f(x, y) =
1

(2π)2
k0

2

∫ π

−π
dϕ0

∫ ∞

−∞

[
|κ|Φs(κ, l0)e−il0γBη(κ)

]
eiκt dκ. (4.26)

where

B(κ) =

{
ei[(γ−k0)η] |κ| < k0

0 else
(4.27)

To clarify the connections among (4.26), the notion of backpropagation, and filtered backpro-
jection, we define the inner integral as Π(t, η). Noting from Fig. 4.8 that t and η are related to x
and y via

t = x sin ϕ0 − y cos ϕ0

η = x cos ϕ0 + y sin ϕ0
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allows us to write (4.26) as

f(x, y) =
1

(2π)2
k0

2

∫ π

−π
dϕ0Π(x sin ϕ0 − y cos ϕ0, x cos ϕ0 + y sin ϕ0) (4.28)

Equation (4.28) is basically equivalent to (4.12) in the case of inverting the Radon transform in
that both implement the sum over incident angles of frequency-domain processed forms of the
measured fields. The manner in which the data are processed is also quite similar between X-ray
and diffraction tomography in the both make use of the |ω|-type of filter. Aside from the trivial
scaling of the data by eil0γ , the real source of difference between inverting the Radon transform
and diffraction tomography lies in the presence of the Bη filter. To fully appreciate the physical
significance of Bη(κ) requires a small, but interesting digression into diffractions theory and the
notion of an angular spectrum of waves.

Consider the problem of determining the field that satisfies the Helmholtz equation in free space
in the halfspace y > 0 given knowledge of the field on the plane y = 0. In other words, given φ(0, y)
we seek a φ(x, y) satisfying

∂2

∂x2
φ(x, y) +

∂2

∂y2
φ(x, y) + k2

0φ(x, y) = 0.

Defining the y dependent Fourier transform of φ as

A(κ, y) =
∫

φ(x, y)e−iκx dx (4.29)

allows us to write the Helmholtz equation in terms of A

∂

∂y2
A(κ, y) + γ2A(u, y) = 0 (4.30)

where γ =
√

k2
0 − κ2. The solution of (4.30) is

A(κ, y) = C+(u, 0)eiγy + C−(u, 0)e−iγy . (4.31)

where the first term represents a plane wave traveling in the +y direction (i.e. k for this wave is
[0 γ]T = [0

√
k2
0 − κ2]T ) and the second is a plane wave traveling in the −y direction. Because the

source of the field is assumed to lie in the region y < 0, C−(u, 0) = 0. Thus

A(κ, y) = C+(u, 0)eiy
√

k2
0−κ2

(4.32)

and using the inverse (4.29) we conclude

φ(x, y) =
1
2π

∫
C+(u, 0)ei(ux+κy) du (4.33)

From (4.32) and (4.33) we draw a number of conclusions:
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1. By evaluating (4.33) at y = 0 and taking an inverse Fourier transform we see that C+(u, 0) =
A(u, 0) the Fourier transform of φ(x, 0), the data from which we want to compute the fields
for y > 0.

2. Comparing (4.14) and (4.33) indicates that (4.33) is a representation of φ(x, y) as a superpo-
sition of plane waves where kx = u and ky = κ =

√
k2
0 − u2 and the plane wave spectrum is

given by A(u, 0).

3. Taking a systems view of the propagation problem, we can view the input as φ(x, 0) and the
output as φ(x, y). According to (4.32), the transfer function of this system is

H(κ) =
A(κ, 0)
A(κ, y)

= eiy
√

k2
0−κ2

(4.34)

For |κ| < k0, we have propagating fields and the transfer function is merely a y-dependent
phase shift to the initial angular spectrum. For the case of evanescent waves where |κ| > k0,
it is not hard to show that the transfer function decays exponentially fast as a function of
distance from the plane y = 0. Finally because the physical significance of H is to move the
fields from the boundary y = 0 into the space y > 0, we call H the propagator.

The connection to (4.26) and (4.27) should now be clearer. The quantity Bη(κ) encountered in the
processing of inverting the Born approximation is basically a propagator from the aperture where
the data are recorded into the region to be imaged. More technically, it is a bandlimited version of
the adjoint of the propagator. As explained in [23], when ignoring the evanescent fields, the two
operators are equivalent.

6

4.3 Exercises

4.1 In this problem, we examine the filtered backprojection (FBP) approach and write Matlab
routines for the reconstruction of sampled data. The FBP algorithm is a two step process for
recovering an image from its projections. It represents an exact, closed form inverse of the
continuous Radon transform. The FBP method is mathematically represented as

q(θ, t) =
∫ ∞

−∞
g(θ, ω)|ω|ej2πωtdω (4.35)

f(x, y) =
∫ π

0
q(θ, x cos θ + y sin θ)dθ ≡ (Bq)(x, y) (4.36)

where q(θ, t) is the filtered projection at angle θ, g(θ, ω) is Fourier transform of the projection
at angle θ taken with respect to the t coordinate, and B is the so-called backprojection
operator.

1. Please provide a graphical and descriptive interpretation of (4.36). Specifically, justify
the use of the term “backprojection.”

6It might be nice to add the work of John Schotland here as a segue into the numeric approach to the problem
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2. The time domain representation of the filter |ω| does not exist as a well behaved function.
Explain why this is so.

3. Typically, one assumes that the projections are band-limited to ω ∈ [Ω,Ω]. Under this
assumption it is natural to define a “windowed” form of the |ω| filter by multiplying this
filter with a box function in the frequency domain. Now the filter has a tractable time
domain representation. Find it and use Matlab to examine its characteristics as Ω is
increased.

4. Starting from (4.35), show that one can write q(θ, t) as

q(θ, t) = h(t) ∗ ∂g(θ, t)
∂t

. (4.37)

where ∗ is convolution. Specifically, find h(t). (Hint: This h(t) also plays a role in de-
modulation for analog communication systems.) Comment on the relationship between
(4.37) and the filter discussed in (b.i). In particular, it would appear that we have here
the filter which previously we said did not really exist. What’s up?

5. We will now build on what you know to create an implementation of the FBP recon-
struction for the discrete case. In particular, write a Matlab routine called fbp.m that
takes as input the discrete data vector y, the corresponding projection matrix T , and
the number of angles Nθ used in generating y and produces the FBP reconstruction x̂ as
output. Notes: 1) Matlab’s fft routine places the frequency origin at the first sample,
thus depending on how you create the |ω| filter you may need to use the fftshift routine.
2) Since T is being passed in, the implementation of the backprojection operation is
very simple and should not require extensive coding. 3) Do not worry about the global
scaling of the reconstruction.

6. Create an approximation to an impulse object fo by making a 32 × 32 image which is
all zeros except for a single 2 × 2 region of ones near the center (you might want to use
makeb.m to do this). Generate FBP reconstructions of this object from projection data
corresponding to N uniformly spaced projection angles in [0, 180), and N projections per
angle for N ∈ {16, 32, 64, 128}. For each N , plot the central cross-section through the
corresponding reconstruction.Based on this experiment and your own visual evaluation,
what is the ratio of the number of observations to the number of unknowns (i.e. pixels)
that is necessary before FBP produces reasonable reconstructions in the discrete case?

7. From the class web site retrieve the file phantom.mat.gz containing a 32×32 phantom.
Generate the FBP reconstructions for N ∈ {16, 32, 64, 128} angles in [0, 180). Based
on this experiment and your own visual evaluation, what is the ratio of the number
of observations to the number of unknowns (i.e. pixels) that is necessary before FBP
produces reasonable reconstructions in the discrete case?



Chapter 5

Numerical Methods for Linear Inverse
Problems

Methods such as filtered backprojection and filtered backpropagation which we examined in the last
chapter form the basis for widely used methods in a range of application areas including medical
imaging with CAT and MRI as well as geophysical imaging using acoustics and electromagnetics. In
other areas however the problems are such that these and related methods are either not appropriate
or do not provide the performance required for the application. For example, filtered backprojection
was derived specifically for tomographic problems where the Fourier-slice theorem can be shown
to hold while filtered backpropagation was of use in cases where the Fourier diffraction theorem
governed the relationship between the data and the object to be recovered. If the physics of the
sensor do not match those for which the algorithm was derived (e.g. if the Born approximation is
not accurate), then one would expect a decline in performance as evidenced by poorer imagery.

Alternatively and quite typically, the quantity of data available to an inversion method will
impact the choice and utility of an algorithm. The filtered backprojection algorithm is ideal when
one possess data for a dense collection of angles θ between 0 and π. In many circumstances the
angles over which data can be acquired are severely limited. Such limited view problems arise for
example in the cases of synthetic aperture imaging [71,83], medical imaging [1,9,33,89], geophysics
[37, 53, 66, 90], and nondestructive evaluation [56, 57, 63]. While there is nothing preventing one
from using a method such as filtered backprojection to process these data, the paucity of data will
result in the presence of non-physical artifacts in the imagery.

LIMITED VIEW FBP EXAMPLE GOES HERE. MAYBE ALSO A DECONVOLUTUION
PROBLEM FOR A LOWPASS FILTER.

To quite a large extent, the issues and problems arising in this example typify those encoun-
tered in a very broad range of inverse problems. Specifically, the data provide far from complete
information regarding the object to be imaged. The lack of information may be due to limited view
issues. Often however the physics of the problem inherently limits information. While we did not
emphasize it at the time, this was the case for diffraction tomography wherein the data provided
for the recovery of only a spatially bandlimited version of the true profile. Thus, high frequency
information such as the precise location of edges, is not conveyed by the data. In many cases both
the physics as well as limited sensor placement work together to severely complicate the inversion

84
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process.
There are a range of approaches for building on the tools developed in the previous chapter

to handle issues such as these. At one end of the spectrum is the development of analytic inver-
sion methods (akin to limited view versions of the approaches in Chapter 4) appropriate for the
physics of the underlying problem and the specifics of the sensor geometry. Such techniques are
both interesting and useful; however they also tend to be highly specific to the application under
investigation. Alternatively, one can use the tools of § 3.4 to first discretize the problem and then
look at inversion more generically using ideas drawn from vector space analysis, numerical linear
algebra, optimization theory, etc. The power of this later approach is the wide applicability of
the resulting methods. Moreover as we shall see later in this chapter, this approach provides us
with the ability to easily augment the information in the data with any prior information we may
have concerning the structure of the region in order to improve the quality and usefulness of the
resulting reconstruction.

The primary shortcoming of a numerical view of inversion is the loss of insight incurred when
one reduces the physics of the problem to discrete form. In the case of linear inverse problems for
example one typically reduces a linear integral equation to a matrix-vector problem. As we shall
see, tools such as the singular value decomposition (SVD) then play a dominant role in the analysis
and solution of the resulting inverse problem. Often forgotten (or at least not explicitly taken
into consideration) however is the physics which underlies these problems. Thus, the analytical
elegance as well as the algorithmic implications of results such as the Fourier diffraction theorem
are not typically encountered in the domain of discrete inverse problems. Bridging the gap between
application specific inversion methods and purely numerical approaches to their solution is an area
of considerable research.

In this chapter we shall develop the tools and methods common to the more numeric approach
to linear inverse problems. The majority of this chapter will be concerned with problems for which
the object as well as the data are both finite dimensional and are related via a matrix-vector model
of the form

g = Kf (5.1)

In (5.1), g ∈ R
M is the data vector f ∈ R

N is a vector of unknowns to be determined, and K is a
discretized form of the linear operator, that is, an M ×N matrix, relating the two. Finally, we use
f̂ to denote a reconstructed estimate of f obtained through the processing of a set of data g.

As alluded to previously, problems of the form (5.1) are quite amenable to analysis and solution
using standard techniques from basic linear algebra. The intuition gained from such analysis does
carry over to more complex problems. Specifically, in the last part of this chapter we are concerned
with semi-discrete inverse problems where again the data are discrete, but this time, we wish
to recover a continuously-values object. More sophisticated Hilbert space ideas can and will be
brought to bear on this class of problems, but at a fundamental level, they are for the most part
strikingly similar to those used for the fully discrete case.

5.1 Ill-posedness

One typically refers to inverse problems where the information content of the data is limited due
to conditions related to the physics of the sensing modality or restrictions on the placement of
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Figure 5.1: Blue lines illustarte the span of the columns of A in (5.2). The red line is the orthogonal
complement of the span in R

3

the sensors as being ill-posed. The precise mathematical notion of an ill-posed problem was first
formulated in 1902 by the mathematician Jacques Hadamard who was studying the manner in
which the solution to certain partial differential equations was dependent on the boundary data.
According to Hadamard, a problem was well posed if three conditions are met:

1. At least one solution exists.

2. The solution is unique.

3. The solution is stable in the sense that its dependence on the boundary data is continuous.
Less formally, but perhaps more clearly, the notion of stability implies that small changes
in the boundary data should not yield overly large changes in the resulting solution to the
underlying problem.

Within the context of the model inverse problem in (5.1), the first two criteria of Hadamard
require the existence and uniqueness of a solution f for a given set of data g. Technically, for finite
dimensional problems, if a solution exists it will always be continuously dependent on g where
continuity is formally defined in the δ − ε sense of mathematical analysis. Thus, here the issue of
stability will be interpreted a bit less formally using in terms of the intuitive idea that the presence
of “small” perturbations in the data due for example to sensor noise, model mismatch, calibration
errors etc., should not result in “large” changes to f̂ .

5.1.1 Existance

The finite dimensional model provides a natural setting to make clear the three concepts of existence
of a solution, uniqueness of solutions, and stability. Linear systems for which there are more rows in
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K than columns, termed overdetermined systems, provide classic examples of cases where solutions
may not exist. As an example, consider the problemg1

g2

g3

 =

1 2
3 −4
4 3

[f1

f2

]
+

w1

w2

w3

 (5.2)

In this case, the inverse problem is to determine the two elements of f which give rise to an arbitrary
three vector g. Basic linear algebra indicates that f is only able to generate vectors in R

3 which
lie in the linear span of the columns of K; that is the range of the matrix K. Geometrically, this
range is shown in Fig. 5.1 as the plane containing the two blue lines. More specifically, any vector
in R

2 which contains a component along the red line in Fig. 5.1, i.e. perpendicular to this plane,
cannot be exactly represented by any choice of f . Under the rather mild assumption that there is
generally some noise in the data, then in all but the most unlikely of circumstances, g will have a
“red” piece. Hence a solution to (5.2) will not exist. To put it another way, in general two degrees
of freedom as represented by f1 and f2 are generally insufficient to provide a representation for the
three degrees of freedom in the vector g.

The singular value decomposition (SVD) of the matrix K can be of use in algebraically under-
standing this problem. Recall that for an M × N matrix K the SVD is written as K = UΣVT

where U is orthonormal and of size M × M , V is also orthonormal and of size N × N , and Σ is
M × N and is zero except for the main diagonal where the singular values are located. For the
overdetermined problem then, Σ takes the form

Σ =
[
Σ1

0

]
(5.3)

with Σ1 = diag {σ1, σ2, . . . , σN} and where for simplicity here we assume that all the singular values
are non-zero.1 In terms of the SVD, the inverse problem of interest is g = UΣVf . Defining f̃ = Vf
and g̃ = UT g we have the equivalent problem g̃ = Σf̃ . From the discussion in § 2.2.3, this is just
a version of the original problem “rotated” into a coordinate system adapted to K. In this system,
the issue of existence is much clearer. Specifically, by the structure of the matrix Σ, a solution will
exist if and only if the last M − N components of the vector g̃ are exactly zero, a situation not
likely to be encountered in the presence of noise.

5.1.2 Uniqueness

In contrast to the existence issue which is most naturally studied in terms of overdetermined linear
systems, uniqueness is best understood using the example of an underdetermined system where
M < N . Here one has not just one solution, but an infinite number of them due to the presence
of a nullspace associated with K. Again let us start with a simple example defined by the 2 × 3
matrix

K =
[−1.3 −0.5 1.0
−1.0 1.0 0.0

]
(5.4)

1Soon we shall lift this assumption.



CHAPTER 5. NUMERICAL METHODS FOR LINEAR INVERSE PROBLEMS 88

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

A(:,1)

A(:,3)

A(:,2)

Figure 5.2: Blue lines illustarte the span of the columns of A in (5.4).

In this case the range of K is R
2 and the columns are plotted in Fig. 5.2. Geometrically, the

inverse problem here is to use the three degrees of freedom in f to build vectors in R
2. The extra

element of f implies that in general there will be some flexibility concerning how this is done.
Indeed, this is precisely the case for the matrix K in (5.4). For example, say the target g = [0 1]T .
Using the first two columns of K yields a solution f̂1 = [−0.2778 0.7222 0.0000]. We could just
as easily use the first and third columns to arrive at a solution f̂2 = [−1.0000 0.0000 − 1.3000]T .
Finally, it is easy enough to verify that one (of many) solutions employing all three elements of f
is f̂ = [0.1591 1.1591 0.7863]T .

The primary issue here is that K has a nullspace spanned by the vector

fnull =

0.4369
0.4369
0.7863.


Thus any solution to the problem can be written as a linear combination of a vector in N (A)⊥

plus a component in N (A). By direct calculation, one can verify that the orthogonal complement
of N (A) is spanned by the columns of the matrix

B =

−0.5556 −0.2778
−0.5556 0.7222

0.0000 0.0000

 (5.5)

so that we can write any solution to the inverse problem as f = Bf1 +αfnull where α is an arbitrary
real number and f1 is a two-vector. This decomposition should clarify the non-uniqueness inherent
in this problem. Because KB is just the 2 × 2 identity matrix and Kfnull = 0, we have that
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Figure 5.3: K matrices

g = f1 and can therefore conclude that any solution to the inverse problem may be written as
f̂ = Bg + αfnull. Hence the choice of α corresponds to the one extra degree of freedom we have in
selecting a solution to the problem. Because this choice is arbitrary, there are obviously an infinite
number of such solutions.

As with the overdetermined linear system, in the case where we have fewer rows than columns,
the SVD provides some useful insight. Assuming that the number of nonzero singular values is now
M , Σ takes the form

Σ =
[
Σ1 0

]
(5.6)

with Σ1 = diag(σ1, σ2, . . . , σM ). Again, we define g̃ = UT g and f̃ = Vf . If we take f̃1 as the first
M elements of f̃ and f̃2 as the remaining N − M components of f̃ then in the “rotated” domain,
the linear system takes the form

g̃ = Σ1f̃1 + 0f̃2.

In other words as long as f̃1 = Σ−1g̃ then f̃2 can be anything without impacting the value for g̃.
Hence the lack of uniqueness for the problem is captured explicitly by the singular value decom-
position the identification of f̃2 as those degrees freedom whose values has no impact on the Kf
product.

5.1.3 Stability

To illustrate the more subtle issue of the stability of an inverse problem, consider the problem of
recovering f from g given the four K matrices shown in Figs. 5.3 and 5.4. Each of these matrices
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Figure 5.4: Plots of K(64, :) for the matrices in Fig. 5.3. Each matrix performs local averaging of
the input signal.

is of size 128 × 128. Each of the four K shown in the figure have structure only near the diagonal
implying that gm is an averaged form of fn in a narrow band of samples around m = n. Moreover,
because the four images are more or less constant along the diagonals, the averaging kernel is not
changing appreciably from one n to the next. It is only being “dragged” along. Fig. 5.4 is in fact a
plot of the 64-th row of each matrix and shows that the structure of the averaging being performed
by each of these different matrices is really quite similar.

In fact, these matrices have been constructed to have very specific SVD structure. All four have
the same set of singular vectors and in each case U = V. Only their singular values differ. Hence
for i = 1, 2, 3, 4 we have Ki = UΣiUT

i where Σi = diag(σi) and σi is the 128×1 vector of singular
values and the matrix of singular vectors U = [u1 u2 . . . un . . . u128]. To mimic traditional Fourier
analysis, the singular vectors have been chosen to behave like sinusoids of increasing frequency as
a function of n. A few are shown in Fig. 5.5. Thus, the singular values play a role quite similar
to that of a traditional filter.2 Plots of σi are shown in Fig. 5.6. Here we order the singular
values not according to their magnitude but rather according to the frequency of the corresponding
singular vector. In all four cases, all of the singular values are strictly greater than zero. As i varies
however, we have structured the filters in such a way that they come increasingly closer to having

2The primary difference here is that the filter coefficients as well as the basis functions are all real valued whereas in
the normal Fourier setting they are complex valued. This discrepancy is caused by the fact that complex exponentials
are eigen-functions of convolution operators and hence can be complex. To be consistent with much of the rest of
this manuscript, the analysis we carry out here is in terms of the SVD for which the singular values and singular
vectors must be real-valued.
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Figure 5.5: A few of the singular vectors for the matrices in Fig. 5.3
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Figure 5.6: Singular value plots for the K matrices in Fig. 5.3

a zero singular value at around index 85. In signal-processing parlance, these linear operators look
increasingly like low pass filters as we go from i = 1 to i = 4. While each matrix is, strictly
speaking, invertible and while the four of them appear quite similar based on Figs. 5.3 and 5.4 from
the structure of the singular values will have a rather substantial impact on the reconstruction
results.

Here we look at the problem of recovering the f whose components are plotted in Fig. 5.7 both
from noise free and noisy data. The clean data sets gi = Kif are shown in Fig. 5.8 while their noisy
counterparts are displayed in Fig. 5.9. In each case the same noise vector is added to the clean
data. The noise vector itself is comprised of zero mean, independent identically distributed Gaussian
random variables with standard deviations equal to 0.04. As noted in the previous paragraph, Ki

is technically invertible for each i so that solving the inverse problem here amounts to applying
K−1

i to each of the eight possible data vectors (four noiseless and four with additive noise). The
results are shown in Figs. 5.10 and 5.11. In the case of the noise free data, the invertibility of
Ki produces the anticipated results: perfect recovery of f . The addition of noise however leads
to substantial changes in the reconstruction. As the singular values structure comes closer and
closer to possessing a zero, the influence of the noise on f̂ grows in a manner out of proportion
to the size of the noise itself. More specifically, large amplitude, high frequency artifacts become
increasingly dominant in the estimates of the object. This type of noise amplification is in fact seen
across a broad range of problems, not just this somewhat artificial example, and is the primary
characteristic of the ill-posed nature of these inverse problems.

To gain a more precise and more general understanding of the problem, let us continue to
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Figure 5.8: Noise free data
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Figure 5.9: Noisy data
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Figure 5.10: Noise free reconstructions
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Figure 5.11: Noisy reconstructions

assume we have a square linear system, M = N , possessing a full set of N nonzero singular values,
σ1 > σ2 > · · · > σN > 0, but not necessarily having U = V. Exploiting the orthonormality
of the N × N matrices U and V, the inverse of K = UΣVT is just K−1 = VΣ−1UT where
Σ−1 = diag(σ−1

1 , σ−1
2 , . . . , σ−1

M ). Using this decomposition of the inverse of K means that

f̂ = VΣ−1Ug =
N∑

k=1

γk

σk
vk (5.7)

where γk = uT
k g and uk and vk are the k-th columns of U and V respectively. We interpret (5.7)

in terms of the analysis-filtering-synthesis interpretation of a linear operator discussed in § 2.2.3.
That is, the reconstruction, f̂ is formed by the synthesis of a set of “modes,” vk each of which is
weighted by a scaled generalized Fourier coefficient. The coefficients are the projection of g onto
the basis given my the columns of U and the scaling is done using the inverse of the singular values
of K.

This interpretation implies that the action of the inverse of K is comprised of two “well-posed”
steps, namely analysis and synthesis, between which is sandwiched the source of many of the
difficulties for linear inverse problems, filtering. The orthonormality of U and V imply that their
norms are unity. Thus there will not be any sensitivity or ill-posedness associated with these
operations because they do not amplify (or for that matter attenuate) the “size” (as measured in
the two-norm sense) of the vectors on which they act. Indeed, consider the case where the data
vector g is perturbed by a small amount δg in that ‖δg‖ � 1. By the triangle and Cauchy-Schwartz
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inequalities, ‖U(g + δg)‖ ≤ ‖Ug‖+ ‖Uδg‖ ≤ ‖U‖‖g‖ + ‖U‖‖δg‖. But ‖U‖ = 1. Hence if ‖δg‖ is
small, so too will be the change in the norm of the output.

The same is most definitely not true of the filtering operation. As indicated by (5.7), filtering
is performed via multiplication by the diagonal matrix Σ−1 or equivalently, scaling each of the
generalized Fourier coefficients γk by σ−1

k . To see the impact of this scaling let us suppose that
the data vector is g = Kf + n where each element of the noise vector n is independent of all the
rest and distributed as a zero mean Gaussian random variable with variance ν2. Letting f̂ = K−1g
and making use of (5.7) yields f̂ = f + VΣ−1UTn so that the reconstruction error is given by
e = f̂ − f = VΣ−1UTn. To gauge the size of this error we examine the “average” value of ‖e‖2.
Using tools from standard statistical signal analysis [58, Section 3.5]3, this is easily shown to be

E
{
‖f̂ − f‖2

2

}
=

N∑
k=1

ν2

σ2
k

(5.8)

where E {·} is the expectation operator. In other words, even if ν is very small, on average the
noise will not go to zero. In fact, the noise will generally be present for all k in the summation
(5.7). Hence as the singular values go to zero, their inverse will be heading toward infinity thereby
amplifying the impact of the corresponding vk on f̂ .

A commonly used tool for gauging the severity of the ill-posedness of K is the condition number
of the matrix, κ(K), defined as

κ(K) = ‖K‖‖K−1‖ (5.9)

which can be show4 to be equal to

κ(K) =
σ1(K)
σN (K)

=
Largest singular value of K
Smallest singular value of K

. (5.10)

The utility of κ as a measure of ill-posedness arises from the following observation. Suppose that
we have a linear system Kf = g and we perturb f by δf so that K(f + δf) = g + δg. From the
triangle and Cauchy-Schwartz inequalities it is easily seen that

‖δf‖ ≤ ‖K−1‖‖δg‖.

But since Kf = g, we see that ‖g‖ ≤ ‖K‖‖f‖ or

1
‖f‖ ≤ ‖K‖ 1

‖g‖ .

Hence ‖δf‖
‖f‖ ≤ ‖K−1‖‖δg‖‖δf‖ ≤ ‖K−1‖‖K‖‖δg‖‖δg‖ = κ(K)

‖δg‖
‖g‖ . (5.11)

Thus, if we think of δg as the noise in the data, (5.11) indicates that the fractional change in the
resulting f is bounded above by the relative power of the noise amplified by the condition number

3Will need an appendix on this stuff
4EXERCISE
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of the matrix. In other words, the condition number places a bound on how perturbations in the
data can be magniufied by the inversion process. As κ grows larger, the problem becomes more
ill-posed and the impact of noise more pronounced. For the matrices in Fig. 5.3, the condition
numbers are 1.41, 10.03, 15.14 and 160.86. In practice, condition numbers on the order of 1015
are not uncommon. Hence even for a fairly mild condityion number of around 160, the impact of
ill-posedness as seen in Fig. 5.11 can be substantial.

The issue of ill-posedness is quite closely related to those of existence and uniqueness. Keeping
with the assumption that N = M , let us assume for a moment that rather than decaying to zero,
the singular values were in fact equal to zero for all i > i∗. In this case Σ is of the form

Σ =
[

Σ1 0k∗×N−k∗

0N−k∗×k∗ 0N−k∗×N−k∗

]
(5.12)

where 0m×n is the m×n matrix of all zeros and Σ1 = diag(σ1, σ2, . . . , σk∗). Drawing on the insight
provided by (5.3) and (5.6), we see that (5.12) has elements of both non-uniqueness and non-
existence. The bottom block row of zeros implies that in the presence of noise there will generally
not be an f such that g = Kf . The block of zeros in the upper right block of Σ implies that if
we satisfy ourself with ignoring the part of the problem associated with the bottom block of zeros,
then the remaining problem is underdetermined, possesses a nullspace, and thus will not have a
unique solution.

More generally one finds that the singular values decay toward zero, but are never exactly equal
to zero. In those cases where there is a clear dividing line between “large and “small” values of σk,
one could specify an effective i∗ thereby reducing the problem to one where

Σ =
[

Σ1 0k∗×N−i∗

0N−i∗×i∗ Σsmall

]
. (5.13)

Such a system possessed basically the same interpretation as (5.12) if one is willing to ignore Σsmall.
In most cases however, it is the unfortunate fact that no such clear division exists. Rather the decay
of the singular values is gradual but unrelenting. Such problem do technically admit solutions to
the extent that f̂ = K−1g exists. However as we have seen, such solutions will be characterized
by noise induced artifacts caused by the amplification of modes for which σ−1

k are small, but not
easily deemed negligible. Damping out these modes without totally ignoring their contribution is
the goal regularization to be discussed in §XXX and XXX.

Before closing out this section, a couple of remarks are in order:

1. Eq. (5.8) indicates that the modes for which σk are significantly larger than ν will be im-
pacted minimally by the noise. As we shall see throughout the remainder of this chapter, it
is frequently the case that these modes contain generally low spatial frequency information.
As the mode number i increases, it is often the case that the frequency content of the corre-
sponding mode vector vk also rises. Hence building on the case of diffraction tomography, one
may conclude a bit more generally that for linear inverse problems the data provide stable
and reliable information mostly about the low frequency content of the object.

2. If there were no noise and the data were exactly equal to Kf then the γk would also be going
to zero “fast enough” to allow for a perfect reconstruction. If the noise is not of the white
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Gaussian noise variety discussed above then the problem of ill-posedness may not arise. More
specifically, if ‖uT

k g‖ → 0 at a rate faster than σk then the data are said to satisfy the discrete
Picard condition [41] and the noise-induced amplification of some of the vk will not occur.

5.2 The Pseudo-Inverse

An initial tool used to address the three issues of existence, uniqueness and (to a limited extent)
stability is known as the pseudo-inverse of the matrix K. In a discrete setting, the pseudo-inverse is
equal to K−1 when this matrix exists. Thus the difficulties encountered with small but still nonzero
singular values are not addressed using this inversion scheme and will be taken up in greater detail
in § 5.3. When no inverse exists, the singular value matrix, Σ, has the structure of (5.3) for full-rank
overdetermined problems, (5.6) for full-rank underdetermined problems, or a variant of (5.12) for
problems where M �= N and some of the singular values are zero. While we derive the pseudo-
inverse in each of these cases separately in this section, the results are all remarkably similar and
yield an inversion scheme which echoes (5.7):

f̂ =
∑
k∈K

uT
k g
σk

vk = V1Σ−1
1 UT

1 g ≡ K†g (5.14)

where the index set K = {k|σk �= 0} and U1 and V1 are comprised of the corresponding columns
from the singular vector matrices U and V. In other words, the pseudo-inverse constructs an
estimate f̂ which is quite similar as that which is obtained when K is invertible, just restricted to
the subspaces of U and V for which the singular values are non-zero.

5.2.1 Full-Rank Overdetermined Inverse Problems

As illustrated in Fig. 5.1, problems in this class are characterized by an inability to find any f such
that Kf is equal to the data vector g because the columns of the M × N matrix K with M > N
span a subspace of R

N . The pseudo-inverse of K for this problem is obtained by seeking that f
such that Kf is as close to g as is possible. Formally, we have

f̂ = arg min
f

‖g − Kf‖2
2 (5.15)

Since R
N is a Hilbert space, the projection theorem guarantees that a unique solution to (5.15) will

exist and moreover, provide a means of finding that solution. Specifically, f̂ will be that f which
makes the error g − Kf orthogonal to any element in the range of K. This means that for any
φ ∈ R

N we must have (g − Kf) ⊥ Kφ. This is accomplished if and only if

(Kφ)T (g − Kf̂) = φT (KTg − KTKf̂) = 0. (5.16)

Because φ is arbitrary, this condition is satisfied if and only if

KTKf̂ = KTg → f̂ = (KT K)−1KTg (5.17)
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the linear system to the right of the arrow in (5.17) is known as the normal equations and the f̂
solving this system is known as the linear least squares solution to the overdetermined problem.
Finally, the matrix taking the data to f̂ , K† = (KT K)−1KT is the pseudo-inverse of K for the full
rank overdetermined system.

Another interpretation of this solution is obtained by examining Fig. 2.4. By writing the data
space, RM as the direct sum of two orthogonal subspaces R(K) and R⊥(K) = N (KT ) the condition
of making g − Kf as small as possible amounts to requiring that there be no component of this
vector in the range of K. Were such a component present then we must be able to adjust how we
combine the vectors spanning this space in order to remove this error. The requirement that no
part of g−Kf be in R(K) means that all of the error must lie in R⊥(K) = N (KT ). From a linear
algebraic perspective, this means KT (g − Kf) = 0, as seen above.

Still a third approach to this solution follows from the second. Specifically, we decompose g
uniquely as gr +g0 where gr ∈ R(K) and g0 ∈ R⊥(K). Since gr is in the range of K, there should
be a unique solution to Kf = gr. In fact this will be the case. To see this we start by recalling that
gr = PR(K)g where PR(K) is the orthogonal projector onto the range of K. From the discussion on
page 28, an orthonormal basis for R(K) is given by U1, the set of left singular vectors associated
with the nonzero singlar values of K. According to Example 2.19, given such a basis for R(K),
the projector is constructed as PR(K) = U1UT

1 . So, making use of the SVD of K, the problem we
wish to solve is:

U
[
Σ1

0

]
VT f̂ = U1UT

1 g (5.18)

but writing U as [U1 U2], and taking advantage of the orthonormality of this matrix we have

U−1U1 = UTU1 =
[
UT

1

UT
2

]
U1 =

[
I
0

]
(5.19)

Using (5.19) as well as the fact that Σ† =
[
Σ−1

1 0
]

is a left inverse of Σ for this problem, (5.18)
can be solved as

f̂ = V [Σ1 0]UTU1UT
1 g

= V [Σ1 0]
[
I
0

]
UT

1 g = VΣ−1
1 UT

1 g
(5.20)

thereby showing how to find V1, U1 and K in (5.14). Additionally since

Σ−1
1 UT

1 =
[
Σ−1

1 0
] [UT

1

UT
2

]
= Σ†UT

we have
f̂ = VΣ†UTg (5.21)

which provides another expression for K† in terms of the components of the SVD of K.
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5.2.2 Full-Rank Underdetermined Inverse Problems

The development of the pseudo-inverse for the full-rank underdetermined is quite complementary
to that of the overdetermined case. As discussed on page 88, the primary issue here is the presence
of the nullspace for the matrix K so that many f ’s exist such that Kf = g. As in the previous
section, the pseudo-inverse is constructed by defining f̂ as the solution to an optimization problems.
Here thought the problem is to select the “smallest” f which is still consistent with the data as in

f̂ = arg min
f

‖f‖2
2 (5.22)

subject to Kf = g.

The solution to (5.22) is called the minimum-norm (or just min-norm) solution to the underdeter-
mined, full-rank problem Kf = g.

Much as we solved the overdetermined problem by decomposing the data space, R
M into two

orthogonal pieces, here we do the same but for the object space, R
N . That is we write any

f ∈ R
N that solves Kf = g as the unique sum of two components: fn ∈ N (K) and a second piece

fr ∈ N⊥(K) = R(KT ). That f with no component in the nullspace of K is the solution to (5.22)5.
Because the remaining part of the solution fr lies in the range of KT , we have fr = KTx for some
vector x ∈ R

M . Thus, g = KKTx so x = (KKT )−1g and finally

f̂ = KT (KKT )−1g (5.23)

is the solution to (5.22). Assuming K has full row rank, the inverse in (5.23) must exist and the so-
lution is unique6. Also, from (5.23)this we see that the pseudo-inverse of K for the underdetermined
full rank problem is

K† = KT (KKT )−1. (5.24)

To see the role played by the SVD in this solution, we start by noting that the SVD of K for
this problem takes the form

K = U [Σ1 0]
[
VT

1

VT
2

]
and that the columns of V1 form an orthonormal basis for N⊥(K). So fr = V1x and we have

U [Σ1 0]
[
VT

1

VT
2

]
V1x = g. (5.25)

From (5.25) we conclude that x = Σ−1
1 UT g so

f̂ = V1Σ−1
1 UT g = [V1 V2]

[
Σ−1

1

0

]
UT g

≡ VΣ†UT g. (5.26)

Hence again, K† = VΣ†UT only now the pseudo-inverse of Σ is appropriately altered to take into
account the underdetermined structure of the problem.

5EXERCISE: Prove this using Pythagoras?
6EXERCISE: Prove this.
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5.2.3 Reduced Rank Problems

In the most general case where there are P < min(M,N) nonzero singular values, Σ is of the form

Σ =
[
Σ1 012

021 022

]
(5.27)

with Σ = diag(σ1, σ2, . . . , σP ) and the sizes of the zero block are dependent on the value of P and
whether M < N , M > N , or M = N .7 The SVD of K is now written as

K = [U1 U2]
[
Σ1 012

021 022

] [
VT

1

VT
2

]
. (5.28)

Following the discussion on page 97, the bottom block row of Σ indicates that in general g will not
be in the range of K. The upper right block of zeros shows that even if g were in (or were made to
be in) R(K), there would still be a nullspace to the problem so non-uniqueness would be an issue.
Because this class of problems is a blend of that seen in the previous two subsections, it should
come as no surprise that the pseudo-inverse is derived using elements of both previous cases.

To be more precise, f̂ here is obtained as the min-norm solution to the linear problem where
the data g is projected into the range of K. Formally we have

f̂ = arg min
f

‖f‖2
2 (5.29)

subject to Kf = PR(K)g.

Using the methods from § 5.2.2and § 5.2.3, the unique solution to (5.29) is obtained using (5.28)
along with the following two facts

• PR(K) = U1UT
1

• f̂ must be of the form V1x.

The resulting linear system for x is

[U1 U2]
[
Σ1 012

021 022

] [
VT

1

VT
2

]
V1x = U1UT

1 g

from which we obtain x = Σ−1
1 UT

1 g so

f̂ = V1Σ−1
1 UT

1 g (5.30)

or equivalently

f̂ = [V1 V2]
[
Σ−1

1 0T
21

0T
12 022

] [
UT

1

UT
2

]
g ≡ VΣ†UTg (5.31)

just as in (5.21)and (5.26).
To illustrate the performance of the pseudo-inverse and motivate the need for additional work

in stabilizing the solution to linear inverse probelm, we consider a number of examples motivated
by deconvolution and inversion of the Born approximation.

7EXERCISE: Work out the dimensions in all three cases.
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A matrix for Overdetermined Deconvolution Problem
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(a) K matrix for overdetermined deconvolution
problem
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(b) Singular values for overdetermined deconvo-
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A matrix for Underdetermined Deconvolution Problem

20 40 60 80 100 120

5

10

15

20

25

30

35

40
−2

0

2

4

6

8

10

12

14

16

x 10
−4

(c) K matrix for overdetermined deconvolution
problem
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Figure 5.12: Matrices and singular value structures for over and underdetermined deconvolution
type examples
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Figure 5.13: Data vectors for deconvolution type problem.

In Fig. 5.12(a) and (c) the K matrices for a pair of deconvolution-type problems are shown.
The matrix in (a) is of size 141 × 128 resulting in a slightly over determined problem. The one
shown in Fig. 5.12(b) is obtained by removing every third row from that in (a) and hence results
in an underdetermined problem. The structures of the singular values for each of these matrices
are shown in Fig. 5.12(b) and (d). Note the differences in the x axes for both of these plots which
in turn reflect the differing sizes of the underlying K matrices. In both cases there are slightly
fewer than 40 significant singular values. Despite the fact that the first matrix has more rows
than columns, the singular value plot indicates that almost two thirds of the singular values are
negligible resulting in what will turn out to be a rather substantial “numerical” nullspace.

The “Toeplitz” type of structure associated with the K matrices indicate that the singular
vectors uk and vk will be more or less sinusoidal and of increasing frequency as i increases. Coupled
with the singular value plots, we can conclude that these matrices act as low-pass filters. That this
is true is evident from Fig. 5.13 where the data vectors are shown for these two problems. In the left
row are the noise-free data. Data with a low level of additive Gaussian noise are shown on he right.
In all cases the true f is shown in the top panel of Fig. 5.14. We see from Fig. 5.13(a) and (c) that
the data look very much like a low-pass filtered version of the input “box” function. Specifically,
recalling that the Fourier transform of a box in a sinc function, we know that the discontinuities
in the box are manifest in the Fourier domain by a slow 1/ω type of decay in the amplitude of
the Fourier transform. Low pass filtering a box then would remove the high frequency information
needed to build the edges resulting in ringing (or Gibbs phenomenon) in the output of the filter.
This is precisely what we see in Fig. 5.13.
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Figure 5.14: Inversion results for overdetermined deconvolution-type problem
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Figure 5.15: Inversion results for underdetermined deconvolution-type problem
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Figure 5.16: Object to be recovered in Born inversion example

The results of inverting the data in Fig. 5.13 via the psedo inverse are shown in Fig. 5.14 for the
matrix in Fig. 5.12(a) and in Fig. 5.15 for the matrix in Fig. 5.12(c). In each plot the upper panel
shows the object, the middle panel is the result of applying the pseudo-inverse to data with no noise
and the bottom panels are the data with noise reconstructions. In computing the pseudo-inverse,
we set to zero all singular values less than 10−16 in size. Hence in both cases, we are really plotting
min-norm least squares reconstruction as described in § 5.2.3.

For noise-free data, the reconstructions in both cases are again low pass versions of the true
box profile. This is entirely consistent with the mathematics of the pseudo-inverse which says that
only non-zero singular values and their associated singular vectors participate in the reconstruc-
tion. For the specific problems shown here, the non-zero singular values were those associated
with low-frequency (low-pass) singular vectors. Hence, following the same reasoning as was ap-
plied in understanding Fig. 5.13, we observe that the middle panels in Figs. 5.14 and 5.15 show
reconstructions which look like low frequency approximations to the box.8

For the noisy data, the bottom panels in Figs. 5.14 and 5.15 indicate that the quality of the noise-
free reconstructions is obtained specifically because there is no little high-frequency component in
the data. The addition of white noise to the data increases the amount of signal in the higher
frequency range from what the pseuso-inverse is “expecting” based on the structure of f . While
the increase is fairly small (compare the noisy and noise-free data in Fig. 5.13), its impact is quite
severe especially in the underdetermined case. As we discussed in § 5.1, these large amplitude,
high frequency artifacts are classic examples of the impact of ill-posedness (ill-conditioning) on the
reconstructions.

We next consider the recovery of the two dimensional object shown in Fig. 5.16 using data
8Perhaps plot projection of the box onto the low frequency subspaces to make this point even clearer.
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obtained in an scattering framework under the Born approximation. All units are normalized so
that the region to be images is 1 × 1. Ten transmitters are arrayed along the left side of the
medium and ten receivers along the right edge. Referring to Table 3.1, we assume an acoustics
type of inverse problems so that the background kb = ω/cb and ks(r) = ωf(r) where cb = 1 is the
normalized background sound speed and f(r) is the object to be recovered. Data sets are collected
for ω ∈ {5, 10, 15, 20}. The region to be imaged is decomposed into a 40 × 40 grid of pixels and
(for simplicity, not accuracy) the basis functions needed to discretize the Born integral equation
are taken to be δ functions located at the centers of each pixel.

The data for each frequency are plotted in Fig. 5.17. Because the Born matrix is complex valued,
each observation provides two pieces of data for the inversion: the real part and the imaginary
component. We consider the result of inverting with each of the data sets alone (for which we
have 10 × 10 × 2 = 200 pieces of information as well as with data from multiple frequencies. In
the multi-frequency case, we form four data sets comprised of information from the following sets
of frequencies: {5}, {5, 10}, {5, 10, 15}, and {5, 10, 15, 20} yielding matrices with 200, 400, 600 and
800 rows respectively.

The singular values plots of the resulting eight linear systems are shown in Fig. 5.18. Unlike the
previous example where a clear distinction exists between singular values that may be considered
significant from those that are clearly negligible, no such separation occurs here. In all eight cases,
the singular values decay gradually from their maximum values to values close to machine precision.
Also, all eight problems are underdetermined in that there are 1600 pixel values to be determined
given at most 800 observations.

The pseudo-inverse results for this example are shown in Figures 5.19– 5.22. As with the de-
convolution problem, the presence of noise significantly degrades the results (note the differences
on the colorbar axes). In the noise-free case, there are no great differences in each of the sin-
gle frequency results. In all cases, the edges of the square block are somewhat blurred while the
shape of the smoother object in the middle is fairly well captured. The difficulty in capturing the
edges of the block are a two dimensional example of the same phenomena seen in the deconvolu-
tion problem: an ability of the pseudo-inverse to recover accurately only low frequency structural
information. Finally, we note the presence of ringing artifacts in the backgrounds of the higher
frequency reconstructions.

The addition of multiple frequencies in Fig. 5.20 helps to significantly reduce the ringing and
provides improved recovery of the edges of the block object on the left side of the region. Direct
comparison of the single frequency and multi-frequency results though is a bit subtle. In the
later case, the amount of data is greater and the singular value plots in Fig. 5.18 show that these
additional data are significant in that they allow for the recovery of information about f using
far more singular vectors. A fairer and perhaps more enlightening comparison would be one in
which the size of the multi-frequency data sets was kept the same as each of the single frequency
inversions. Also, it would be interesting to study the utility of adding sources and receivers that
encircle a larger portion of the region to be imaged.9

9EXERCISES
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Figure 5.17: Data sets used for Born inversion
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Figure 5.18: Singular value plots for the Born inverse problems
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Figure 5.19: Inversion results with single frequency noise free data
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Figure 5.20: Inversion results with multi-frequency noise free data
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Figure 5.21: Inversion results with single frequency noisy data
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Figure 5.22: Inversion results with multi-frequency noisy data
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5.3 Regularization I

Thus far we have encountered two types of inverse procedures: exact inverse methods such as
filtered back-projection/propagation and the pseudo-inverse. While exact methods are appropriate
for data rich problems, their performance can suffer for cases where data are limited. The pseudo-
inverse provides an initial means of obtaining a reconstruction when either no exact solution exists
or an infinite number of such solutions can be found. As indicated by the example discussed at
the end of the last section, the pseudo-inverse works quite well for data limited problems where
there is no noise in the observations; however the presence of noise can severely degrade the results
obtained using this method.

In essence this lack of robustness to noise is directly related to the manner in which the pseudo-
inverse treats the singular values of K. As long as a singular value is not zero, it and its associated
singular vectors plays a role in the reconstruction. Thus even small amounts of noise in modes
associated with small singular values is significantly amplified. This then suggests one very obvious
modification to the pseudo-inverse: eliminate the contribution of singular values whose size is
less than some predetermined threshold. The resulting approach opens the door to a sequence
of regularization approaches for adding more robustness to inversion than is available from the
pseudo-inverse. An initial set of regularization schemes which fit into the framework of linear
inverse problems are presented here. The topic of regularization is taken up again in § 6.2 in the
case of nonlinear problems.

The notion of a regularization procedure can be made quite formal and leads to some very inter-
esting and non-trivial analysis especially problems where neither object nor the data are functions
are discrete [28]. Here we content ourselves with an introduction to this theory appropriate for
cases where the data are discrete and the object may be either finite or infinite dimensional [5–7].
Thus let us take K to be a linear operator mapping a Hilbert space X into R

M . By the structure
of the problem, the ith datum, gi is the inner product of the object f with some linear functional
φi. For f ∈ R

N , the functional can be thought of as the ith row of the matrix K. When f is an
element of an infinite dimensional Hilbert space such as L2, following the inner product takes the
form of

∫
φi(r)f(r) dr.

A regularization algorithm is defined as a mapping Rλ from Y to X which is dependent on a
regularization parameter λ > 0 satisfying three properties [5]:

1. For any λ > 0, R(Rλ) is contained within the span of the φi.

2. For λ > 0 ‖Rλ‖ ≤ ‖K†‖
3. The following limit holds :

lim
λ↓0

‖Rλ − K†‖ = 0 (5.32)

Intuitively, these conditions can be seen to make a good deal of sense in terms. Recall that for the
discrete problem the span of the φi is captured by the vi. Hence, we see in (5.14) that f̂ is a linear
combination of these vectors. So, the first condition indicates that a good regularization scheme
is one where this property is retained. The second condition requires that the regularizer do no
worse than the pseudo-inverse in terms of its noise amplification. Finally, the third states that as
the regularization parameter decreases to zero, we should recover the pseudo-inverse.
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This approach to defining a regularization scheme reserves a special place for the pseudo-inverse.
Indeed, in the more functional theoretic approaches to regularization developed for example in [28],
the pseudo-inverse plays something of the role of a gold standard. To understand this, we know
that the need for regularization comes from the presence of noise in the data. Within the structure
of that theory, were it not for this noise, the “best” that we could do in terms of inversion is to
apply the pseudo-inverse to the data. A good regularization method then is one which converges
to the pseudo-inverse in the limit of small noise and hence vanishing λ.

5.3.1 The Truncated Singular Value Decomposition

As we just indicated, perhaps the most obvious way of moving past the strict definition of the
pseudo-inverse is to ignore the contribution from singular values which can safely be regarded as
small. That is we define the reconstruction as

f̂ =
k0∑

k=1

1
σk

(
uT

k g
)
vk. (5.33)

In this case, k0 is known as a regularization parameter. Its presence here represents a fairly major
philosophical departure in inversion schemes from what we have so far been discussing. Exact
inverse methods and the pseudo-inverse all derive their structures entirely from the physics of the
sensing modality. With the introduction of k0 here we now have a means of controlling the inverse
procedure which is independent of the physics; that is, entirely user defined. While a number of
somewhat rigorous techniques for algorithmically selecting regularization parameters are discussed
in § 5.3.5, in many practical cases, some level of user intervention is really required to choose the
“best” one.

The inversion scheme in (5.33) is known as the truncated singular value decomposition (TSVD).
Although it was motivated by qualitative arguments, in fact there is a sense in which the TSVD
is optimal. Specifically, it is know that the closest matrix B of rank k0 approximating K in the
induced two norm sense is

B∗ = arg min
rank(B)=k0

‖B − K‖2
2 =

k0∑
k=1

σkukvT
k . (5.34)

Thus, (5.33) can be viewed as the pseudo-inverse for the problem where K is replaced by its closest
rank k0 approximation.

The advantages of the TSVD are its ease of implementation as well as its strong performance
for problems where the choice of k0 is not difficult. Specifically, we would expect that the TSVD
would perform best when a clear distinction can be made between significant and negligible singular
values. Such is certainly the case for problem whose σk have a sharp cutoff as in Fig. 5.12. For
problems whose singular values decay gradually, as in Fig. 5.18, no obvious threshold exists. Hence,
choosing k0 becomes a more delicate, perhaps subjective, exercise. Such problems highlight the
primary shortcoming of the TSVD: much like the pseudo-inverse, the contributions of the subspaces
of U and V associated with the truncated singular values are completely absent from f̂ . Thus, any
important information contained in these subspaces is also lost. To address this issue requires a
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procedure in which these subspaces are allowed to play a limited role in the structure of f̂ . Their
impact must be controled however to avoid the noise amplification issue seen with the pseudo-
inverse.

5.3.2 Spectral Filtering

A first step in this process is again a somewhat natural approach to extending the pseudo-inverse
and indeed the TSVD. We can view the TSVD as a windowing of the singular values of K where
the window is either 1 for 1 ≤ k ≤ k0 and 0 for k > k0. To moderate the impact of this sharp
cutoff, we can construct inversion schemes using more general window functions:

f̂ =
min(M,N)∑

k=1

wλ,k
1
σk

(
uT

k g
)
vk (5.35)

where wλ,k defines the weight given to each singular value and λ is a regularization parameter gov-
erning the shape of the window. Thus, by appropriately designing wλ,k, we now have a mechanism
for including in a controlled manner information from all components of U and V. To ensure that
(5.35) fits within the definition of a regularization procedure given on page 111, we require two
conditions on the values wλ,k

1. For any λ > 0, and all i 0 ≤ wλ,k ≤ 1

2. For all k
lim
λ→

wλ,k = 1

The first condition says that the weights serve to attenuate as opposed to amplify the impact of
the small singular values thereby ensuring that the conditioning is improved relative to the pseudo-
inverse. The second implies that as the regularization parameter goes to zero, we should recover
the pseudo-inverse as is required by the third condition on page 111.

A few examples of valid window function include:

Example 5.1 The flat top function:

wλ,k =

{
1 i ≤ ⌈ 1

λ

⌉
0 i >

⌈
1
λ

⌉ (5.36)

where �x� is the first integer larger than x. This window is identical to the TSVD where k0 = � 1
λ�.

Example 5.2 The triangle window is formally defined as

wλ,k =

1 − k−1

� 1
λ� i ≤ ⌈ 1

λ

⌉
0 i >

⌈
1
λ

⌉ (5.37)

Shown in Fig. 5.23 are two examples of triangular windows; one for λ = 1/6 and the other with
λ = 1/20. As λ goes to zero it is not hard to show that wλ,k → 1.

Example 5.3 As shown in Fig. 5.24 a decaying exponential10 can quite easily be used as a window
10EXERCISE: Use tanh as a window to approximate the flat top
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function. Here we simply take
wλ,k = exp (kλ) (5.38)

Example 5.4 Perhaps the most important window function we will encounter is fundamentally
different from the above three in that its structure is dependent on the singular values in the
following manner

wλ,k =
σ2

k

σ2
k + λ

. (5.39)

It is easily seen that (5.39) defines a valid window function. Clearly, For λ > 0, wλ,k ∈ [0, 1] and
wλ,k = 1 for λ = 0. The impact on the reconstruction is most clearly seen by substituting (5.39)
into (5.35) to arrive at

f̂ =
∑

k

σk

σ2
k + λ

(
uT

k g
)
vk. (5.40)

From (5.40) we see that as when σk → 0, the weight provided that mode in the reconstruction
also goes to zero as it should. By the same token, when σk is large relative to the regularization
parameter, λ,

σk

σ2
k + λ

→ 1
σk

indicating that such contributions to f̂ are treated the in the same manner here as in the pseudo-
inverse.

5.3.3 Variational Regularization Methods

The TSVD and spectral filtering methods both approach the problem of improved robustness to
noise in terms of modifications to the matrix K; specifically, its singular value structure. An
alternate idea (and one which we shall see is more closely related to windowing than one might
first think) comes from thinking about the problem in terms of properties of f . Looking at the
inversion results in the bottom panels of Figs. 5.14 and 5.15 as well as those if Figs. 5.21 and 5.22,
we see that the artifacts produced by the pseudo-inverse come in the form of large amplitude, high
frequency corruption in f̂ . In most applications however we have prior expectations or even hard
constraints on the behavior of the unknown object. In the case of X-ray tomography for example,
the f is the density of the material being scanned and hence cannot assume negative values. In
geophysics problems and certain classes of nondestructive evaluation problems, one model for the
subsurface is a collection of layers with more or less constant properties (sound speed, electrical
conductivity etc.). In cases where properties do vary spatially in addition to non-negativity, one
would expect gradual variations in some range of bounded amplitudes. In other words, even if we
did not know the true distributions of f the results in Figs. 5.14, 5.15, 5.21 and 5.22 would still
be rejected for being not natural, not in line with our prior expectations concerning how f should
behave.

The issue we face then is how to incorporate this prior information into the inversion process
in some quantitative way. To do this, we extend the variational approach used to define the
pseudo-inverse in (5.22) and (5.29) to include analytically defined constraints that capture our
prior knowledge. In the abstract, there are a number of ways this can be accomplished. It may
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be possible to define a class of functions, C, whose behavior reflects our expectiations. A suitable
inverse then is one belonging to this class and providing a good fit to the data:

f̂ = arg min
f∈C

‖g − Kf‖2
2. (5.41)

While it is not hard, at least formally, to define classes for e.g. positive functions, bandlimited
functions, etc. [84], solving the resulting optimization problem is not at all straightforward.

Here and into the next chapter, we look at function classes whose mathematical structure is
based on a norm of some function of f as a measure of the size of an undesirable feature of the
object. For example one way of quantifying the notion that the amplitude of f should not be large
is to say that ‖f‖2

2 = fT f should be less than some value. Similarly, the highly oscillatory artifacts
are manifest in the size not of f , but of its derivative, or gradient in multiple dimensions. To make
this clearer recall that the derivative of sin(ωx) is ω cos(ωx). So the higher the frequency ω, the
larger is the derivative. Constraining these oscillations amounts to a restriction on the ‖Lf‖2

2 where
L is matrix approximation to the gradient11.

The use of the two norm in the above paragraph is neither necessary nor, in some important
cases, useful as we shall see in Chapter 6. So to be a bit more general, let ρ(f) be a norm-based
measure of the size of f . There are three variationally-based ways we can think of defining f̂ using
both ρ and the information present in the data.

Approach 1 Approach 2 Approach 3

f̂ = arg min
f

‖g − Kf‖2
2 f̂ = arg min

f
ρ(f) f̂ = arg min ‖g − Kf‖2

2 + λρ(f)

subject to ρ(f) ≤ λ subject to ‖g −Kf‖2
2 ≤ λ

Comparing Approaches 1 and 2, we see that one can think of the data error term ‖g − Kf‖ as a
type of constraint on the same footing as ρ. This is captured explicitly in Approach 3 in which f̂ is
defined as a solution to a minimization problem comprised of two terms; one encouraging that f̂ be
faithful to the data while second requiring that the reconstruction have few artifacts as captured
by the smallness of ρ.

As discussed at some depth in [5, Section V-A] the first two approaches have the same solution
which in fact is obtained for cases where the “≤” constraint is satisfied with equality12. Now,
the solution of an equality constrained optimization problem is typically found though the use of
Lagrange multiplier methods. Such problems possess the same functional form as that in Approach
3 with the primary difference being that the Lagrange multiplier, λ is also determined to ensure that
ρ(f) = λ or ‖g−Kf‖ = λ depending on the problem. In essence then, the basic variational problem
we wish to solve for f̂ given some λ is that of Approach 3. When it some time to choose the value for
λ, we can do so to enforce one of the constraints in Approaches 1 or 2. Alternatively, abandoning
the interpretation of λ as a Lagrange multiplier and rather thinking of it as a parameter used to
balance the value of ρ against that of ‖g − Kf‖, we can use one of the regularization parameter
selection methods to be discussed in § 5.3.5.

11EXERCISE: Build gradient matrix in one and two dimensions
12This follows from fact that the norm function is convex
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5.3.4 Tikhonov-type Methods

Here we consider problems where ρ(f) can be written as a quadratic function of the elements of
f , that is ρ(f) = fTQf for some matrix Q. This choice is motivated both by the fact that such
constraints end up being both reasonable and useful and because the resulting variation problem
has a closed form solution. Per the discussion in the last section, for the vast majority of cases of
any practical use, the matrix Q arises from a discretization of one or more differential operators
designed to penalize large amplitude and high frequency oscillations in f̂ ; that is

ρ(f) = ‖Lf‖2
2 = fTLTLf (5.42)

from which we can identify Q = LTL. Choosing L = I yield what is known as Tikhonov regular-
ization. In addition to the identity, another common choice is to take L to be a discretized form
of a gradient opertator. In a discrete setting, the gradient does not strictly exist; however the idea
of a derivative as a measure of the local change in a sequence of numbers can be formaalized. The
simplest such measure in one dimension at least is fk+1 − fk for k = 1, 2, . . . , N − 1, the difference
between adjacent elements of the vector f which gives rise to the N − 1 × N matrix L :

L =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . . . . .
0 0 0 . . . −1 1

 (5.43)

Equation (5.43) is by no mans the only choice we have for a derivative-like regularization matrix.
For example, recalling the discussion in § 3.4, we could use (3.32) as the basis for constructing a
L that implements a centered difference approach to the derivative. Similarly, constructing high
fidelity filters for approximating in a discrete sense a derivative is a well known problem in the field
of digital signal processing [77, Section 8.2.5] and thus could play a role here as well.13

It is possible that one would want a regularizer that guards against say r classes of artifacts
in f . For example, both the two norm of f as well as its derivative may need to be controlled. In
general, assuming we can find one Li for each then by defining

L =


α1L1

α2L2
...

αrLr

 (5.44)

we still fall within the mathematical structure of (5.42) because

‖Lf‖2
2 = fTLTLf

= fT

(
r∑

k=1

α2
kL

T
k Lk

)
f

=
r∑

k=1

α2
kf

TLT
k Lkf =

r∑
k=1

‖αkLkf‖2
2 ≡ ρ(f) (5.45)

13EXERCISE: Other options for derivative operators
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where the αk may be used to weight the different Lk as needed or desired. Thus, the basic
mathematical form of the problem we wish to solve is

f̂ = arg min
f

‖g − Kf‖2
2 + λ‖Lf‖2

2 (5.46)

with the understanding that L may well represent a concatenation of more basic regularizers as in
(5.44). Finally, we shall refer to (5.46) as a Tikhonov regularized solution to the inverse problems
with the recognition that, strictly speaking, this term applies only to the case where L = I and we
should be using a more cumbersome phase such as generalized Tikhonov inversion.

There are two methods we shall present for solving (5.46). First, by the same argument as we
used in (5.45) to argue that the stacked Li had the same mathematical structure vis a vis the two
norm as a single L, we can write (5.46) as

f̂ = arg min
f

‖g̃ − K̃f‖2
2 (5.47)

where

g̃ =
[
g
0

]
K̃ =

[
K√
λL

]
(5.48)

Eq. (5.47) though is of the same form as the linear least squares problem in (5.15) where the
data vector and system matrix have been augmented to include the regularizer. But we know the
solution to be

f̂ =
(
K̃T K̃

)−1
K̃T g̃ =

(
KTK + λLTL

)−1
KTg (5.49)

We can also arrive at (5.49) using more traditional optimization methods. According to basic
multivariate calculus, the extrema of an objective function can be found by solving the equations
that result when the gradient of the function with respect to the unknowns is set equal to zero. In
the case of (5.46), we start by expanding the objective function as

C(f) ≡ (g − Kf)T (g − Kf) + λ2LTL

= gT g + fT (KT K + λLTL)f − gT Kf − fTKTg (5.50)

If we were to further express the matrix operations in terms of the components of f , g and K we
would see explicitly that the highest power of fk to appear in J is quadratic. Thus following single
variable calculus, we expect that setting the gradient of J with respect to the fk equal to zero would
give a collection of linear equations to be solved for the extremum.14 This is precisely the case.

To prove this assertion, we introduce some concepts and notation that will prove useful in
the coming chapter. Let y ∈ R

M be a function of x ∈ R
N . That is yi = yi(x1,x2, . . .xN ) for

i = 1, 2, . . . ,M . The Jacobian of y with respect to x is the M × N matrix J = ∂y/∂x whose
(m,n)th element is

Jm,n =
∂ym

∂xn
. (5.51)

14EXERSICE: Show the extrema is a minimum
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With this definition of the Jacobian we show in the exercises at the end of this chapter15

∂

∂f
(Kf) = A and

∂

∂f

(
fTQf

)
= fT (Q + QT ) =︸︷︷︸

if Q symmetric

2fTQ.

Applying these identities to (5.50) and noting that gT Kf = fTKTg since both are scalars gives

∂C

∂f
= 2fT (KT K + λLTL) − gT K. (5.52)

Setting the transpose of (5.52) to zero then gives (5.49).
The analysis of Tikhonov regularization is both straightforward (using the SVD of K) and

interesting in the case where L = I. The analysis for general L, while still interesting, requires
the use of the generalized singular value decomposition which is a bit outside of the scope of the
current discussion. We refer the reader to [42]. Moreover for simplicity, let us assume that K is of
full rank with more rows than columns. So, with L = I and that the SVD of K = UΣVT we have

KTK = VΣ2
1V

T and I = VVT .

Substitution into (5.49) gives

f̂ =
[
VΣ2

1V
T + λVVT

]−1
VΣUT g

=
[
V
(
Σ2

1 + λI
)
VT
]−1

VΣUTg

= V
(
Σ2

1 + λI
)−1 Σ1Ug. (5.53)

Expanding (5.53) and taking advantage of the diagonal structure of Σ1 and I gives

f̂ =
∑

k

σk

σ2
k + λ

(uT
k g)vk (5.54)

which is precisely the result we obtained using the window function in Example 5.4. Thus we
conclude that while Tikhonov regularization with an identity matrix was motivated by a desire
to constrain the amplitude of the reconstruction, mathematically, this approach to inversion is
identical to a specific instance of spectral windowing.

5.3.5 Parameter Selection

The regularization methods discussed in this chapter all require the specifiction of a parameter
in order to generate a reconstruction. Developing useful methods for automatically making this
choice has been the topic of considerable work. Here we present a brief overview of the objectives
of this work as well as a few of the more commonly used methods for selecting λ. A more detailed
discussion including a good deal of analysis can be found in [88, Chpaters 1 and 7].

Methods for selecting a regularization parameter fall into two basic categories. A priori ap-
proaches assume some knowledge both of the level of noise in the data as well as the nature of the

15EXERICES
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true object f . For example the so-called range condition [88, Section 1.1.2] requires that f ∈ R(KT ).
While such assumptions provide for some very interesting and useful analysis, as our purpose here
is a bit more on the practical side, we restrict attention to a posteriori parameter selection methods
which require only knowledge of the data, including, perhaps, a bound on the intensity of additive
noise.

The specification and analysis of parameter selection methods revolves around three ways of
quantifying the error in an inversion scheme:

Reconstruction error: eλ = f̂λ − f (5.55)
Predictive error: pλ = K(f̂λ − f) (5.56)

Residual error: rλ = Kf̂λ − g (5.57)

where f is the true object and we have made the dependence of the reconstruction on λ explicit.
Of the three forms of error, only the residual error can actually be computed. The other two both
require knowledge of the true object which, obviously, we do not possess. Nonetheless, it is possible
to provide rules for selecting λ which ensure that, even though eλ and pλ may not be known as
the noise level goes to zero, f̂λ does in fact go to f .

As a simple example, consider methods such as spectral filtering that take the form of a linear
operator, (matrix), Rλ, acting on the data. Assuming that the data are described by an additive
noise mode, g = Kf + n, the reconstruction error is

eλ = (RλK − I) f + Rλn (5.58)

Thus the error induced by regularization comes from two sources. The first, etrunc
λ = (RλK − I) f

is called truncation error and arises because the regularized “inverse” operator is not longer a left
inverse of K as was the case with the pseudo-inverse. The second term enoise

λ = Rλn represents the
impact of noise amplification by Rλ. Thus choosing λ0 for linear regularization schemes amounts
to trading off these two sources of error.

For spectral filtering methods such as TSVD and Tikhonov regularization with an identity, it
is not too difficult to show that ‖eλ‖2 → 0 as the noise gets small. In this case, we can use the
SVD of K to write the truncation and noise amplification errors as16

etrunc
λ =

∑
k

[wλ,k − 1] (vT
k f)vk (5.59)

enoise
λ =

∑
k

wλ,k
1
σi

(uT
k n)vk (5.60)

By the requirements of a window function on page 113 , we know that wλ,k → 1 as λ → 0. Hence
in the limit of vanishing regularization parameter, the truncation error will also go to zero. To
analyze the impact of vanishing noise, suppose that we know that norm of the error in the data
‖n‖2 = ‖g − Kf‖2 is at most δ. For both TSVD and Tikhonov with the identity it is possible to
show that17

wλ,k

σi
≤ 1√

λ

16EXERCISE: Show these
17EXERCISE: Show
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so that by judicious use of the triangle inequality as well as the orthonormality of the uk and vk,
we can bound (5.60) by

enoise
λ ≤ δ/

√
λ. (5.61)

So, if we know δ then we can choose λ = δp of 0 < p < 2 and we can guarantee that as the noise
goes to zero, so too will ‖enoise

λ ‖2. A parameter selection method with this property is said to be
convergent.

As indicated previously, in practice, one cannot determine the reconstruction error. Thus many
methods implementable methods for selecting parameters are based on the use of the computable
residual error as a provably good proxy for the predictive error. Here we mention four such methods
and point the reader to [88, Chapter 7] for many more details.

The Disctrpancy Principle

The discrepancy principle [67] states that λ should be chosen so that

1
M

‖g −Kf̂λ‖2
2 = ν2 (5.62)

where ν2 is a bound on the size of the noise. That is, the parameter In the case where the error
in the data is additive, white, and Gaussian with variance ν2, the expected value of the left hand
side of (5.62) is just ν2.

Universal Predictive Risk Estimator

The first approach, Universal Predictive Risk Estimator (UPRE), is based on the idea of choosing
λ to minimize

1
M

‖pλ‖2.

Again, under the assumption that we are using a linear regularization methods, let us define
Aλ = KRλ so that we can write

pλ = (Aλ − I)Kf + Aλn.

Assuming that the additive noise is a white Gaussian vector with variance ν2, one can show that

E

[
1
M

‖pλ‖2
2

]
=

1
M

‖(Aλ − I)Kf‖2
2 +

ν2

M
trace(A2

λ). (5.63)

Now from (5.57) we have
rλ = (A− I)Kf − (A− I)n

from which one can show

E

[
1
M

‖pλ‖2
2

]
= E

[
1
M

‖rλ‖2
2

]
+

2ν2

M
trace(Aλ) − ν2 ≡ U(λ). (5.64)

Eq. (5.64) says that on average, U(λ) predicts the value of p. Moreover, given the data, all three
terms in U(λ) are in fact computable. Thus it is argued that choosing λ to minimize U is a useful
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method for minimizing (in an average sense) the predictive risk. Methods for efficiently finding λ
in this manner are discussed in [88, Section 7.1.1].18.

Generalized Cross Validation

The principle of cross validation in the context of regularization parameter selection says that a
good paramater is one which is precidtive of unseen data. More concretely, the cross validation
functional is

CV (λ) =
1
M

M∑
k=1

([
Kf̂ (k)

λ

]
k
− gk

)
(5.65)

where f̂ (k)
λ is the estimate of f based on a data vector whose kth element, gk, has been removed.

Thus each term in (5.65) measures the success in predicting the kth data point from a reconstruction
based on the other M −1. In [34], the CV functional fails in certain trivial situations such as when
K is diagonal. To address these shortcoming, they recommended the generalized cross validation
approach which seeks λ by minimizing

GCV (λ) =
1
M ‖Kf̂λ − g‖2

2[
1
M trace(Aλ − I)

]2 . (5.66)

To develop a feeling for the utility of (5.66), let us consider the case where Aλ arises from
a TSVD solution to the problem in which case the number of retained singular values, p, is the
inverse of the regularization parameter [28, Sextion 4.5]. Using the singular value decomposition of
K, we can show that the matrix in the denominator of GCV (p) is19

Ap = U
[
Ip 0
0 0

]
UT

so that 1
M trace(I−Ap) = 1− p/M . Now, let us examine the numerator of GCV (p). Here we have

Kf̂p − g = (Ap − I)Kf + (Ap − I)n.

Analysis of this proceeds along the same lines as that of the GCV numerator (to simplify I − Ap)
as well as UPRE (to analyze the expected value of ‖g − Kf̂p‖2

2) to arrive at

E
[
‖Kf̂p − g‖2

2

]
= ‖(Ap − I)Kf‖2

2 + Mν2
(
1 − p

M

)
. (5.67)

Thus, on average the expected value of GCV (p) is

E [GCV (p)] =
1(

1 − p
M

)2 [‖(Ap − I)Kf‖2
2 + Mν2

(
1 − p

M

)]
(5.68)

Because we are interested in minimizing GCV (p), the monotonically increasing factor (1 − p/M)−2

can be neglected. As a function of p, the first term in the brackets in (5.68) is decreasing while the
18EXERCISE: Implementation of UPRE
19EXERCISE: Fill in the gaps
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λ→0

λ→∞

Figure 5.25: Model L Curve

second is increasing. So, one would expect that at least on average, there should be a value for p
where the sum of these competing terms is minimum. This can be taken a bit further assuming
that the minimizing value of GCV occurs for p � M . In this case bringing (1 − p/M)−2 into the
brackets and making the approximations

1(
1 − p

M

)2 ‖(Ap − I)Kf‖2
2 ≈ ‖(Ap − I)Kf‖2

2

Mν2

1 − p
M

≈ Mν2
(
1 +

p

M

)
we see that GCV (p) is quite similar to (5.63), the (unknown) predictive risk. Thus, we conclude
that minimizing GCV may be a reasonable method for selecting a regularization parameter.

The L-Curve

The last approach to parameter selection we wish to cover here is known as the L-Curve and consists
of a plot of ψ(‖f̂λ‖2

2) versus ψ(‖g − Kf̂λ‖) as λ is varied. The function ψ(x) sets the scale of the
graph and is typically log(x) although

√
x has also been suggested. The name of this method is

motivated by the best-case shape of the curve. Consider the case of Tikhonov regularization. As
is shown in Fig. 5.25, when the problem is under-regularized, λ → 0, one expects that the norm
of the reconstruction will be large due to the artifacts, but the fit to the data will be quite good.
As λ → ∞, (5.46) says that the fit to the data will be poor since the error term gets little weight,
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while the norm of the object will be small as this is dominant term in the minimization. Moreover
in [41, 42], it is argued that in these extreme cases, as λ is varied, the L-curve will be vertical
and horizontal respectively. Thus, heuristically at least, there must exist a corner where the two
forces are in some balance. The value of the parameter at this corner then is the one chosen by
the L-curve method. The L-curve has also been used in the context of TSVD where the corner is
found by interpolating the individual points along the curve generated as the number of retained
singular values is changed. Mathematically,the corner is typically defined as the point of maximum
curvature along the L-curve. Algorithmic methods for locating this point are discussed in [4,40,42].

One interesting feature of the L-curve is the discrepancy between its theoretical properties and
its performance in practice. As is discussed in some detail in [28, Section 4.5], there exists a body
of research indicating that the L-curve will work poorly in certain limiting cases. While the work
in [29] points to the necessity of using ψ = log, the failure of the L curve as documented in [39,86]
are a bit more theoretically problematic. The analysis in [86] indicated that the value of the corner
parameter will not go to zero as the noise vanishes (hence the method is termed non-convergent)
while the results in [39] indicate that λ will in fact go to zero too rapidly. While the disparity arises
from differences in the underlying model problems being studied, the results clearly indicate that
in the limit of low noise, the L-curve may not provide the best approach to choosing λ. In spite of
these theoretical results, the L-curve approach has received considerable attention even since the
mid-1990’s when [39, 86] appeared. Work is ongoing in terms of efficiently locating the corner of
the L-curve, generalizing the notion of the L-curve to multiple parameters, and in applying the
methods to a range of applications.

The primary conclusion to be drawn from this is that the utility of the L-curve (really all of the
methods discussed here) as an automatic tool for selecting the “best” value of a regularization pa-
rameter is far from a settled question. While methods of regularization such as spectral windowing,
the TSVD, and various variational approaches are well defined, the issue of parameter selection is
one dominated by heuristic approaches whose behaviors, while analyzable in the certain limits, are
far more difficult to predict in practice. Hence for the time being at least, proper parameter choice
still requires a level of human interaction with the inverse routine.

5.3.6 Examples

5.4 Semi-discrete Linear Inverse Problems

• Probably save for next time class is taught.

• Add dual basis ideas to math background chapter as well as numerical differentiation problem

• Problem formulation: finite data but want to recover continuous function.

• Topics to cover: Form of pseudo-inverse, spectral shaping, Tikhonov, change of function
space for these problems. Numerical differentiation example continued. Link to fully discrete
problem.
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5.5 Exercises

5.1 In this problem we investigate inverses in the full rank case.

1. Consider a discrete convolutional problem corresponding to a first kind Fredholm equa-
tion:

y(i) =
∑

j

h(i − j)x(j) (5.69)

As you showed in Problem Set 1, we can represent such a problem in the form y = Cx
where C is an N × N circulant matrix whose nonzero entries are given by h(i). Often
times a change of basis can make a problem easier. Suppose we make the change of basis
X = Fx and Y = Fy, where F is the DFT matrix. What is the corresponding problem
in the transformed space? Assuming that rank(C) = N , show that we may write the
solution as:

x =
1
N

FHdiag[1/H(k)]Fy (5.70)

where H(k) are the DFT elements of h(i) and AH is the conjugate transpose of the
matrix A. Interpret this procedure in the frequency domain.

2. The above change of basis will not work for general linear operators since they do not
obey a “Fourier-convolution theorem”. All is not lost, however. Consider the general
linear problem y = Ax where A is an N ×N matrix of rank(A) = N with no particular
structure. Let the SVD of A be given by A = USV T . What changes of bases would
lead to a corresponding diagonal system? Give an expression for the solution x in terms
of the SVD that is analogous to (3.38). Provide an equivalent “Frequency domain”
interpretation of this result. What are the corresponding generalized Fourier coefficients
corresponding to A. What is the corresponding generalized Fourier transform operator
in this case? In what major way does it differ from the standard Fourier operator or,
equivalently, in what major way does this change of basis differ from that used in part
(a)? What computational challenges does this present?

5.2 For this problem, you will need to retrieve the file illposed.mat.gz from the course web site.
In this Matlab file there is a matrix K for the forward problem of interest here, as well three
input output vector pairs, fi and gi i = 1, 2, 3 respectively. Thus, the problem of interest here
is the recovery of f from g where the two are related by the matrix-vector equation g = Kf .

1. As discussed in class, a problem is considered ill-posed due to difficulties which include
the issues of the existence and uniqueness of the solution. Based on your analysis of K,
which of these issues are relevant here? Explain.

2. The third characteristic of an ill-posed problem is an undue sensitivity of the solution
to small changes in the data. One way of quantifying this notion wis by looking at the
quantity

‖f1 − f2‖/‖f1‖
‖g1 − g2‖/‖g1‖ (5.71)
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defined for two input/output pairs. If (5.71) is large (� 1) then the problem is rather
sensitive to small changes in the data. Based on the data supplied in illposed.mat.gz,
can this problem be ill-posed? That is, do there exist “close” outputs which correspond
to significantly different inputs? If so, provide a quantitative discussion describing those
characteristics of these pairs which cause (5.71) to be large?

3. Is it the case that all input/output pairs lead to (5.71) being � 1? If so, explain why.
Otherwise, find two input/output pairs for which (5.71) is ≈ 1 and explain how you
constructed these signals.

4. Consider the case where the matrix K is invertible. It is claimed that under this condition
one can always exactly recover an object by merely applying K−1 to the data. Why is
this true only in theory? Using the K from illposed.mat.gz, construct a problem for
which the application of K−1 produces an object which is much, much different from
the one intended. Explain your construction.

5.3 Here we consider the inverse problem of numerical differentiation, where one is given obser-
vations of the running integral of a function and attempts to recover the original function.
For this problem the data g(x) are related to the function of interest, f(x), through:

g(x) =
∫ x

0
f(y)dy 0 ≤ x ≤ 1 (5.72)

where f(x) = 0 for x < 0. In this problem we investigate the effect of perturbations on the
solution.

1. It is clear that the exact solution to the continuous problem is given by:

f(x) =
d

dx
g(x) (5.73)

Now suppose instead of the exact g(x) we observe a slightly perturbed version gp(x),
given by:

gp(x) = g(x) + ε sin(ωx) (5.74)

i.e. there is a small high-frequency “noise” superimposed on the signal. What is the
corresponding solution fp(x) based on (5.73)?

2. What happens to ||g(x) − gp(x)||2 (i.e. the energy in the observation error) as ε → 0
and ω → ∞? What happens to ||f(x) − fp(x)||2 (i.e. the corresponding energy in the
reconstruction error) as ε → 0 and ω → ∞? What does this suggest about the stability
of the noise-free, infinite-dimensional case?

3. Now we want to examine a fully discrete form of this problem. All discretization are
to obtained using a Galerkin approach with flat-top basis functions and impulse testing
functions. That is, f(x) is expanded as

f(x) =
N∑

n=1

fnφn(x)
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with

φx(x) =
{

1 (n−1)
N ≤ t ≤ j 1

N
0 else

and the data vector is composed of N equally spaced samples of g(x) for x ∈ [0, 1]. The
final result of this discretization is a matrix-vector relationship of the form g = Af where
g is the vector of sampled values of g(x), f is the vector of expansion coefficients, and
A is the matrix obtained by discretizing the kernel in (5.72). All parts to this problem
are to be carried out for N ∈ {10, 100, 300, 500}.
For the case where f(x) = u(x) (the unit step), create a perturbed version gp of the
discrete observation vector g, according to the following formula for the k-th element:

(gp)k = gk +
(−1)k√

N
(5.75)

Note that this is a discrete version of the perturbation considered in part (a). Generate
plots of the perturbed observation (gp)k vs index k for each N . What happens to the
perturbation as N increases; i.e. what, if anything, does gp tend to.

4. Generate plots of the corresponding discrete estimates x̂p = A−1yp versus index for each
N . Does x̂p approach x̂?

5. Finally, summarize these results by making plots of the percentage errors in yp and x̂p

as a function of N . These are defined as:

% error in y = 100
||y − yp||2

||y||2 , % error in x̂p = 100
||x̂ − x̂p||2

||x̂||2 (5.76)

5.4 This problem investigates a discrete Picard condition. For this problem you will need access
to routines from the Regularization Toolbox. If this is not already installed on your system
there are links to it on the class web site.

1. As discussed in class, the generalized solution to an inverse problem is given by:

x+ =
N∑

i=1

ui
〈vi, y〉

αi

Since the singular values decrease as i increases, this solution will be “stable” only if
the terms |〈vi, y〉| decay faster than the singular values αi as i → N . This condition has
been proposed as a discrete Picard condition. Why is the term “Picard condition” an
appropriate one?

2. For the discrete differentiation problem use the routine picard.m to plot the unperturbed
quantities |〈vi, y〉|, αi, and |〈vi, y〉|/αi versus i for N = [10, 100, 300, 500]. Repeat
the plots using the perturbed data sequences. Using the plots explain the difference
in behavior between reconstructions based on the unperturbed and perturbed data.
Notes: The routine picard.m takes as input U , s, and y, where s is a vector of the
non-zero singular values and U are the corresponding singular functions. These can be
conveniently generated in MATLAB using e.g. SVD(C,0).
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3. In the discrete differentiation problem the perturbation introduced was deterministic, yet
the same difficulties occur in the stochastic case. Suppose we are given a discrete inverse
problem of the form y = Cx =

∑
i viαiu

T
i x, y is the exact observation corresponding to

x. In real applications a more realistic model is that we instead observe a noisy version
of y given by:

yn = y + w w ∼ N(0, σ2I) (5.77)

i.e., w is a vector of independent identically distributed noise samples. What is E(|vT
i w|),

the expected value of the magnitude of the generalized Fourier coefficients corresponding
to the noise? Even if the unperturbed problem behaves well, what problems does your
answer suggest, given that the αi always decay towards zero?

4. Confirm the insight developed in part (c) by generating a noisy version of the discrete
observation for the differentiation problem for N = 300 according to the formula (5.77)
with σ = 0.1. Another difficulty is that, for most problems it turns out that the corre-
sponding singular functions vi become more oscillatory as i increases (just as in standard
Fourier analysis). Thus the functions getting the largest weighting in the generalized
reconstruction are those that are more “noise like”. Lets see if this phenomenon is true
for the differentiation problem. Plot vi for i = [1, 10, 100, 300].

5.5 In this problem we examine the fully discrete tomography problem. We will use the exact
phantom in small phantom.mat as our starting point – call it x. In this problem, we want to
consider two tomographic scenarios

LA The “limited-angle” problem where there angular coverage is far less than the full 2π
radians. For the problem below, you should generate Cla matrices corresponding to 16
equally spaced angles in [0, 90).

SD For the sparse data problem, one can measure only a few projections over the entire 2π
radian field of view. The matrices Csd for this problem should correspond to 8 equally
spaced angles in [0, 180).

In all cases use the routines you have developed on previous problem sets to generate the
matrices of interest.

1. For both problems, use your C’s to generate clean projection data y. In addition,
generate a noisy version yn of the observation y according to the formula (5.77) with
σ2 = 9. What is the SNR for these cases?

2. For each problem, find the SVD of C and use the routine picard.m to plot the noise free
quantities |〈vi, y〉|, αi, and |〈vi, y〉|/αi versus i. Repeat the plots using the perturbed
data yn. In addition, plot the corresponding singular functions ui for i = [1, 90, 180, 250]
again as images. Given these results, what type of reconstructions do you expect? What
are the condition numbers of C?

3. Now examine the generalized solutions together with our friend the FBP solution for
both LA and SD. Find the generalized solutions corresponding to both the noiseless
data (i.e. C+y) and the noisy data (i.e. C+yn) using the SVD and the also find the FBP
solution for both cases. Plot all these solutions, compare, and comment.
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5.6 In class one day, I mentioned that the least squares solution to an overdetermined, full rank
problem was just one way one could consider finding a “solution” to a problem which tech-
nically had no solution. Here we want to look at another. The setting is as follows. Suppose
that we had a linear inverse problem of the form g = Uf where g is a length n vector and U
is an unknown n×n orthonormal matrix. In addition to these data, we also know that f lies
in the linear span of a collection of linearly independent vectors {a1, a2, · · · am} with m < n.
I am curious about developing methods for estimating f which make use of these two pieces
of information.

1. For the case where a1 = [1, 0]T and g = [5,−3]T use the projection-onto-the-range-of-A
interpretation of the pseudo-inverse as the basis for finding an f that solves the problem.
Explain in detail why your solution in not unique.

2. Generalize the above discussion to the case where a1 = [1, 0, 0]T and a2 = [0, 1, 0]T . and
g is any length three vector. Specifically, sketch the nonuniqueness region in the range
of A.

3. Here is a suggestion for making the solution more unique: Select that point in the region
of non-uniqueness which is closest to the pseudo-inverse solution.

(a) Why might this be a good idea? Why might it be a bad idea?
(b) For the same A as in the previous part of this problem, explain in detail why this

strategy will not always yield a unique solution?
(c) For those cases where the solution will be unique, find the analytical solution to the

inverse problem again for the 3 × 2 A specified previously.

5.7 Now let us return to the Born inverse scattering problem which was the subject of Problem
2.2. Here we want to explore the performance of different inverse methods for a variety of
sensing configurations:

Configuration 1: 20 sources equally spaced on left side and 20 receivers equally spaced on
the right

Configuration 2: 5 sources/receiver pairs equally spaced on each of the 4 sides of the region.

In each case we have a total of 800 data points (400 real and 400 imaginary). The remaining
parameters for the problem should be set as follows: Ny = Nz = 30, Z = Y = x0 = 1,
d = 0.1, δ = 0.01, k0 = 25 +

√−1.

For each of these configurations, you are to examine the performance of the pseudo-inverse
and TSVD (you pick the truncation level, but explain how) on the recovery of the two object
function f1 and f2 generated from the following Matlab code:

f1 = zeros(30);
f1(8:10,12:20) = 1;
f1(20:25,20:25) = 2;

f2 = zeros(30);
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for i = 1:30
for j = 1:30

tmp1 = exp(-( ((i-9)^2/10) + ((j-15)^2/50)));
tmp2 = exp(-((i-23)^2+(j-23)^2)/50);
f2(i,j) = tmp1+2*tmp2;

end
end

Analyze the results using both noise-free data as well as data corrupted by a zero mean, addi-
tive white Gaussian noise vector whose standard deviation, σ is set such that the SNR=30dB
where SNR is defined as

SNR = 10 log10
‖Af‖2

2

σ2N

where N is the length of the vector Af .

5.8 Least squares problem where there is a prior mean on f .



Chapter 6

Numerical Methods for Nonlinear
Inverse Problems

A non-linear inverse problem is one where f̂ cannot be written as a linear (or even affine) function
of the data, g. A careful examination of the inverse methods discussed in the last two chapters
will show that three conditions are required to obtain a linear inverse method. First, the physics
of the problems must either be linear (convolution or X-ray tomography) or well approximated as
linear (the Born approximation). Given a linear forward model, the unknowns must be obtained
as the result of a basis expansion type of method as in (3.44). That is, we must be inverting
for pixel-type of quantities. Finally, should a variational type of regularization be employed as in
§ 5.3.3, ρ(f) must be quadratic in the unknown pixel values. If any of these conditions fail to be
met then, at least in the variational context, the resulting optimization problem will not possess a
linear solution as in (5.48). To be clear, even if the physics are linear, should we find it useful to
invert for quantities other than pixel-type expansion coefficients or should be choose to use pixels
but regularize in some way other than with a two norm penalty, we will be faced with the need to
solve a nonlinear inverse problem.

In fact, these possibilities are quite likely both in research as well as more applied settings.
In terms of nonlinearity of the physics, one may not possess sufficient information regarding the
background to build a valid Born model. Thus either the full scattering physics [17,36,38,61,63,65]
or at least a higher order approximation may need to be used in an inverse scheme. Similarly, it is
well known that quadratic regularization tends to produce imagery in which sharp discontinuities
such as edges are not accurately recovered. Thus, there has been quite a bit of work over the
past decade exploring the use of non-quadratic regularization methods designed specifically to
enhance these important image features [3, 13, 31, 87]. Finally, the inversion for quantities other
than pixels, specifically for parameters related to the shape of an unknown scattering object, has a
long and highly interesting history in the mathematics and mathematical physics literature where
it is known as the inverse obstacle problem [44, 51, 81] as well as the signal and image processing
communities [25,32,54,59,60,62, 78].

As was the case with linear inverse problems, there are two basic approaches for solving nonlinear
variants: analytical and numerical. Unlike the linear case here we start with the numerical and
present the analytical methods subsequently. This unfortunate pedagogical asymmetry results

131
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from the underlying differences in which these two classes of problems are solved in practice. While
at the current time, the vast majority of inverse methods employed in any regular practice are
linear, within the context of nonlinear inversion, numerical methods based on variational principles
are far closer to being used in practice than the analytical alternatives. A number of factors
are at work here. First, the numerical methods for nonlinear problems are in many ways easy
extensions of the ideas presented in Chapter 5 for linear problems. This is not the case for the
analytical techniques which generally require far different and far more sophisticated mathematical
methods than are encountered in the study of filtered backprojection or filtered backpropagation.
Second, for many problems such as X-ray tomography and deconvolution where the physics are
exactly linear, the introduction of nonlinearity via regularization comes directly in the context of a
variational formulation of the problem so that numerical approaches are in a sense the most natural
option. Finally, for many inverse obstacle type of problems, there exist no known analytical solution
methods. Hence a numerical formulation is the only viable option. Thus, as we are motivated
in this manuscript primarily by the desire to provide exposition on practically useful inversion
schemes, we start our discussion of nonlinear inverse problems with numerical approaches arising
from variational formulations.

Fundamentally then, in this chapter a nonlinear inverse problems is equivalent to the solution
of a non-quadratic numerical optimization problem. Thus, we begin with a review of some basic
methods in numerical optimization concentrating specifically on techniques for solving a class of
problems, non-linear least squares, which shall be encountered repeatedly in subsequent discussions.
Armed with these tools we shall then discuss in some detail the most straightforward and basic forms
of the three classes of problems described at the start of this section: non-quadratic regularization
for problems with linear physical models, inverse obstacle problems again with linear physical
models, and finally, inverse problems where the physics are nonlinear, the unknowns are pixels, and
the regularization is arbitrary.

6.1 A Review of Optimization Theory and Algorithms

The issue of optimization methods in the context of inversion is not as straightforward as one might
suspect. It is possible (and quite frequently done) to use the ideas presented in this section and
elaborated upon in a number of more complete sources such as [45,70,88] to build one’s own suite of
computational tools for solving the optimization problem encountered in a given inversion problem.
While such an approach may seem attractive, unless one has a background in the well developed
field of numerical methods for optimization, it is unlikely that the resulting code will be as efficient,
robust, or capable of solving large scale problems as professionally developed tools by companies
such as the Mathworks, IMSL, and the Numerical Algorithms Group.

The precise mix of commercial and self-written code is highly problem dependent. One downside
to using commercial tools, in addition to their cost, is their “black box” nature. That is, one does not
have complete control over the optimization approach and hence cannot easily change the internal
structure to exploit any particular structure which may exists for the given inverse problem. On
the other hand, naive implementation of methods presented here may well fail to converge (or
converge at an unacceptably slow rate) to a local minimum of the cost function. Such is the case
for edge preserving regularization problems which we discuss in §XXX.. As is explained in great
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Figure 6.1: Global and local minimizers of a cost function

detail in [88, Chapter 8], the full benefit of this powerful regularization method may well require
the use of optimization methods far more sophisticated than those covered in this manuscript.
Ultimately, there is a certain amount of iteration among computational tools that must be done
for any problems to understand the numerical intricacies and hence choose the most appropriate
tools.

Finally, there exist a number of well known specialized optimization methods for solving par-
ticular problems which differ from the off-the-shelf types of tools considered in this section. As
we encounter the relevant problems later in this chapter we shall discuss these specific methods
individually.

6.1.1 General Unconstrained Problems

In this manuscript we are concerned with the solution to unconstrained, non-quadratic optimization
problems of the form

f̂ = arg min
f

J(f) (6.1)

where f ∈ R
N and the cost function, J , is a mapping from R

N to R and is assumed to be continuously
differentiable in the elements of f . There are two classes of minimizers that are generally considered
for J . A global minimizer is any f̂ such that for all other f , J(f̂) ≤ J(f). A local minimizer is any
f̂ such that there is a δ for which ‖f̂ − f‖ ≤ δ implies J(f̂ ) ≤ J(f). In the 1D case the difference
between these two concepts is illustrated in Fig. 6.1.
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The methods used to find a minimum of (6.1) that we consider here all take the form shown
in Algorithm 1. The user provides an initial guess as to f̂ which is iteratively refined to produce
increasingly more accurate approximations to a local minimum of J . Specifically, the local minimum
to which the algorithm converges is one within the “basin of attraction” of the initial guess. Again
referring to Fig. 6.1, if we start at f0,1, then the global minimum, fm,g will be found; however if
the initial estimate is f0,2, the result will be a local minimizer of the cost function. The differences
among the methods we consider arise from the manner in which update directions and step sizes
are calculated as well as the convergence criteria used.

Algorithm 1 Generic Nonlinear Optimization Algorithm
n = 0
f (n) = f0 {f0 = user supplied initial guess}
repeat

Compute d(n), an update direction for f
Compute τ (n), a stepsize indicating how far we move in the direction d(n)

f (n+1) = f (n) + τ (n)d(n)

n = n + 1
until Convergence
f̂ = f (n)

The assumption that J is continuously differentiable in the components of f significantly sim-
plifies the mathematical criterion that must be met for some f to be a local minimizer of J .
Specifically, [70, Theorem 2.2] says that necessary conditions for f̂ to be a local minimizer of J are
∇J(f̂) = 0 where ∇J(f) is the length N column vector whose ith element is ∂J/∂fi. The numerical
methods for finding f̂ are all geared to ensuring these conditions are met though their choice of
d(n) and τ (n) in Alg. 1.

Two choices are established the analysis of the Taylor series of J taken about f̂ (n). Dropping
the explicit dependence on the iteration number n yields to second order

J(f + τd) ≈ J(f) + τdT∇J(f) +
1
2
τ2dT∇2J(f)d (6.2)

where ∇2J(f) is the N × N Hessian matrix whose (i, j)-th element is ∂2J
∂fi∂fj

. The steepest decent
method for choosing d is obtained by assuming the second order term can be ignored and searching
for that unit norm d which yields the largest decrease in J . It is readily verified that the solution
to this problem is to take

d = − ∇J(f)
‖∇J(f)‖ . (6.3)

Alternatively, Newton’s method searches for a decent direction which minimizes the full right hand
side of (6.2). The result is

d = − [∇2J(f)
]−1 ∇J(f). (6.4)

It turns out that in this case, the step length can be taken as τ = 1 [70, Section 2.2].
A key difference between steepest decent and Newton’s method is the need to compute second

derivative information for the later. As we shall see in coming sections, it is typically the case that
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obtaining the gradient is a rather cumbersome procedure. Exact evaluation of the Hessian is thus
not frequently an option much less determining its inverse. The primary benefit of the Newton
method (and hence the extra work of calculating the Hessian) is the improvement in convergence
relative to steepest decent. Subject to certain technical conditions and proper choice of the step
length (see below), it can be shown that for steepest decent

‖f (n+1) − f̂‖ ≤ ‖f (n) − f̂‖

while for Newton’s method
‖f (n+1) − f̂‖ ≤ ‖f (n) − f̂‖2.

Thus, steepest decent converges at a linear rate while Newton does so quadratically. The difference
can be substantial especially when one is close to the minimum.

Quasi-Newton methods represent one method for improving convergence without requiring addi-
tional derivatives. The basic idea underlying this class of techniques is to replace Hessian, ∇2J(f (n))
in (6.4), with a more easily computed matrix B(n). The most widely used technique in this class is
the Broyden-Fletcher-Goldfarb-Shanno (BFGS). This approach directly calculates H(n) ≡ [B(n)

]−1

thereby avoiding the need for a matrix inversion or equivalently a linear system solve at each it-
eration. Moreover, it yields superlinear (although not quadratic) convergence [70, Section 8.4].
Defining:

s(n) = f (n+1) − f (n) and y(n) = ∇J
(
f (n+1)

)
−∇J(

(
f (n)

)
the BFGS method is

H(n+1) = H(n) −
(

I − s(n)y(n)T

y(n)T s(n)

)
H(n)

(
I − y(n)s(n)T

y(n)T s(n)

)
+

s(n)s(n)T

y(n)T s(n)
(6.5)

Finally, the non-linear conjugate gradient approach, is based on a substantially different the-
oretical foundation than steepest decent, Newton, or quasi-Newton. While that theory is a bit
beyond the scope of this manuscript (see [70, Chapter 5]), the algorithm takes the form, slightly
different from Alg. 1 and is shown in Alg. 2. Two common methods are used for computing β(n):

Algorithm 2 Nonlinear Conjugate Gradient
n = 0
f (n) = f0 {f0 = user supplied initial guess}
d(n) = ∇J(f (n))
repeat

Compute τ (n)

f (n+1) = f (n) + τ (n)d(n)

Compute β(n)

d(n+1) = −∇J(f (n+1)) + β(n)d(n)

n = n + 1
until Convergence
f̂ = f (n)
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Fletcher-Reeves: β(n) =
−‖∇J

(
f (n+1)

) ‖2
2

‖∇J
(
f (n)

) ‖2
2

(6.6)

Polak-Ribière: β(n) =
− [∇J

(
f (n+1)

)]T [∇J
(
f (n+1)

)−∇J
(
f (n)

)]
‖∇J(f (n))‖2

2

(6.7)

with the Polak-Ribière preferred in practice.
Both the steepest decent and the nonlinear conjugate gradient methods require the determina-

tion of a step-length parameter, τ (n). In theory, this quantity should be chosen to minimize the
cost function in the direction d(n):

τ (n) = arg min
τ

J
(
f (n) + τd(n)

)
. (6.8)

In practice, performing this added optimization step to a high degree of accuracy is both compu-
tationally costly and not really necessary to guarantee the convergence of the overall algorithm.
Thus a number of inexact linear search methods have been developed with proven convergence
properties. We refer the reader to [70, Chapter 3] and [88, Section 3.4] for detailed discussions of
these methods.

6.1.2 Nonlinear Least Squares Problems

In many inverse problems, the cost function takes a particular form leading to non-linear least
squares optimization methods. Such problems arise if we can write

J(f) =
1
2
e(f)Te(f). (6.9)

For example, ek(f) could represent the difference between a measured datum and the prediction of
a model given f , i.e. ek(f) = gk − hk(f) although as we shall see the use of regularizers leader to
other structure for e.

The particular structure in (6.9) is reflected in the required gradient calculations for methods
such as steepest decent and leads to a pair of alternate quasi-Newton methods. Defining the
Jacobian, J, for this problem as the M × N whose (i, j)-0th element is

J(f)i,j =
∂ei(f)
∂fk

direct calculation shows

∇J(f) = J(f)e(f) (6.10)

∇2J(f) = J(f)TJ(f) +
M∑

k=1

ek(f)∇2ek(f). (6.11)

Eq. (6.11) shows that a portion of the Hessian can be computed using only first derivative calcula-
tions. Thus, by ignoring the summation on the right hand side of (6.11), we obtain a quasi-Newton
optimization scheme known as the Gauss-Newton algorithm. Combining this approximation to
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(6.11) with (6.4), we note that the Gauss-Newton algorithm essentially chooses the search direction
at each iteration as the least squares solution to the problem

J
(
f (n)

)
d(n) = −e

(
f (n)

)
(6.12)

From Chapter 5, we know that if J is ill-conditioned, there will be difficulties in reliably solv-
ing (6.12). To avoid these problems, the Levevberg-Marquardt method employs a Tikhonov-type
solution to (6.12)

d(n) = −
[
J
(
f (n)

)T
J
(
f (n)

)
+ λI

]−1

J
(
f (n)

)T
e
(
f (n)

)
(6.13)

Methods for choosing λ are discussed in [70, Section 10.2] as are possibilities for approaching
nonlinear least squares problems when the second term in (6.11) cannot be ignored.

6.2 Regularization II: Edge Preservation

As described in § 5.3, Tikhonov regularization methods are motivated by a desire to suppress high
frequency, large amplitude artifacts in a reconstruction. Mathematically, this amounts to adding
a term to the cost function which penalizes either the norm of the object itself or the norm of
its gradient. Such smoothness penalties were shown to successfully remove the artifacts, but at
the cost of blurring important object features such as edges or other area of rapid transition. For
many problems, especially in imaging, these edges are of great practical importance for subsequent
analysis of the resulting reconstructions. In particular, they may be needed to segment features
of interest (such as tumors in a medical image or material flaws in nondestructive evaluation)
from a nominal background. In many geophysical problems, the stratigraphy of the subsurface is
characterized by edges between layers. Motivated by these and related concerns, there has been
significant work done over the past 10-15 years in edge-preserving regularization which attempts to
modify the Tikhonov approach so that edges are better recovered while still suppressing artifacts.

Let us start with the Tikhonov problem

f̂ = arg min ‖g − Kf‖2
2 + λ‖Lf‖2

2 (6.14)

The smoothness penalty is embodied in the second term where L in this context is taken to be
an approximation to the gradient operator. To arrive at edge preserving methods, it is useful to
rewrite the Tikhonov penalty as

‖Lf‖2
2 =

∑
k

|[Lf ]k|2 =
∑

k

φ ([Lf ]k) (6.15)

where [Lf ]k is the k-th element of the vector Lf and φ(x) = x2 in the Tikhonov case. In the
statistical estimation literature, φ is known as a potential function and its first derivative is called the
influence function. The smoothness inherent in Tikhonov reconstruction comes from the quadratic
nature of φ which assumes that any large gradients in an object must be due to noise and hence
are penalized rather aggressively. Unfortunately, image features such as edges also possess large
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Figure 6.2: Indexing notation for pixel-based edge preserving regularization

gradients. By appropriately modifying φ however we can in fact recover these edges without adding
noise.

Thus, following [13] we consider the following modified form of (6.14) as applied specifically to
two dimensional problem

f̂ = arg min
f

J(f) J(f) =
1
2
J1(f) +

1
2
λJ2(f) (6.16)

J1(f) = ‖g − Kf‖2
2 (6.17)

J2(f) =
∑

k

φ ([Dxf ]k) +
∑

k

φ
(
[Dyf ]k

)
. (6.18)

The matrices Dx and Dy implement first order difference approximations to the horizontal and
vertical components of the gradient respectively. As shown in Fig. 6.2, at pixel i, j, these operators
are:

[Dxf ]i,j = fi,j+1 − fi,j (6.19)
[Dyf ]i,j = fi+1,j − fi,j (6.20)

where we have been (and will continue to be) a bit abusive of notation switching back and forth
between k-based lexicographic indexing and i, j-based pixel indexing of the elements of f .

As we know from § 6.1, a solution to (6.16) requires that the gradient of J vanish. The gradient
of J1 is

∇J1(f) = KTKf − KTg. (6.21)

The components of the gradient of J2 are

∂J2(f)
∂fi,j

= − [φ′(fi,j+1 − fi,j) + φ′(fi,j − fi,j−1) + φ′(fi+1,j − fi,j) + φ′(fi,j − fi−1,j)
]

(6.22)

where φ′(x) is the first derivative of φ with respect to x. Now assuming that φ′(x)/x → M < ∞
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as x → 0, we can rewrite (6.22) as1

∂J2(f)
∂fi,j

= − [λEfi,j+1 + λW fi,j−1 + λSfi+1,j + λN fi−1,j − λCfi,j] (6.23)

where

λE =
φ′(fi,j+1 − fi,j)
2(fi,j+1 − fi,j)

λW =
φ′(fi,j − fi,j−1)
2(fi,j − fi,j−1)

λS =
φ′(fi+1,j − fi,j)
2(fi+1,j − fi,j)

λN =
φ′(fi,j − fi−1,j)
2(fi,j − fi−1,j)

λC = λE + λW + λS + λN (6.24)

Gathering the components of (6.23) together gives the gradient of J2 as

∂J2(f)
∂f

= − [∇2 (f)
]
f (6.25)

where each row of the matrix ∇2 (f) implements the filtering operation of (6.23) on the appropriate
collection of elements of f .

We have used the somewhat cumbersome ∇2 notation because of the link between (6.23) and
a more traditional Laplacian filtering operation. In the image processing literature approximations
to

∇2 =
∂2

∂x2
+

∂2

∂y2

are routinely used for the detection of edges in images. Using the pixel indexing in Fig. 6.2, the
standard discrete Laplacian is[∇2f

]
i,j

= fi,j+1 + fi,j−1 + fi+1,j + fi−1,j − 4fi,j (6.26)

which is identical to (6.23) for λE = λW = λS = λN = 1.2 Moreover, it is not difficult to verify
that if L in a Tikhonov regularization scheme is an approximation to the gradient then LTL is
essentially ∇2.3 Thus, we can interpret (6.23) and (6.25) as an f -dependent Laplacian filter. The
issue we face now is the design of φ to achieve edge preservation.

More precisely we enumerate a collection of properties such a φ should possess. First, for
regions of the image in which there are no manifest edges, φ should be chosen such that the
resulting regularizer behaves like a standard Tikhonov; encouraging smoothness. If

lim
x→0

φ′(x)
2x

= M < ∞

then according to their definitions, for regions of an image where the intensity is slowly varying,
λE , λW , λN , and λS will all go to M and (6.23) will go to (6.26) as desired. In this case, locally

1EXERCISE: Prove this
2EXERCISE: Verify this captures edges.
3EXERCISE: Again verify
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Figure 6.3: Preserving a vertical edge

at least, the edge preserving regularizer acts just like a Tikhonov regularizer. Next, as illustrated
in Fig. 6.3, suppose that there is a discontinuity say between columns j and j + 1. In this case all
of the differences in (6.23) will be small except for the “westward” one. To preserve this edge in
the reconstruction we want to ensure there is no penalty in the westward direction. This can be
achieved if

lim
x→∞

φ′(x)
2x

= 0 (6.27)

In such a case, (6.23) becomes

∂J2(f)
∂fi,j

∝ − [fi,j+1 + fi+1,j + fi−1,j − 3fi,j ] . (6.28)

Hence again referring to Fig. 6.3 we will now encourage smoothness only over the region with pixels
similar to that at location i, j. In other words if (6.27) holds, we would have a space-dependent
Laplacian regularizer which performs no smoothing across discontinuities.

Formally, these ideas were assembled into a theory in [13] which required the following properties
of φ for such a function to be edge-preserving:

1. φ(x) > 0 and φ(0) = 0

2. φ(x) should be even

3. φ(x) should be continuously differentiable

4. φ′(x)/2x should be continuous
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5. φ′(x)/2x should be monotonically decreasing for x ≥ 0 so that there is a one to one cor-
respondence between the value of the gradient of f and the penalty it receives in terms of
edge-preservation.

In fact, many such φ exist and, as recognized by the authors of [13], had been used in image pro-
cessing for quite a while precisely to obtain sharper edge structure in a number of image restoration
and denoising problems. A few of the more common are listed in Table 6.1.

φ(x) φ′(x)/2x Citation
x2

1+x2
1

(1+x2)2
[]

log(1 + x2) 1
1+x2 []

2
√

1 + x2 − 2 1√
1+x2

[]

2 log [cosh(x)] tanh(x)
x x �= 0 and 1 for x = 0 []√

x2 + β2 β small 1√
β2+x2

[]

Table 6.1: Edge Preserving Regularization Functions and Their Derivatives

A number of options exist for solving the edge preserving optimization problem embodied in
(6.16)– (6.18). Gradient decent methods such as steepest decent and nonlinear conjugate gradient
require only the derivative of the cost function with respect to the unknowns. This information
can be assembled from equations (6.21)–(6.25) as well as Table 6.1 and is concisely summarized as

∇J(f) =
[
KTK + λ∇(f̂)

]
f − KTg. (6.29)

Setting (6.29) equal to zero gives an implicit definition for the solution to the optimization problem[
KTK + λ∇(f̂ )

]
f = KTg (6.30)

immediately suggesting an iterative scheme

f (n+1) =
[
KTK + λ∇(f (n))

]−1
Kg (6.31)

which, when run to convergence gives f̂ . It turns out that (6.31) is closely related to a Newton
method for solving the problems. Specifically, it is not hard to show4 that this iteration is equivalent
to

f (n+1) = f (n) −
[
KTK + λ∇(f (n))

]−1 ∇J(f (n)) (6.32)

where the matrix in brackets is an approximation to the Hessian of J .
Other issues to cover

• Link to total variation methods

• Half quadratic optimization methods
4EXERCISE
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6.3 Nonlinear physical models

An second class of nonlinear inverse problems arises when the physics does not allow for a simple
linear relationship between the data and the object. While there are a wide array of non-linear
inverse problems depending on the physical process being modeled and the class of sensors being
used, in this manuscript, we restrict our attention to one of the more widely studied of such
problems: the non-linear inverse scattering problem for k2 based on the Helmholtz model developed
in Chapter 3. Even with this specialization, the literature remains quite extensive (see for example
[18, Chapter 9], [49, Chapter 5], [69, Chapter 7]). Hence we shall constrain even further the scope of
coverage to a presentation of issues related to the solution of these problems using the optimization
framework of § 6.1.

As was mentioned at the end of § 6.2, making use of these algorithms requires the calculation
of gradient (or Jacobian) information related to the cost function. As we discuss more formally
shortly, such calculations ultimate require the derivative of the field, φ(r) with respect to changes
in k2(r). Here we look at two methods for obtaining this sensitivity information. The first is based
on a partial differential equation formulation of the underlying physics as in (3.10)while the second
arises from the integral equation formulation in (3.25)– (3.28).

6.3.1 Adjoint Field Calculations

The adjoint field approach to gradient calculation starts with the PDE model for the scattering
physics:

∇2φ(r) + k2(r)φ(r) = −s(r) (6.33)

plus appropriate boundary conditions. Let us assume for simplicity that the data we have for the
inversion are sampled values of the field collected at point receivers5. We write the data-oriented
part of the cost function involved in the inversion routine as

J1

[
k2(r)

]
=

1
2

∑
m

|φ(rm, k2(r)) − g(rm)|2 (6.34)

where g(rm) is the datum collected at the receiver located at position rm and φ(rm) is the solution
to the PDE evaluated at rm for a given k2(r).6 As we know from § 6.1, the use of gradient based
methods for solving the nonlinear problem require the derivative of the cost function with respect
to the unknowns. In a framework where k2(r) is a function, the tradition notion of a derivative is
replaced by a functional, or Fréchet, derivative of the cost function [72], [88, Chapter 2] [55, Chapter
7]. Informally, the Fréchet derivative is the linear operator that maps δk2(r) (a small perturbation
in k2, ) into δJ1 (the corresponding perturbation in the cost) and may be thought of as a functional
generalization of a first order Taylor expansion in that

J1

[
k2(r) + δk2(r)

]− J1

[
k2(r)

] ≡ δJ1

[
k2(r)

]
=
∫

∇J1(r)δk2(r) dr. (6.35)

5EXERCISE: Generalize to case where we have a linear functional of the fields
6To keep the notation from becoming too cluttered, we shall drop the explicit dependence of φ on k2 in the

following discussion



CHAPTER 6. NUMERICAL METHODS FOR NONLINEAR INVERSE PROBLEMS 143

So the objective is to find an expression of the form (6.35) which relates a small change in k2 to
the change in the cost. The resulting structure of ∇J1(r) is then the gradient function used in a
steepest decent or conjugate gradient type of scheme for solving the nonlinear inverse scattering
problem.

To begin, let us recall from complex variable theory that for any complex valued differentiable
function, f(x) where x is real-valued

d

dx
|f(x)|2 = 2�

{
f∗ df

dx

}
. (6.36)

from which we can conclude using (6.34) that

δJ1 = �
{∑

m

[
φ(rm, k2(r)) − g(rm)

]∗
δφ(rm)

}
(6.37)

where δφ(rm) is the perturbation in the field due to a small change in k2(r). Using (6.33) δφ(rm)
may be found as the solution to the perturbed problem

∇2 (φ + δφ) +
(
k2 + δk2

)
(φ + δφ) = −s (6.38)

plus boundary conditions. Under first order perturbation analysis we can ignore all terms in (6.38)
which are quadratic (or higher) in terms of δ-quantities, such as δφδk2. Thus we simplify (6.38) as

∇2δφ + δk2φ + k2δφ = 0 (6.39)

where we have also used the fact that the unperturbed system satisfies ∇2φ + k2φ = −s. Now we
define the adjoint field, φ̃ as the solution to

∇2φ̃(r) + k2φ̃(r) = −s̃(r) (6.40)

where the adjoint source is

s̃(r) =
∑
m

[g(rm) − φ(rm)]∗ δ(r − rm). (6.41)

These definitions of both the adjoint source and the adjoint field allow us to rewrite (6.37) as

δJ1 = �
{∫

s̃(r)δφ(r) dr
}

(6.42)

= −�
{∫ [

∇2φ̃(r) + k2φ̃(r)
]
δφ(r) dr

}
(6.43)

According to (6.35), we would really like to see δk2 under the integral rather than δφ. This can be
accomplished with the use of (6.38) and a little vector calculus as applied to the term

∫
δφ∇2φ̃ dr.

Specifically, using the identity7

∇ ·
[
φ̃∇δφ

]
=
(
∇φ̃
)
· (∇δφ) + φ̃∇2δφ

7EXERCISE: Prove the identity
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we have
∇ ·

[
φ̃∇δφ − δφ∇φ̃

]
= δφ∇2φ̃ + φ̃∇2δφ

so that ∫
δφ∇2φ̃ dr =

∫
dr
[
−φ̃∇2δφ + ∇ ·

(
φ̃∇δφ − δφ∇φ̃

)]
. (6.44)

The ∇· term in (6.44) can be shown to be equal to zero by the following argument:

1. Convert the volume integral to a surface integral using the divergence theorem.

2. Let the surface over which the integral is computed be a ball encompassing the perturbation
δk2 and allow the radius of the ball to go to infinity.

3. Assuming the fields obey the Sommerfeld radiation condition, (3.14), the resulting integral
can be shown to go to zero [72].

After some algebra, using (6.44) with the second term on the right hand side equal to zero in (6.43)
results in

δJ1 = −�
{∫

φ̃
[∇2δφ + k2δφ

]
dr
}

(6.45)

but according to (6.39), the term in brackets in (6.45) is −δk2φ. Hence

δJ1 = −�
{∫

φ̃(r)φ(r)δk2(r) dr
}

(6.46)

which, on comparison to (6.35) shows that the Fréchet derivative for this problem must be

∇J1(r) = �
{

φ̃(r)φ(r)
}

. (6.47)

Thus, to find the gradient information for the inverse scattering problem in which there are Ns

sources and Nr receivers requires a total of Ns +Nr forward solves using the adjoint field approach
per iteration of the underlying optimization method. To be more specific, the fields φ(r) satisfying
(6.33) are required to compute the data residuals in (6.34). For Ns source function, Ns solves will
be required. According to (6.40) and (6.41), adjoint fields are required at each receiver location as
well. While the adjoint field for a given source requires the data residuals for that source; by the
linearity of the adjoint problem (6.40), we can synthesize φ̃(r) as

φ̃(r) =
∑
m

[g(rm) − φ(rm)]∗ φ̃m(r) (6.48)

where φ̃m(r) is the solution to

∇2φ̃m(r) + k2φ̃m(r) = −δ(r − rm). (6.49)

Hence at any iteration of the algorithm, Ns forward solves and Nr adjoint solves can be used to
compute the required sensitivity information.
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It is interesting to compare (6.47) with the Born approximation, (3.30). The kernel for the
Born model is of the form g(rm, r)φb(r). The factor φb in the Born model is the “background field”
which can be interpreted as the field produced by some source for a known k2. The factor g(rm, r)
is the field arising from a δ source placed at the location of a receiver again for some nominal k2.
In the context of solving the nonlinear inverse scattering problem, at iteration n, this “nominal”
k2 is k2,(n). Hence we can identify φ in (6.47) with φb in the Born model and φ̃m with g. So,
the manner in which the gradient information required to solve the nonlinear inverse scattering
problem is computed amounts to a succession of Born linearizations about the iterates produced
as the algorithm proceeds.8

In addition to their use for gradient decent optimization methods, adjoint field approaches
can also be used for Jacobian calculations required in Gauss-Newton or Levenburg-Marquardt
algorithms. Examining (6.12) and (6.13), we see that search directions for these methods requires
both the residual φ(rm, k2(r)) − g(rm) and the Jacobian of the residual with respect to k2. To
adapt the adjoint field method to the finite dimensional case, we assume for simplicity that k2(r)
is expanded in a pixel-type basis. In this case for a given source, the derivative of the m-th
measurement with respect to the n-th pixel requires only the integral of φ̃m(r)φ(r) over the support
of the m-th pixel. Note that some care must be taken here as the adjoint field method was defined
for complex-valued residuals while the algorithms in § 6.1.2 assumed real valued residuals.

6.3.2 Integral Equation Method

Using a discretized form of the integral equation formulation of the scattering problem developed
in § 3.3.3, it is possible to compute the exact derivative of the cost function with respect to each
pixel value of interest. The resulting expression also lend some light onto the adjoint field methods
for sensitivity calculation.

From § 3.3.3, the physical model of interest here is summarized by a pair of coupled integral
equations

φ(r) +
∫

g(r, r′)k2
s(r

′)φ(r′) dr′ = φb(r) (6.50)

φs(rm) =
∫

g(rm, r′)φ(r′)k2
s(r

′) dr′ (6.51)

where we have decomposed k2(r) into background and perturbation (or scattering) components.
The background field φb and the Green’s function, g, are both computed for the background and the
objective of the problem is to recover the perturbation, k2

s , given φs(rm), scattered fields collected
at receiver locations rm. For simplicity, say we discretize (6.50) and (6.51) using the method of
moments with flat-top basis functions as in the top of Fig. 3.6. We then arrive at the matrix-vector

8EXERCISE IDEAS:

1. Functional derivative for D

2. What if the forward model is linear. Show the Fréchet derivative is what it should be.

3. The addition of a regularizer to the problem
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equations

(I + GD(f))φ = φb (6.52)
g = GmD(φ)f (6.53)

where

• f is the vector of unknown pixel values for k2
s(r)

• φ is the vector of pixel value for φ(r)

• G and Gm hold the discretized Green’s functions in (6.50) and (6.51) respectively

• g is he vector of observed scattered fields

• D(x) is the diagonal matrix formed from the elements of the vector x.

Solving (6.52) for φ and using the result in (6.53) gives the discrete analog to (3.28)

g = GmD
{

(I + GD(f))−1 φb

}
(6.54)

Recalling the discussion in § 6.1.2, the Jacobian required in for a Gauss-Newton or Leveberg-
Marquardt type approach is the matrix whose i, j-th component is the derivative of gi with respect
to fj. Denoting this matrix as ∂g/∂f and using tedious but straightforward linear algebra we have

∂g
∂f

= GmD(φ) + GmD(f)
∂φ

∂f
(6.55)

where φ = (I + GD(f))−1 φb. We compute the Jacobian of the φ with respect to f one column at
a time. Differentiating both sides of (6.52) with respect to fi we have

[I + GD(f)]
∂φ

∂fi
= −G

[
∂

∂fi
D(f)

]
φ (6.56)

Because the partial derivative of D(f) with respect to fi is a matrix with all zeroes except for a
single 1 in the i, i location we can simplify (6.56) to

∂φ

∂fi
= − [I + GD(f)]−1 GD(φ)ei (6.57)

where ei is the i-th unit vector. Using (6.57), gives

∂φ

∂f
=
[

∂φ

∂f1
| ∂φ

∂f2
| ∂φ

∂f3
| · · ·

]
= [I + GD(f)]−1 GD(φ). (6.58)

Finally, by substituting (6.58) into (6.56) we arrive at

∂g
∂f

= GmD(φ) + GmD(f) [I + GD(f)]−1 GD(φ). (6.59)
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Note that by dropping the second term in (6.58), we have an expression quite closely related to
that obtained using the adjoint field approach at the end of the last section. The first term on
the right hand side of (6.58) looks very much like a discretized form of an integral operator whose
kernel is g(rm, r)φ(r). This is identical to the adjoint approach except for the fact that g(rm, r)
here is the Green’s function computed about the nominal background k2

b which will not change as
the optimization method proceeds. This is in contrast to the adjoint approach where g is replaced
by φ̃m, the adjoint field computed for the current iterate of k2.
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• The full nonlinear inverse scattering problem revisited

• Sensitivity calculations methods: adjoint field, integral equation based

• Contrast source inversion method

6.4 Geometric Inverse Methods

• Inverting for parametric models (spheres, splines, etc).

• Level set inverse methods

6.5 Exercises

6.1 Recall that the edge preserving linear inverse problem is to recover an estimate of the object
f in a way which solves the following no-quadratic optimization problem:

f̂ = arg min
f

‖g − Kf‖2
2 + λ2Ω(Df) (6.60)

where Ω is an edge preserving functional and Df represents the gradient of the object.

For the remainder of this problem, let N = 128 and construct K as follows in Matlab:

N = 128;
n = linspace(0,1,N);
dx = n(2)-n(1);
hsig = .0236;
K =zeros(N);
for i = 1:N

for j = 1:N
K(i,j) = dx/(hsig*sqrt(2*pi))*...

exp(-((i-j)*dx)^2 / (2*hsig*hsig));
end

end

In later parts of this problem, we will look at the performance of these methods for an f
constructed as follows:

f = zeros(N,1);
for idx = 1:N
if ((idx > 20) & (idx < 45))

f(idx) = 1;
end
tmp = 3*exp(-( ((idx-90)^2/80)));
f(idx) = f(idx) + tmp;
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end

Assuming that f exists in the Matlab workspace, and the variable SNR has been set to a
desired noise level in dB, we generate noisy data according to the following:

g_clean = K*f1;
noise_var = norm(g_clean)/length(g_clean)*10^(-SNR/10);
g = g_clean + sqrt(noise_var)*randn(length(g_clean),1);

1. It is never really clear how to choose the regularization parameter for this problem.
Assuming we use a Tikhonov rather than edge preserving (i.e. Ω(DF ) = ‖Df‖2

2, for each
of the f ’s and at an SNR of 30 dB find the two parameters which minimize the difference
between the true f and the one generated by the Tikhonov method as a function of the
parameter. Comment on the stability of the “best” regularization parameter for each f .
Comment on why this approach is not feasible in practice.

2. In Chapter 8 of the Vogel text, there is a discussion of three methods for solving the
optimization problems associated with Edge Preserving Regularization. It turns out that
the one which converges fastest is the primal-dual approach of Section 8.2.5. While the
theory of this method is a bit more than we want to cover in this class, a pseudo-code
implementation of the method is provided on page 141 for the 2D problem. Using this
code as a base, write a simplified version of the algorithms for the 1D problem. For this
problem, use the φ function indicated in equation (8.38) of the text.

3. For each of the two f ’s try the edge preserving method. Set the regularization parameter
equal to the one found previously in this problem. Comment on how these results differ
from that of the best Tikhonov output.

4. How do the results change if we lower the SNR to 10? What about increasing the value
of hsig used to build K to 0.1.

6.2 In many problems, the physics dictates that the quantity being recovered must be bounded
from below typically by zero. For example, inverse problems associated with physics require
that the sound speed be estimated. Clearly, this quantity must be non-negative. Similarly,
electrical conductivity is also required to be non-negative. There are a number of ways of
incorporating such bounds into the reconstruction, some more rigorous than others. Here we
want to look at one: a change of variable. To see how this works, consider the typical linear
inverse problem:

f̂ = arg min
f

‖g − Af‖2
2 + λ2‖Df‖2

2 (6.61)

with D the first difference matrix. Now we want to add the condition that each element of f
is greater than or equal to zero.

1. Why can’t we use the normal least squares type of solution still?



CHAPTER 6. NUMERICAL METHODS FOR NONLINEAR INVERSE PROBLEMS 150

2. Now let us suppose that instead of estimating the elements of f , we assume that f can
be associated with a second vector, h via fi = h2

i . In Matlab notation, f = h.* h. Now
the problem is to find ĥ according to

ĥ = arg min
f

‖g − A(h. ∗ h)‖2
2 + λ2‖D(h. ∗ h)‖2

2 (6.62)

and define f̂ = ĥ. ∗ ĥ. Develop a steepest decent algorithm for solving this problem.

3. Implement and test the algorithm using the following code for K and f :

% $$$ DEFINITION OF THE MATRIX K.
N = 128;
n = linspace(0,1,N);
dx = n(2)-n(1);
hsig = .05;
K =zeros(N);
for i = 1:N

for j = 1:N
K(i,j) = ...

dx/(hsig*sqrt(2*pi))*...
exp(- ( (i-j)*dx)^2 / (2*hsig*hsig)) ...

- dx/(hsig*sqrt(2*pi))*...
exp(- ( (i-j-N/4)*dx)^2 / (2*hsig*hsig));

end
end

% $$$ DEFINITION OF THE FUNCTION F.
f = zeros(N,1);
for idx = 1:N
if ((idx > 20) & (idx < 45))

f(idx) = 1;
end
tmp = 3*exp(-( ((idx-90)^2/80)));
f(idx) = f(idx) + tmp;

end

The regularization matrix should be a discrete derivative and the optimal regularization
parameter should be selected like in the last problem.The SNR should be 10. Please
compare results to the unconstrained Tikhonov method.



Appendix A

A Brief Review of Probability

Probability is a mathematical formalism for quantifying ideas concerning outcomes of experiments
that are (or appear to be or are well approximated as) random. The study of this topic is extensive
covered in a range of texts and research monographs. Moreover, there exists interesting connections
between many of the inverse methods developed in this book and techniques drawn from the area of
probabilistic inference. Here we content ourselves with a brief overview of a few relevant concepts
and point the reader to references such as [22,26,88] for further, more detailed analysis.

A.1 Basic Concepts

The fundamental components of a probabilistic model are:

1. The sample space, S, defined to be “The finest-grain, mutually exclusive, collectively exhaus-
tive listing of all possible outcomes of a model of an experiment” [26, Section 1.2].

2. Events: possible outcomes of an experiment which may not be finest-grain, mutually exclusive,
or collectively exhaustive.

3. A probability measure which is a way of assigning to an event a number between zero and one
indicating the odds of the event actually occurring as an outcome to an experiment.

As a simple example of the above, consider an experiment of rolling a pair of six sided dice. The
sample space is the collection of all thirty six possible pairs of spots that may be observed as a
result of the role. In this simple example, event constitute subsets of these thirty six outcomes. A
simple event is “Die one shows a six and die two shows a three” which is just a single element of the
sample space. More complex event can also be considered such as “The sum of the two numbers
showing on the dice is even” or “Die one shows a four.” If the dice are fair (no one number more
likely than any other), the measure for this experiment assigned the probability of 1/36 to each
of the thirty six possible outcomes. The probability of a particular event then is the sum of the
probabilities for the constituent elements in the sample space. Letting x represent the event we
denote by P (x) the probability assigned to x. Thus if x is comprised of the union of elements xi in

151
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the sample space we have
P (x) =

∑
i

P (xi) (A.1)

A key issue in the area of probabilistic modeling is the incorporation of known information into
probability calculations. In the context of inverse problems this arises naturally enough via data.
If we observe a single piece of random data, y which we know carries information about a quantity
of interest, x, it is natural to compare the probability that x has occurred knowing the outcome y
to the probability that x occurs in the absence of this information. The tool for exploring this issue
is the conditional probability of x given y, P (x|y). To determine P (x|y), we look at that subset of
elements of the sample space where y is known to have occurred. Call this set Y . The conditional
probability of x is then the sum over all elements of Y where x is also true. To ensure that the
probability is normalized to one, we must scale this result by P (y). Thus mathematically we have

P (x|y) =
1

P (y)

∑
i∈Y

P (xi). (A.2)

The sum in (A.2) is nothing more than the probability that both x and y are true which we write
as P (xy). Hence

P (x|y) =
P (xy)
P (y)

. (A.3)

When knowing y tells us nothing about the probability of x, the two events are called independent.
In this case, P (x|y) = P (x), the original probability of x and we have the important relationship
that for independent events x and y, P (xy) = P (x)P (y).

Suppose that we can write S as the union of mutually exclusive events xi; i.e. S = ∪ixi and for
i �= j xi ∩ xj = ∅. Then the probability that an event y occurs is equal to [75, Section 2.3]

P (y) =
∑

i

P (y|xi)P (xi). (A.4)

From the definition of conditional probability P(xy) = P(x—y)P(y) = P(y—x)P(x)

P (xi|y) =
P (y|xi)P (xi)

P (y)
=

P (y|xi)P (xi)∑
i P (y|xi)P (xi)

(A.5)

which is known as Bayes theorem.

A.2 Random Variable

For cases where a numerical value can be assigned to an outcome of an experiment, one can build
on the results of the previous section though the notion of a random variable. Formally a random
variable is a function that assigns to a point in the sample space a probability. For example we
may have x as a random variable which represents the number of spots seen on the role of a single
fair die. The function that assigns 1/6 to each of the numbers 1, 2, 3, 4, 5, 6 in the sample space is
called the probability mass function (PMF) and denoted p(x).
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Experiments are not restricted to classes of event which assume a finite (or even countable)
number of outcomes. If one thinks of the time between successive trains on the subway as a
random variable, clearly this quantity can take on any value between 0 and ∞. The appropriate
generalization of the probability mass function for continuous random variables is the probability
density function (PDF), f(x). Using the PDF, the probability of an event as the integral over all
possible outcomes of f(x). If f(t) is the PDF for the waiting time (in minutes) for the next train
then the probability of the event A = “We will have to wait between 10 and 12 minutes” is

P (A) =
∫ 12

10
f(t)dt.

As another example, assuming that f(x) is continuous (which will always be the case for us here)
the probability that a continuous random variable assumes a value between x0 and x0 + δx for an
infinitesimal δx is

P (x0 ≤ x ≤ x0 + δx) =
∫ x0+δx

x0

f(x)dx ≈ f(x0)δx.

This results indicates that f(x) is closely related to an actual probability. From this it follows that
for a function to be a PDF, it must be positive and its integral over all x must equal 1.

Closely associated with random variables is the notion of expectation. Say that we observe not
x, but a function of this quantity y = g(x). Since x is random, so too will be y = g(x). While there
exist well defined methods for deriving the distribution f(y) [26, Section 2-14], a simpler quantity
to obtain is the expected value of y, E[y] = E[g(x)] defined as

E[y] =
∫

g(x)f(x)dx (A.6)

Basically, one would expect that if we were to measure y many, many times with each measurement
independent of all the others then average value we see should be influenced in proportion to the
quantity of probability associated with the underlying x. Two important expectations for us here
are the expected value (or mean), E[x] and the variance E[(x − E[x])2]. Given no other information,
if one had to guess the result of an experiment involving x, the number produced would be E[x].
The variance measures the expected spread of the true value of x about E[x]. The larger the
variance, the more likely that the outcome x will be far from E[x]. As the variance decreases, one
expects to see a tighter spread of values clustered more closely to E[x].

To make these ideas a bit more concrete, let us take a canonical example. While there exist
a variety of analytically specified PDFs that are commonplace in mathematical modeling and
engineering, by far the most commonly used is the normal or Gaussian probability density function
defined as

f(x) =
1√

2πν2
e−(x−x̄)2/2ν2

. (A.7)

it is not hard to show that for the normal density, the mean is x̄ and the variance is ν2. In
Fig. A.1(a), we plot collections of 5000 independently generated samples from a normal random
variable as we change the mean and variance. Histograms of the results are displayed in Fig. A.1(b).
The height of each bar in the histograms represents the number of times in each set of 5000, the
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(a) Independent samples of a normal random variable for different
means and variances
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(b) Histograms for the corresponding plots in (a)

Figure A.1: Samples and associated histograms for normally distributed random variables.
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value of the random variable fell within the region spanned by the width of the bar. If we were to
normalize these histograms by 5000, they would represent an approximation to the corresponding
PDF. These results in Fig. A.1 show that as x̄ is changes the plots in (a) tend to cluster about
the appropriate values while those in (b) shift along the abscissa to be centered on the value of x̄.
Increasing the variance, ν2 is also seen to increase the spread of the values seen for a given set of
5000 samples. Thus the histograms in (b) are more spread out while the plots in (a) show wider
variation about the mean value.

A.3 Jointly Distributed Random Variables

Given more than one random variable, it is both possible and quite useful to define a joint density
function (or mass function in the discrete case). In the case of N random variables x1, x2, . . . xN ,
we write the PDF as f(x1, x2, . . . , xN ) or using vector notation f(x) where xT = [x1 x2 . . . xN ]. As
in the univariate case, the joint PDF must be both positive and integrate to unity over the whole
sample space. Moreover, f(x) evaluated at some x0 can be interpreted as the probability of the
event A = “x1 ∈ [x1,0, x1,0 + δx1], and x2 ∈ [x2,0, x2,0 + δx2], and . . . , xN ∈ [xN,0, xN,0 + δxN ]”
which is

P (A) = f(x0)δx1δx2 · · · δxN

Defined in this manner, it is possible to extend naturally the notion of conditional probability to
continuous random variables. For example, as explained in [26, Section 2-12], the PDF of the
random variable x conditioned on knowledge of a second random variable y is

f(x|y) =
f(x, y)
f(y)

.

The idea can obviously be extended to cases where there are more than two random variables.
Multivariate expectations and conditional expectations are defined in the natural manner as

E[g(x)] =
∫

g(x)f(x)dx =
∫

g(x1, x2, . . . , xN )f(x1, x2, . . . , xN )dx1dx2 . . . dxN

E[g(x)|y] =
∫

g(x)f(x|y)dx.

The generalization of the mean of a scalar random variable is the mean vector E[x] = x̄ of multi-
variate density. The ith element of E[x] is just E[xi]. The multivariate extension of the variance
is a bit more involved. Now, we can consider the co-variation of each xi with respect to the other
xj. This leads to the notion of the covariance matrix, Q, associated with the random vector x

Q = E[(x − x̄)(x − x̄)T ].

Thus, Q is a symmetric matrix (actually, symmetric positive semi-definite [75, Section 8-1]) whose
(m,n)-th entry is E[(xm − x̄m)(xn − x̄n)]. Note that the diagonal elements of Q are the variances
of the individual components of x. If the covariance matrix possess a Toeplitz structure so that
Qi,j = Qi−j then the random vector is said to be stationary.
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The multivariate Gaussian density is

f(x) =
1√

(2π)N |Q|e
(x−x̄)T Q−1(x−x̄)/2 (A.8)

where the mean of x is in fact given by x̄, the covariance matrix is Q, and |Q| is the determinant of
the matrix Q1. As a shorthand, when x follows a distribution as in (A.8), we write x ∼ N(x̄,Q).
The multivariate Gaussian is used quite extensively (and sometimes even correctly) as a model for
additive sensor noise in general and for inverse problems in particular. In many of these cases, the
phrase “white” noise is employed as an indication that the samples are uncorrelated. This in turn
gives rise to a diagonal covariance matrix Q = diag(ν2

1 , ν2
2 , . . . , ν2

N ). If in addition, the vector is
stationary then all of the variances are the same and equal to ν2 and Q = ν2I.

1Here we consider only cases where Q is invertible and hence positive definite.
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