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Abstract

Online services routinely mine user data to predict user preferences,
make recommendations, and place targeted ads. Recent research has
demonstrated that several private user attributes (such as political af-
filiation, sexual orientation, and gender) can be inferred from such data.
Can a privacy-conscious user benefit from personalization while simulta-
neously protecting her private attributes? We study this question in the
context of a rating prediction service based on matrix factorization. We
construct a protocol of interactions between the service and users that
has remarkable optimality properties: it is privacy-preserving, in that no
inference algorithm can succeed in inferring a user’s private attribute with
a probability better than random guessing; it has maximal accuracy, in
that no other privacy-preserving protocol improves rating prediction; and,
finally, it involves a minimal disclosure, as the prediction accuracy strictly
decreases when the service reveals less information. We extensively eval-
uate our protocol using several rating datasets, demonstrating that it
successfully blocks the inference of gender, age and political affiliation,
while incurring less than 5% decrease in the accuracy of rating prediction.

1 Introduction

Online users are routinely asked to provide feedback about their preferences
and tastes. Often, users give five-star ratings for movies, books, restaurants,
or items they purchase, and “like” news articles, blog posts, pictures or other
kinds of micro-content. Online services mine such feedback to predict users’
future preferences, using techniques such as matrix factorization [9,22–24]. Such
prediction can be employed to, e.g., make relevant product recommendations,
to display targeted ads, or, more generally, personalize services offered; making
accurate predictions is thus of fundamental importance to many online services.

Although users may willingly reveal, e.g., ratings to movies or “likes” to
news articles and posts, there is an inherent privacy threat in this revelation.
To see this, consider the following general setting. An entity, which we call
for concreteness the analyst, has a dataset of ratings given by users to a set of
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items (e.g., movies). A private attribute of some users, such as their gender,
age, political affiliation, etc., is also in the dataset. The analyst uses this dataset
to offer a recommendation service. Specifically, the analyst solicits ratings from
new users; using these ratings, it predicts how these users would rate other items
in its dataset (e.g., via matrix factorization techniques), and recommends items
they are likely to rate highly. New users are privacy-conscious: they want to
receive relevant recommendations but do not want the analyst to learn their
private attribute. However, having access to the above dataset, the analyst can
potentially infer the private attribute from the ratings they reveal.

The success of such inference clearly depends on how a user’s feedback (i.e.,
her ratings) relates to her private attribute, and whether this correlation is evi-
dent in the dataset. Recent studies report many examples where strong correla-
tions have been found: attributes successfully inferred from ratings or “likes” in-
clude political affiliation [25,38], sexual orientation [25], age [44], gender [38,44],
and even drug use [25]. Yet more privacy threats have been extensively docu-
mented in literature (see, e.g., [3, 30, 31, 34, 35]). It is therefore natural to ask
how can a privacy-conscious user benefit from relevant recommendations, while
preventing the inference of her private information? Allowing this to happen is
clearly desirable from the user’s point of view. It also benefits the analyst, as it
incentivizes privacy-conscious individuals to use the recommendation service.

A solution proposed by many recent research efforts is to allow a user to dis-
tort her ratings before revealing them to the analyst [7,12,21,42]. This leads to
a well-known tradeoff between accuracy and privacy : greater distortion yields
better privacy but also less accurate prediction (and, hence, poorer recommen-
dations). We introduce for the first time a third dimension to this tradeoff,
namely the information the analyst discloses to the users.

To understand the importance of this dimension, consider the following hypo-
thetical scenario. The analyst gives the privacy-conscious user an implementa-
tion of its rating prediction algorithm, as well as any data it requires–including,
potentially, the full dataset at the analyst’s disposal. The user can then exe-
cute this algorithm locally, identifying, e.g., which movies or news articles are
most relevant to her. This would provide perfect privacy (as the user reveals
nothing to the analyst) as well as maximal accuracy (since the user’s ratings are
not distorted). Clearly, this is untenable from the analyst’s perspective, both
for practical reasons (e.g., efficiency or code maintenance) and for commercial
reasons: the analyst may be charging a fee for its services, and exposing such
information publicly diminishes any competitive edge it may have.

The above hypothetical scenario illustrates that both privacy and accuracy
can be trivially attained when no constraints are placed on the information
disclosed by the analyst. On the other hand, such constraints are natural and
necessary when the analyst’s algorithms and data are proprietary. A natural
goal is thus to determine the minimal information the analyst needs to disclose
to a privacy-conscious user, to enable a recommendation service that is both
private and accurate. We make the following contributions:

• We introduce a novel mathematical framework to study issues of privacy, ac-
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curacy, and information disclosure when the analyst predicts ratings through
matrix factorization (Section 4). In particular, we define a broad class of
learning protocols determining the interactions between the analyst and a
privacy-conscious user. Each protocol specifies what information the ana-
lyst reveals, how the user distorts her ratings, and how the analyst uses this
obfuscated feedback for rating prediction.
• We propose a simple learning protocol, which we call the midpoint protocol

(MP), and prove it has remarkable optimality properties (Section 5). First,
it provides perfect privacy w.r.t. the user’s private attribute: no inference
algorithm predicts it better than random guessing. Second, it yields optimal
accuracy : there is no privacy-preserving protocol allowing rating prediction
at higher accuracy than MP. Finally, the protocol involves a minimal dis-
closure: any privacy-preserving protocol that discloses less information than
MP necessarily has a strictly worse prediction accuracy.
• We extend our solution to handle common situations that occur in practice

(Section 6). We deal with the case where the user can only rate a subset
of the items for which the analyst solicits feedback: we provide a variant
of MP, termed MPSS, and also establish its optimality in this setting. We
also discuss how the analyst can select the set of items for which to solicit
ratings, and how the user can repeatedly interact with the analyst.
• We evaluate our proposed protocols on three datasets, protecting attributes

such as user gender, age and political affiliation (Section 7). We show that
MP and MPSS attain excellent privacy: a wide array of inference methods
are rendered no better than blind guessing, with an area-under-the-curve
(AUC) below 0.55. This privacy is achieved with negligible impact (2-5%)
on rating prediction accuracy.

To the best of our knowledge, we are the first to take into account the data
disclosed by an analyst in the above privacy-accuracy tradeoff, and to establish
the optimality of a combined disclosure, obfuscation, and prediction scheme.
Our proofs rely on the modeling assumption that is the cornerstone of matrix
factorization techniques and hence validated by vast empirical evidence (namely,
that the user-item ratings matrix is approximately low-rank). Moreover, the fact
that our algorithms successfully block inference against a barrage of different
classifiers, some non-linear, further establishes our assumption’s validity over
real-world data.

2 Related Work

Threats. Inference threats from user data have been extensively documented
by several recent studies. Demographic information has been successfully in-
ferred from blog posts [3], search queries [5], reviews [34], tweets [35], and
the profiles of one’s Facebook friends [30]. In an extreme case of inference,
Narayanan et al. [31] show that disclosure of movie ratings can lead to full de-
anonymization (through a linkage attack), thus enabling unique identification
of users. Closer to our setting, Kosinski et al. [25] show that several personality
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traits, including political views, sexual orientation, and drug use can be accu-
rately predicted from Facebook “likes”, while Weinsberg et al. [44] show that
gender can be inferred from movie ratings with close to 80% accuracy. Sala-
matian et al. [38] also show that political views can be inferred with confidence
above 71% by using only a user’s ratings to her 5 most-watched TV shows.

Privacy-Preserving Data Mining and Information-Theoretic Models.
Distorting data prior to its release to an untrusted analyst has a long history
in the context of privacy-preserving data mining (see, e.g., [42, 43]). Distortion
vs. estimation accuracy tradeoffs have been studied in the context of several
statistical tasks, such as constructing decision trees [1], clustering [2, 33], and
parameter estimation [12]. The outcome of such tasks amounts to learning an
aggregate property from the distorted data of a user population. In contrast, we
focus on estimating accurately a user profile to be used in matrix factorization,
while keeping private any attribute she deems sensitive.

Our setting is closely related to the following information-theoretic problem
[7, 45]. Consider two dependent random variables X and Y , where X is to be
released publicly while Y is to be kept secret. To prevent inference of Y from
the release, one can apply a distortion f(X) on X; the goal is then to find
the minimal distortion so that the mutual information between f(X) and Y
is below a threshold. This problem was originally addressed in the asymptotic
regime [39, 45], while a series of recent works study it in a non-asymptotic
setting [7,28,36,38]. Broadly speaking, our work can be cast in this framework
by treating a user’s ratings as X, her private feature as Y , and employing a
correlation structure between them as specified by matrix factorization (namely,
(7)). Our definition of privacy then corresponds to zero mutual information (i.e.,
“perfect” privacy), and our protocol involves a minimal rating distortion.

We depart from these studies of privacy vs. accuracy (both in information-
theoretic as well as the privacy-preserving data mining settings), by investigating
a third axis, namely, the information disclosed by the analyst. To the best of our
knowledge, our work is the first to characterize the disclosure extent necessary
to achieve an optimal privacy-accuracy trade-off, an aspect absent from the
aforementioned works.

Trusted Analyst. A different threat model than the one we study here con-
siders a trusted analyst that aggregates data from multiple users in the clear.
The analyst performs a statistical operation over the data, distorts the out-
put of this operation, and releases it publicly. The privacy protection gained
by the distortion is therefore towards a third party that accesses the distorted
output. The most common approach to quantifying privacy guarantees in this
setting is through ε-differential privacy [13,15]. The statistical operations stud-
ied under this setting are numerous, including social recommendations [27],
covariance computation [29], statistical estimation [14,40], classification [10,37],
and principal component analysis [11], to name a few. We differ in consid-
ering an untrusted analyst, and enabling a privacy-conscious user to interact
with an analyst performing matrix factorization, rather than learning aggregate
statistics.
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3 Technical Background

In this section, we briefly review matrix factorization and the modeling assump-
tions that underlie it. We also highlight privacy challenges that arise from its
application.

3.1 Matrix Factorization (MF)

Matrix factorization [8, 22, 24] addresses the following prediction problem. A
data analyst has access to a dataset in which N users rate subsets of M possible
items (e.g., movies, restaurants, news articles, etc.). For [N ] ≡ {1, . . . , N} the
set of users, and [M ] ≡ {1, . . . ,M} the set of items, we denote by E ⊆ [N ]× [M ]
the user-item pairs with a rating in the dataset. For (i, j) ∈ E , let rij ∈ R be
user i’s rating to item j. Given the dataset {(i, j, ri,j)}(i,j)∈E , the analyst wishes
to predict the ratings for user-item pairs (i, j) /∈ E .

Matrix factorization attempts to solve this problem assuming that the N×M
matrix comprising all ratings is approximately low-rank. In particular, it is
assumed that for some small dimension d ∈ N there exist vectors xi,vj ∈ Rd,
termed the user and item profiles, respectively, such that

rij = 〈xi,vi〉+ εij , for i ∈ [N ], j ∈ [M ], (1)

where the “noise” variables εij are zero mean, i.i.d. random variables with finite

variance, and 〈a,b〉 ≡
∑d
k=1 akbk is the usual scalar product in Rd. Given

the ratings {rij , (i, j) ∈ E}, the user and item profiles are typically computed
through the following least-squares estimation (LSE) [24]:

min
{xi}i∈[N],{vj}j∈[M]

∑
(i,j)∈E(rij − 〈xi,vj〉)2. (2)

Minimizing this square error is a natural objective. Moreover, when the noise
variables in (1) are Gaussian, (2) is equivalent to maximum likelihood estimation
of user and item profiles. Note that, having solved (2), the analyst can predict
the rating of user i for item j as:

r̂ij ≡ 〈xi,vj〉, (i, j) /∈ E . (3)

where xi,vj are the estimated profiles obtained from (2).
Unfortunately, the minimization (2) is not a convex optimization problem.

Nevertheless, there exist algorithms that provably recover the correct user and
item profiles, under appropriate assumptions [8,9,22]. Moreover, simple gradient
descent or alternating least-squares techniques are known to work very well in
practice [24].

3.2 Incorporating Biases

Beyond user ratings, the analyst often has additional “contextual” information
about users in the dataset. For example, if users are not privacy-conscious, they
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may reveal features such as their gender, age or other demographic information
along with their ratings. Such information is typically included in MF through
biases (see, e.g., [23, 24]).

Suppose, for concreteness, that each user i discloses a binary feature xi0 ∈
{−1,+1}, e.g., their gender or political affiliation. This information can be
incorporated in MF by adapting the model (1) as follows:

rij = 〈xi,vj〉+ xi0vj0 + εij = 〈xi, vj〉+ εij (4)

for all i ∈ [N ], j ∈ [M ], where vj0 ∈ R is a type-dependent bias, and xi =
(xi0,x) ∈ Rd+1, i ∈ [N ], vj = (vj0,vj) ∈ Rd+1, j ∈ [M ], are extended user and
item profiles, respectively. Under this modeling assumption, the analyst can
estimate profiles and biases jointly by solving:

min
{xi}i∈[N],{(vj0,vj)}j∈[M]

∑
(i,j)∈E(rij − 〈xi, vj〉)2. (5)

Note that this minimization can be seen as a special case of (2), in which
extended profiles have dimension d+ 1, and the first coordinate of xi is fixed to
either −1 or +1 (depending on the user’s binary feature xi0). In other words,
the feature xi0 can be treated as yet another feature of a user’s profile, though
it is explicit (i.e., a priori known) rather than latent (i.e., inferred through MF).
Prediction can be performed again through r̂ij = 〈xi, vj〉, for (i, j) /∈ E .

Intuitively, the biases vj0 gauge the impact of the binary feature xi0 on each
user’s ratings. Indeed, consider sampling a random user from a population,
and let x = (x0,x) be her profile, where x comprises the features that are
independent of x0. Then, it is easy to check from (4) that her rating rj for item
j will be such that:

E{rj | x0 = 1} − E{rj | x0 = 0} = 2vj0,

where the expectation is over the noise in (4), as well as the random sampling of
the user. Put differently, given access to ratings by users that are not privacy-
conscious and have disclosed, e.g., their gender x0, vj0 corresponds to half the
distance between the mean ratings for item j among genders.

Additional explicit binary features can be incorporated similarly, by adding
one bias per feature in (5) (see, e.g., [24]). Categorical features can also be
added through binarization; for simplicity, we focus on a single binary feature,
discussing multiple and categorical features in Section 6.4.

3.3 Prediction for Privacy-Conscious Users

Consider a scenario in which the analyst has performed MF over a dataset
of users that disclose a binary feature, extracting thusly the extended profiles
vj = (vj0,vj) ∈ Rd+1 for each item j ∈ [M ]. Suppose now a privacy-conscious
user joins the system and does not explicitly reveal her private binary feature x0
to the analyst.
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privacy	  

accuracy	  

1/disclosure	  

Best	  privacy,	  best	  u0lity	  
worst	  (max)	  disclosure	  

Best	  privacy,	  
worst	  u0lity,	  
best	  (min)	  
disclosure,	   What	  we	  achieve	  

Worst	  privacy,	  best	  u0lity	  
best	  (min)	  disclosure	  

Figure 1: The red circles represent the three extreme protocols (Sec. 4.1) that fail to
meet all three properties simultaneously. Our solution (see Sec. 5) lies near the upper
front right edge of the cube, as it has perfect privacy and accuracy. We will prove
(Thm. 1 in Sec. 5) that the region between our solution and the optimal corner (‘zero’
disclosure, perfect privacy, maximal accuracy) is unattainable.

In such a “cold-start” situation, the analyst would typically solicit a batch
of ratings {rj}j∈S for some set S ⊆M . Assume that the new user’s ratings also
follow the linear model (4) with extended profile x = (x0,x) ∈ {−1,+1} × Rd.
Then, the analyst can (a) infer the user’s extended profile x, and (b) predict her
ratings for items in [M ] \ S using the extended item profiles {vj}j∈S as follows.
First, the analyst can infer x using through the LSE:

min
x0∈{−1,+1},x∈Rd

∑
j∈S(rj − 〈x,vj〉 − x0vj0)2. (6)

The minimization (6) can be computed in time linear in |S|, by solving two
linear regressions (one for each x0 ∈ {−1,+1}) and picking the solution (x0,x)
that yields the smallest error (6). Having obtained an estimate of the extended
profile x, the analyst can predict ratings as r̂j = 〈x, vj〉, for j /∈ S.

Beyond this LSE approach, the analyst can use a different classification
algorithm to first infer the private feature x0, such as logistic regression or
support vector machines (SVMs). We refer the reader to, e.g., [44], for the
description of several such algorithms and their application over real rating
data. Having an estimate of x0, the analyst can proceed to solve (6) w.r.t. x
alone, which involves a single linear regression.

In both of the above approaches (joint LSE, or separate inference of x0) the
analyst infers the private feature x0. Indeed, the LSE method (6) is known to
predict information such as gender or age with an accuracy between 65–83% over
real datasets [4]; separate inference of the private information (through, e.g.,
logistic regression or SVMs) leads to 84-86% accuracy [44]. As such, by revealing
her ratings, the user also reveals x0, albeit indirectly and unintentionally.
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4 Modeling Privacy Tradeoffs

Section 3.3 illustrates that serving a privacy-conscious user is not straightfor-
ward: there is a tension between the user’s privacy and the utility she receives.
Accurate profiling allows correct rating prediction and enables relevant recom-
mendations, at the cost of the inadvertent revelation of the user’s private feature.
It is thus natural to ask whether the user can benefit from accurate prediction
while preventing the inference of this feature. We will provide both rigorous
and empirical evidence that – perhaps surprisingly – this is possible. Specific
features can be obfuscated without harming personalization. One of our main
contributions is to identify that, beyond this privacy-utility tradeoff, there is in
fact a third aspect to this problem: namely, how much information the analyst
discloses to the user. In what follows, we present a framework that addresses
these issues.

4.1 Problem Formulation

Motivated by Section 3.3, we consider a setting comprising the two entities we
have encountered so far, an analyst and a privacy-conscious user. The analyst
has access to a dataset of ratings collected from users that are not privacy-
conscious, and have additionally revealed to the analyst a binary feature. By
performing matrix factorization over this dataset, the analyst has extracted
extended item profiles vj = (vj0,vj) ∈ Rd+1, j ∈ [M ], for a set of M items.

The analyst solicits the ratings of the privacy-conscious user for a subset of
items S ∈ [M ]. We again assume that the user is parametrized by an extended
profile x = (x0,x) ∈ {−1,+1} × Rd, and that her ratings follow (4). The
analyst’s goal is to profile the user and identify items that the user might rate
highly in [M ] \ S. The user is willing to aid the analyst in correctly profiling
her; however, she is privacy-conscious w.r.t. her private feature x0, and wishes
to prevent its inference. We thus wish to design a protocol for exchanging
information between the analyst and the user that has three salient properties;
we state these here informally, postponing precise definitions until Section 4.3:

(a) At the conclusion of the protocol, the analyst estimates x, the non-private
component of x, as accurately as possible.

(b) The analyst learns nothing about the private feature x0.
(c) The user learns as little as possible about the extended profile vj of each

item j.

To highlight the interplay between these three properties, we discuss here
three “non-solutions”, i.e., three protocols that fail to satisfy all three proper-
ties. First, observe that the “empty” protocol (no information exchange) clearly
satisfies (b) and (c), but not (a): the analyst does not learn x. Second, the pro-
tocol in which the user discloses her ratings to the analyst “in the clear”, as in
Section 3.3, satisfies (a) and (c) but not (b): it allows the analyst to estimate
both x and x0 through, e.g., the LSE (6).
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Finally, consider the following protocol. The analyst discloses all item pro-
files vj , j ∈ S, to the user. Subsequently, the user estimates x locally, by solving
the linear regression (6) over her ratings in S, with her private feature x0 fixed.
The user concludes the protocol by sending the obtained estimate of x to the an-
alyst. Observe that this protocol satisfies (a) and (b), but not (c). In particular,
the user learns the extended profiles of all items in their entirety.

These protocols illustrate that it is simple to satisfy any two of the above
properties, but not all three. Each of the three “non-solutions” above are in fact
extrema among protocols constrained by (a)-(c): each satisfies two properties in
the best way possible, while completely failing on the third. In the conceptual
schematic of Figure 1 we illustrate where these three extreme protocols lie.

There is a clear motivation, from a practical perspective, to seek protocols
satisfying all three properties. Property (a) ensures that, at the conclusion of
the protocol, the analyst learns the non-private component of the user’s profile,
and can use it to suggest new items–benefiting thusly the user, and motivating
the existence of this service. Property (b) ensures that a privacy-conscious user
receives this benefit without revealing her private feature, thereby incentiviz-
ing her participation. Finally, property (c) limits the extent at which the item
profiles {vj}j∈S are made publicly available. Indeed, the item profiles and the
dataset from which they were constructed are proprietary information: disclos-
ing them to any privacy-conscious user, as described by the last non-solution,
would allow any user to offer the same service. More generally, it is to the
analyst’s interest to enable properties (a) and (b), thereby attracting privacy-
conscious users, while limiting the disclosure of any proprietary information and
its exposure to competition.

It is natural to ask what is the precise statement of “as accurately as pos-
sible”, “learns nothing”, and “as little as possible” in the above description of
(a)-(c). We provide such formal definitions below.

4.2 A Learning Protocol

To formalize the notions introduced in properties (a)-(c) of Section 4.1, we
describe in this section the interactions between the privacy-conscious user and
the analyst in a more precise fashion. Recall that the user is parametrized by
an extended profile x = (x0,x) ∈ {−1,+1} × Rd, and that her ratings follow
(4); namely,

rj = 〈x,vj〉+ x0vj0 + εj = 〈x, vj〉+ εj , j ∈ [M ] (7)

where vj ∈ Rd+1, is the extended profile of item j, extracted through MF, and εj
are i.i.d. zero mean random variables of variance σ2 <∞. We note that, unless
explicitly stated, we do not assume that the noise variables εj are Gaussian; our
results will hold with greater generality.

We assume that the set of items S ⊆ [M ], for which ratings are solicited, is
an arbitrary set chosen by the analyst1. We restrict our attention to items with

1We discuss how the analyst can select the items in S in Section 6.2.
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Dataset Estimator

Analyst

Disclosure

Obfuscation

Figure 2: A learning protocol R = (L, Y, x̂) between an analyst and a privacy-
conscious user. The analyst has access to a dataset, from which it extracts the extended
profiles V through MF. It discloses to the user the information ` = L(V). Using this
information, her vector of ratings r, and her private feature x0, the user computes
the obfuscated output y = Y (r, x0, `) and reveals it to the analyst. The latter uses
this obfuscated feedback as well as the profiles V to estimate x, using the estimator
x̂(y,V).

extended profiles vj such that vj 6= 0. Indeed, given the analyst’s purpose of
estimating x, the rating of an item for which v = 0 is clearly uninformative in
light of (7). We denote by

Rd+1
−0 ≡ {(v0,v) ∈ Rd+1 : v 6= 0}

the set of all such vectors, and by V ≡ {vj , j ∈ S} ⊆ Rd+1
−0 the extended profiles

of items in S. Recall that the user does not a priori know V. In addition, the
user knows her private variable x0 and either knows or can easily generate her
rating rj to each item j ∈ S. Nevertheless, the user does not a-priori know
the remaining profile x ∈ Rd. This is consistent with MF, as the “features”
corresponding to each coordinate of vj are “latent”.

The assumption that the user either knows or can easily generate her ratings
in S is natural when the user can immediately form an opinion (this is the case
for items such as blog posts, ads, news articles, tweets, pictures, short videos,
etc.); or, when the “rating” is automatically generated from user engagement
(e.g., it is the time a user spends at a website, or the reading collected by a skin
sensor); or, when the user is obligated to generate a response (because, e.g.,
she is paid to do so). We discuss the case where the user can readily produce
ratings for only a subset of S in Section 6.1.

Using the above notation, we define a privacy-preserving learning protocol
as a protocol consisting of the following three components, as illustrated in
Figure 2:
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Disclosure. The disclosure determines the amount of information that the an-
alyst discloses to the user regarding the profiles in V. Formally, it is a mapping

L : Rd+1
−0 → L,

with L a generic set2. This is implemented as a program and executed by the
analyst, who discloses to the user the information `j ≡ L(vj) ∈ L for each item
j ∈ S. We denote by L(V) the vector ` ∈ L|S| with coordinates `j , i ∈ S. We
note that, in practice, L(V) can be made public, as it is needed by all potential
privacy-conscious users that wish to interact with the analyst.

Obfuscation Scheme. The obfuscation scheme describes how user ratings are
modified (obfuscated) before being revealed to the analyst. Formally, this is a
mapping

Y : R|S| × {−1,+1} × L|S| → Y,

for Y again a generic set. The mapping is implemented as a program and exe-
cuted by the user. In particular, the user enters her ratings r = (r1, . . . , r|S|) ∈
R|S|, her private variable x0 as well as the disclosure ` = L(V) ∈ L|S|. The pro-
gram combines these quantities computing the obfuscated value y = Y (r, x0, `) ∈
Y, which the user subsequently reveals to the analyst.

Estimator. Finally, using the obfuscated output by the user, and the item pro-
files, the analyst constructs an estimator of the user’s profile x ∈ Rd. Formally:

x̂ : Y × (R(d+1)
−0 )|S| → Rd.

That is, given the item feature vectors V ⊂ Rd+1
−0 and the corresponding obfus-

cated user feedback y ∈ Y, it yields an estimate x̂(y,V) of the user’s non-private
feature vector x. The estimator is a program executed by the analyst.

We refer to a triplet R = (L, Y, x̂) as a learning protocol. Note that the func-
tional forms of all three of these components are known to both parties: e.g., the
analyst knows the obfuscation scheme Y . Both parties are honest but curious:
they follow the protocol, but if at any step they can extract more information
than what is intentionally revealed, they do so. All three mappings in protocol
R can be randomized. In the following, we denote by Px,V , Ex,V the probability
and expectation with respect to the noise in (7) as well as protocol randomiza-
tion, given x, V.

4.3 Privacy, Accuracy, and Disclosure Extent

Having formally specified a learning protocol R = (L, Y, x̂), we now define the
three quality metrics we wish to attain, corresponding to the properties (a)-(c)
of Section 4.1.

Privacy. We begin with our formalization of privacy:

2For technical reasons L, and Y below, are in fact measurable spaces, which include of
course Rk, for some k ∈ N.

11



Definition 1. We say that R = (L, Y, x̂) is privacy preserving if the obfuscated

output Y is independent of x0. Formally, for all x ∈ Rd, V ⊆ R(d+1)
−0 , and

A ⊆ Y,

P(−1,x),V
(
Y (r,−1,`)∈A

)
=P(+1,x),V

(
Y (r,+1,`)∈A

)
, (8)

where ` = L(V) is the information disclosed from V, and r ∈ R|S| is the vector
of user ratings.

Intuitively, a learning protocol is privacy-preserving if its obfuscation scheme
reveals nothing about the user’s private variable: the distribution of the output
Y does not depend statistically on x0. Put differently, two users that have the
same x, but different x0, output obfuscated values that are computationally
indistinguishable [17].

Computational indistinguishability is a strong privacy property, as it implies
a user’s private variable is protected against any inference algorithm (and not
just, e.g., the LSE (6)): in particular, no inference algorithm can estimate x0
with probability better than 50% with access to y alone.

Accuracy. Our second definition determines a partial ordering among learning
protocols w.r.t. their accuracy, as captured by the `2 loss of the estimation:

Definition 2. We say that a learning protocol R = (L, Y, x̂) is more accurate
than R′ = (L′, Y ′, x̂′) if, for all V ⊆ Rd+1

−0 ,

sup
x0∈{0,1}
x∈Rd

E(x0,x),V{‖x̂(y,V)−x‖22} ≤ sup
x0∈{0,1}
x∈Rd

E(x0,x),V{‖x̂
′(y′,V)−x‖22} ,

where y = Y (r, x0, L(V)), y′ = Y ′(r, x0, L
′(V)). Further, we say that it is strictly

more accurate if the above inequality holds strictly for some V ⊆ Rd+1
−0 .

Note that the accuracy of R is determined by the `2 loss of the estimate
x̂ computed in a worst-case scenario, among all possible extended user profiles
x = (x0,x).

This metric is natural. As we discuss in Section 6.2, it relates to the so-called
A-optimality criterion [6]. It also has an additional compelling motivation.
Recall that x̂ is used to estimate the rating for a new item through the inner
product (3). An estimator x̂ minimizing the expected `2 loss also minimizes
the mean square prediction error over a new item. This further motivates this
accuracy metric, given that the analyst’s goal is correct rating prediction.

To see this, assume that the extended user profile is estimated as x̂ = (x̂0, x̂)
for some x0 (for brevity we omit the dependence on y,V). Recall that the
analyst uses this profile to predict ratings for v /∈ V using r̂ = 〈v, x̂〉. The
quality of such a prediction is often evaluated in terms of the mean square error
(MSE):

MSE = E{(r−r̂)2} (7)= σ2+E{〈v, (x−x̂)〉2} .
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Assuming a random item vector v with diagonal covariance E(v20) = c0, E(v0v) =
0, E(vvT) = cI, we get

MSE = σ2 + c0E{(x0 − x̂0)2}+ cE
{
‖x− x̂‖22

}
.

Observe that the first term is independent of the estimation. Under a privacy-
preserving protocol, the value for x̂0 that minimizes the second term is 0.5, also
independent of the estimation. The last term is precisely the `2 loss. Hence,
minimizing the mean square error of the analyst’s prediction is equivalent to
minimizing the `2 loss of the estimator x̂. This directly motivates our accuracy
definition.

Disclosure Extent. Finally, we define a partial ordering among learning pro-
tocols w.r.t. the amount of information revealed by their disclosures.

Definition 3. We say that R = (L,R, x̂) discloses at least as much information
as R′ = (L′, Y ′, x̂′) if there exists a measurable mapping ϕ : L → L′ such that

L′ = ϕ ◦ L

i.e., L′(v) = ϕ(L(v)) for each v ∈ Rd+1
−0 . We say that R and R′ disclose the

same amount of information if L = ϕ ◦ L′ and L′ = ϕ′ ◦ L for some ϕ, ϕ′.
Finally, we say that R discloses strictly more information than R′ if L′ = ϕ ◦L
for some ϕ but there exists no ϕ′ such that L = ϕ′ ◦ L′.

The above definition is again natural. Intuitively, a disclosure L carries at
least as much information as L′ if L′ can be retrieved from L: the existence of
the mapping ϕ implies that the user can recover L′ from L by applying ϕ to
the disclosure L(V). Put differently, having a “black box” that computes L, the
user can compute L′ by feeding the output of this box to ϕ. If this is the case,
then L is clearly at least as informative as L′.

5 An Optimal Protocol

In this section we prove that a simple learning protocol outlined in Algo-
rithm 1, which we refer to as the midpoint protocol (MP), has remarkable opti-
mality properties. The three components (L, Y, x̂) of MP are as follows:

1. The analyst discloses the entry v0 corresponding to the private user feature
x0, i.e., L

(
(v0,v)

)
≡ v0 for all (v0,v) ∈ Rd+1

−0 , and L ≡ R.
2. The user shifts each rating rj by the contribution of her private feature.

More specifically, the user reveals to the analyst the quantities:

yj = rj − x0 · `j = rj − x0 · vj0, j ∈ S.

The user’s obfuscated feedback is thus Y (r, x0, `) ≡ y, where vector y’s
coordinates are the above quantities, i.e., y = (y1, . . . , y|S|), and Y ≡ R|S|.
Note that, by (7), for every j ∈ S the obfuscated feedback satisfies yj =
〈vj ,x〉+ εj , with εj the i.i.d. zero-mean noise variables.
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Algorithm 1 Midpoint Protocol

Analyst’s Parameters
S ⊆ [M ], V = {(vj0,vj), j ∈ S} ⊆ Rd+1

−0

User’s Parameters
x0 ∈ {−1,+1}, r = (r1, . . . , r|S|) ∈ R|S|

DISCLOSURE: ` = L(V)
`j = vj0, for all j ∈ S

OBFUSCATION SCHEME: y = Y (r, x0, `)
yj = rj − x0 · `j , for all j ∈ S

ESTIMATOR: x̂ = x̂(y,V)
Apply the minimax estimator x̂∗ given by (9).

3. Finally, the analyst applies a minimax estimator on the obfuscated feedback.
Let X be the set of all measurable mappings x̂ estimating x given y and V
(i.e., of the form x̂ : R|S|× (R(d+1)

−0 )|S| → Rd). Estimator x̂∗ ∈ X is minimax
if it minimizes the worst-case `2 loss, i.e.:

sup
x0∈{0,1},x∈Rd

E(x0,x),V{‖x̂
∗(y,V)−x‖22} =

inf
x̂∈X

sup
x0∈{0,1},x∈X

E(x0,x),V{‖x̂(y,V)−x‖22}.
(9)

The following theorem summarizes the midpoint protocol’s remarkable prop-
erties:

Theorem 1. Under the linear model (7):

1. MP is privacy preserving.
2. No privacy preserving protocol is strictly more accurate than MP.
3. Any privacy preserving protocol that does not disclose at least as much infor-
mation as MP is strictly less accurate.

We prove the theorem below. Its second and third statement establish for-
mally the optimality of the midpoint protocol. Intuitively, the second statement
implies that the midpoint protocol has maximal accuracy. No privacy preserving
protocol achieves better accuracy: surprisingly, this is true even among schemes
that disclose strictly more information than the midpoint protocol. As such, the
second statement of the theorem imples there is no reason to disclose more than
vj0 for each item j ∈ S.

The third statement implies that the midpoint protocol engages in a minimal
disclosure: to achieve maximal accuracy, a learning protocol must disclose at
least vj0, j ∈ S. In fact, our proof shows that the gap between the accuracy
of MP and a protocol not disclosing biases is infinite, for certain V. We note
that the disclosure in MP is intuitively appealing: an analyst need only disclose
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the gap between average ratings across the two types (e.g., males and females,
conservatives and liberals, etc.) to enable protection of x0.

In general, the minimax estimator x̂∗ depends on the distribution followed
by the noise variables in (7). For arbitrary distributions, a minimax estimator
that can be computed in a closed form (rather than as the limit of a sequence
of estimators) may not be known. General conditions for the existence of such
estimators can be found, e.g., in Strasser [41]. In the case of Gaussian noise, the
minimax estimator coincides with the least squares estimator (see, e.g., Lehman
and Casella [26, Thm. 1.15, Chap. 5]), i.e.,

x̂∗(y,V)=arg minx∈Rd

{∑|S|
j=1

(
yj−〈vj,x〉

)2}
. (10)

The minimization in (10) is a linear regression, and x̂∗ has the following closed
form:

x̂∗(y,V) =
(∑

j∈S vjv
T
j

)−1 · (∑j∈S yjvj
)
. (11)

The accuracy of this estimator can also be computed in a closed form. Using,
(7), (11), and the definition of y, it can easily be shown that, for all x ∈ Rd,

E(x0,x),V{‖x̂
∗(y,V)−x‖22}=σ2tr

[(∑
j∈S vjv

T
j

)−1]
, (12)

where σ2 the noise variance in (7) and tr(·) the trace.

5.1 Proof of Theorem 1

Privacy. To see that Thm. 1.1 holds, observe that the user releases yj =

rj − v0jx0
(7)
= 〈vj ,x〉+ εj , for each j ∈ S. The distribution of yj thus does not

depend on x0, so the midpoint protocol is clearly privacy preserving.

Maximal Accuracy. We prove Theorem 1.2 by contradiction; in particular,
we show that a protocol that is strictly more accurate can be used to construct
an estimator that has lower worst-case `2 loss than the minimax estimator.

Suppose that there exists a privacy preserving protocol R′ = (L′, Y ′, x̂′)
that is strictly more accurate than the midpoint protocol R = (L, Y, x̂). Let
` = L(V), `′ = L′(V) be the disclosures under the two protocols, and y =
Y (r, x0, `), y

′ = Y ′(r, x0, `
′) the obfuscated values. Recall that

`j = vj0, and yj = rj − x0v0j = 〈vj ,x〉+ εj , j ∈ S.

We will use L′, Y ′ and x̂′ to construct an estimator x̂′′ that has a lower `2
loss than the least squares estimator x̂ over y and V. First, apply Y ′ to y + `,
assuming that the private variable is x0 = +1, using the disclosed information
`′. That is: y′′ = Y ′(y+ `,+1, `′). Second, apply the estimator x̂′ to this newly
obfuscated output y′′, i.e.: x̂′(y′′,V) Combining these two the estimator x̂′′ is
given by

x̂′′(y,V) = x̂′ (Y ′ (y + `,+1, L′(V)) ,V)
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Under this construction, the random variables y′′, y′ are identically distributed.
This is obvious if x0 = +1; indeed, in this case y′′ = y′. On the other hand,
since R′ is privacy preserving, by (8):

Y ′(y + `,+1, `′)
d
= Y ′(y − `,−1, `′), (13)

i.e., the two variables are equal in distribution.
This implies that x̂′′(y,V) is identically distributed as x̂′(y′,V). On the other

hand, R′ is strictly more accurate than R; hence, there exists a V such that

sup
x

E{‖x̂(y,V)− x‖22} > sup
x

E{‖x̂′(y′,V)− x‖22}

= sup
x

E{‖x̂′′(y,V)− x‖22},

a contradiction.

Minimal Disclosure. Consider a privacy preserving learning protocol R′ =
(L′, Y ′, x̂′) that does not disclose at least as much information as the midpoint
protocol R = (L, Y, x̂). Consider a setup where |S| = d, the dimension of the
feature profiles. Assume also that V is such that the matrix V = [vj ]j∈S ∈ Rd×d
is invertible, and denote by ` = L(V) ∈ Rd the vector with coordinates vj0,
j ∈ S.

For any x0 ∈ {+1,−1}, s ∈ Rd, and `′ ∈ (L′)d, let Zx0
(s, `′) ∈ Y ′ be a

random variable with distribution given by Zx0
(s, `′)

d
= Y ′(s + ε, x0, `

′), where
ε ∈ Rd a vector of i.i.d. coordinates sampled from the same distribution as the
noise variables εj , j ∈ S. Put differently, Zx0

(s, `′) is distributed as the output
of obfuscation Y ′ when r − ε = V x + x0` = s ∈ Rd, L′(V) = `′, and the gender
is x0. The following then holds.

Lemma 1. If V ∈ Rd×d is invertible then, for all s ∈ Rd, ` = L(V), and

`′ = L′(V), Z+(s, `′)
d
= Z−(s− 2`, `′).

Proof. By Eq. (13), for all x ∈ Rd,

Y ′(V x + `+ ε,+1, `′)
d
= Y ′(V x− `+ ε,−1, `′) .

The claim follows by taking x = V −1(s− `).

As R′ does not disclose as much information as the midpoint protocol, by
definition, there is no map ϕ such that L(v) = ϕ(L′(v)) for all v = (v0,v) ∈
Rd+1
−0 . Hence, there exist extended profiles v, v′ ∈ Rd+1

−0 such that v0 6= v′0
and yet L′(v) = L′(v′). As both v = (v0,v), v′ = (v′0,v

′) belong to Rd+1
−0 , the

supports of v,v′ are non-empty. We consider the following two cases:
Case 1. The supports of v,v′ intersect, i.e., there exists a k ∈ [d] such

that vk 6= 0 and v′k 6= 0. In this case, consider a scenario in which V =
{v} ∪

⋃
1≤l≤d,l 6=k,{el}, where el ∈ Rd+1

−0 a vector whose l-th coordinate is 1
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and all other coordinates are zero. Clearly, |S| = |V| = d, and V = [vi]i∈[d] is
invertible. Let `∗ = L′(V). By Lemma 1, for all s ∈ R,

Z+(s+ 2v0e1, `
∗)

d
= Z−(s, `∗) , (14)

where e1 ∈ Rd is 1 at coordinate 1 and 0 everywhere else. Similarly, in a
scenario in which V ′ = {v′} ∪

⋃
1≤l≤d,l 6=k,{el}, V is again invertible. Crucially

L′(V ′) = L(V) = `∗, so again by Lemma 1:

Z+(s+ 2v′0e1, `
∗)

d
= Z−(s, `∗) , (15)

for all s ∈ Rd. Equations (14),(15) imply that, for all s ∈ Rd:

Z+(s+ ξe1, `
∗)

d
= Z+(s, `∗) (16)

where ξ ≡ 2(v0 − v′0). In other words, the obfuscation is periodic with respect
to the direction e1.

Observe that for any x ∈ {−1,+1}×Rd and any M ∈ R+, we can construct
a x′ ∈ {−1,+1} × Rd and a K ∈ N such that (a) x,x′ differ only at coordinate
k ∈ {1, 2, . . . , d}, (b) 〈v, x− x′〉 = Kξ, and (c) ‖x− x′‖2 ≥ M . To see this, let

K be a large enough integer such that K|ξ|
|vk| > M . Taking, x′k = xk + Kξ/vk,

and x′l = xl for all other l in {0, 1, . . . , d} yields a x′ that satisfies the desired
properties (a) and (b).

Suppose that the learning protocol R is applied to V = {v}∪
⋃

1≤l≤d,6=k{el}
for a user with x0 = +1. Fix a large M > 0. For each x and x′ constructed
as above, by (16), the obfuscated values generated by Y ′ have an identical
distribution. Hence, irrespectively of how the estimator x̂′ is implemented,
either Ex,V{‖x̂′(y′,V)−x‖22} or Ex′,V{‖x̂′(y′,V)−x′‖22} must be Ω(M2) which,
in turn, implies that supx∈{±1}×Rd Ex,V{‖x̂′(y′,V)− x‖22 =∞.

Note that, since vj , j ∈ S, are linearly independent, the matrix
∑
j∈S vjv

T
j

is positive definite and thus invertible. Hence, in contrast to the above setting,
the loss (12) of MP in the case of Gaussian noise is finite.
Case 2. The supports of v,v′ are disjoint. In this case v, v′ are linearly inde-
pendent and, in particular, there exist 1 ≤ k, k′ ≤ d, k 6= k′, such that vk 6= 0,
vk′ = 0 while v′k = 0, v′k′ 6= 0. Let V = {v} ∪ {v′}

⋃
1≤l≤d,l 6=k,l 6=k′{el}. Then,

|V| = d and the matrix V = [vj ]j∈S is again invertible. By swapping the posi-
tions of v and v′ in matrix V we can show using a similar argument as in Case
1 that for all s ∈ Rd:

Z+(s+ ξ(e1 − e2), `∗)
d
= Z+(s, `∗) (17)

where ξ ≡ 2(v0 − v′0) and `∗ = L(V). I.e., Z+ is periodic in the direction
e1 − e2. Moreover, for any x ∈ {−1,+1} × Rd and any M ∈ R+, we can
similarly construct a x′ ∈ {−1,+1} × Rd and a K ∈ N such that (a) x,x′ differ
only at coordinates k, k′ ∈ {1, 2, . . . , d}, and (b) 〈v, x−x′〉 = −〈v′, x−x′〉 = Kξ,
and (c) ‖x − x′‖2 ≥ M : the construction adds Kξ/vk at the k-th coordinate
and subtracts Kξ/v′k′ from the k′-th coordinate, where K > M max(vk, v

′
k′)/ξ.

A similar argument as in Case 1 can be used to show again that the estimator
x̂′ cannot disambiguate between x, x′ over V, yielding the theorem.
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Algorithm 2 Midpoint Protocol with Sub-Sampling

Analyst’s Parameters
S ⊆ [M ], V = {(vj0,vj), j ∈ S} ⊆ Rd+1

−0

p = {(px0
1 , . . . , px0

|S|), x0 ∈ {−,+}} ⊆ ([0, 1]× [0, 1])|S|

User’s Parameters
x0 ∈ {−1,+1}, S0 ⊆ S, r = {rj , j ∈ S0} ∈ R|S0|

DISCLOSURE: ` = L(V, p)
ρj = p−j /p

+
j , for all j ∈ S

`j = (vj0, ρj), for all j ∈ S

OBFUSCATION SCHEME: SR=SR(S0,x0,`)
y=Y (rSR ,x0,`)

SR = ∅, y = ∅
for all j ∈ S do

if j ∈ S0 then
bj ∼ Bern

(
min

(
1, (ρj)

x0
))

if bj = 1 then
SR = SR ∪ {j}
y = y ∪ {rj − x0vj0}

end if
end if

end for

ESTIMATOR: x̂ = x̂(y, (SR, y),V)

Solve x̂ = arg minx∈Rd

{∑
j∈SR

(
yj−〈vj ,x〉

)2}

6 Extensions

We have up until now assumed that the analyst solicits ratings for a set of items
S ⊆ [M ], determined by the analyst before the user reveals her feedback. In
what follows, we discuss how our analysis can be extended in the case where the
user only provides ratings for a subset of these items. We also discuss how the
analyst should select S, how a user can repeatedly interact with the analyst,
and, finally, how to deal with multiple binary and categorical features.

6.1 Partial Feedback

There are cases of interest where a user may not be able to generate a
rating for all items in S. This is especially true when the user needs to spend
a non-negligible effort to determine her preferences (examples include rating a
feature-length movie, a restaurant, or a book). In these cases, it makes sense
to assume that a user may readily provide ratings for only a set S0 ⊆ S (e.g.,
the movies she has already watched, or the restaurants she has already dined
in, etc.).

Our analysis up until now applies when the user rates an arbitrary set S
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selected by the analyst. As such, it does not readily apply to this case: the set of
items S0 a user rates may depend on the private feature x0 (e.g., some movies
may be more likely to be viewed by men or liberals). In this case, x0 would be
be inferable not only from the ratings she gives, but also from which items she
has rated.

In this section, we describe how to modify the midpoint protocol to deal with
this issue. Intuitively, to ensure her privacy, rather than reporting obfuscated
ratings for all items she rated (i.e., set S0), the user can reveal ratings only
for a subset SR of S0. This sub-sampling of S0 can be done so that SR has a
distribution that is independent of x0, even though S0 does not. Moreover, to
ensure a high estimation accuracy, the user ought to ensure SR is as large as
possible, subject to the constraint SR ⊆ S0.

Model. Before we present the modified protocol, we describe our assumption
on how S0 is generated. For each j ∈ [M ], denote by p+j , p−j the probabilities
that a user with private feature +1 or −1, respectively, has rated item j ∈
M. Observe that, just like the extended profiles vj , this information can be
extracted from a dataset comprising ratings by non privacy-conscious users.
Let p = [(p+j , p

−
j )]j∈S ∈ ([0, 1]× [0, 1])|S| be the vector of pairs of probabilities.

We assume that the privacy-conscious user the has rated items in the set
S0 ⊆ S, whose distribution is given by the product form3:

Px,V,p(S0 = A) =
∏
j∈S

px0
j

∏
j∈S\A

(1− px0
j ), for all A ⊆ S. (18)

Put differently, items j ∈ S are rated independently, each with a probability
px0
j . Conditioned on S0, we assume that the user’s ratings rj , j ∈ S0, follow the

linear model (7) with Gaussian noise. Note that the distribution of S0 depends
on x0: e.g., items j for which p+j > p−j are more likely to be rated when x0 = +1.

Midpoint Protocol with Sub-Sampling. We now present a modification
of the midpoint protocol, which we refer to as the midpoint protocol with sub-
sampling (MPSS). MPSS is summarized in Algorithm 2. First, along with
the disclosure of the biases vj0, j ∈ S, the analyst also discloses the ratios
ρj ≡ p−j /p

+
j , for j ∈ S. Having access to this information, the user sub-samples

items from S0; each item j ∈ S0 is included in the revealed set SR independently
with probability:

Px,V,p(i ∈ SR | j ∈ S0) = min (1, (ρj)
x0) . (19)

Having constructed SR, the user reveals ratings for j ∈ SR after subtracting
x0vj0, as in MP. Finally, the analyst estimates x̂ through a least squares esti-
mation over the obfuscated feedback, as in MP in the case of Gaussian noise.

To gain some intuition behind the selection of the set SR, observe by (18)
and (19) that, for any j ∈ S,

Px,V,p(j∈SR)=px0
j min

(
1, (p−j /p

+
j )x0

)
=min(p+j , p

−
j ). (20)

3Here, we slightly abuse notation, e.g., denoting with px0
j the parameter p+j when x0 = +1.
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This immediately implies that MPSS is privacy preserving: both the distribution
of SR and of the obfuscated ratings y do not depend on x0. In fact, it is
easy to see that since SR ⊆ S0 any privacy preserving protocol must satisfy
Px,V,p(j ∈ SR) ≤ min(p+j , p

−
j ): indeed, if for example p+j < p−j , then a user

rating j with probability higher than p+j must have x0 = −1 (see Lemma 2
in the appendix for a formal proof of this statement). As such, MPSS reveals
ratings for a set SR of maximal size, in expectation.

This intuition can be used to establish the optimality of MPSS among a wide
class of learning protocols, under (7) (with Gaussian noise) and (18). We can
again show that it attains optimal accuracy. Moreover, it also involves a minimal
disclosure: a protocol that does not reveal the ratios ρj , j ∈ S, necessarily rates
strictly fewer items than MPSS, in expectation. We provide a formal proof of
these statements, as well as a definition of the class of protocols we consider, in
Appendix A.

6.2 Item Set Selection

Theorem 1 implies that the analyst cannot improve the prediction of the private
variable x0 through its choice of S, under the midpoint protocol. In fact, the
same is true under any privacy-preserving learning protocol: irrespectively of the
analyst’s choice for S, the obfuscated feedback y will be statistically independent
of x0.

The analyst can however strategically select S to effect the accuracy of the
estimate of the non-private profile x. Indeed, the analyst should attempt to
select a set S that maximizes the accuracy of the estimator x̂. In settings where
least squares estimator is minimax (e.g., when noise is Gaussian), there are
well-known techniques for addressing this problem. Eq. (12) implies that it is
natural to select S by solving

Maximize: F (S) = −tr
[(∑

j∈S vjv
T
j

)−1]
subject to: |S| ≤ B,S ⊆ [M ],

(21)

where B is the number of items for which the analyst solicits feedback. The
optimization problem (21) is NP-hard, and has been extensively studied in the
context of experimental design (see, e.g., Section 7.5 of [6]). The objective func-
tion F is commonly referred to as the A-optimality criterion. Convex relaxations
of (21) exist when S is a multiset, i.e., when items with the same profile can
be presented to the user multiple times, each generating an i.i.d. response [6].
When such repetition is not possible, constant approximation algorithms can
be constructed based on the fact that F is increasing and submodular (see,
e.g., [16]). In particular, given any set S∗ ⊂ [M ] of items whose profiles are
linearly independent, there exists a polynomial time algorithm for maximizing
F (S ∪S∗)−F (S∗) subject to |S| ≤ B within a 1− 1

e approximation factor [32].
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6.3 Repeated Interactions

Our analysis (and, in particular, the optimality of our protocols) persists even
when the user repeatedly interacts with the analyst. In particular, the user may
return to the service multiple times, each time asked to rate a different set of
items S(k) \ [M ], k ≥ 1. The selection of the set S(k) could be adaptive, i.e.,
depend on the obfuscated feedback the user has revealed up until the k − 1-
th time. For each k, the analyst again would apply MP (or MPSS), again
disclosing the same information for each S(k), the only difference being that
the estimator x̂ would be applied to all revealed obfuscated ratings y(1), ..., y(k).
This repeated interaction is still perfectly private: the joint distribution of the
obfuscated outputs y(k) does not depend on x0. Moreover, each estimation
remains maximally accurate at each interaction, while each disclosure is again
minimal.

6.4 Categorical Features

We discuss below how to express categorical features as multiple binary fea-
tures through binarization, and illustrate how to incorporate both cases in
our analysis. The standard approach to incorporating a categorical feature
x0 ∈ {1, 2, . . . ,K} in matrix factorization is through category-specific biases
(see, e.g., [24]), i.e., (7) is replaced by

r = 〈x,vj〉+ bx0
j + εj , j ∈ [M ] (22)

where bkj ∈ R, k ∈ [K] are category-dependent biases. Consider a representation

of x0 ∈ [K] as a binary vector x0 ∈ {−1,+1}K whose x0-th coordinate is +1,
and all other coordinates are −1. I.e., the coordinate x0k at k ∈ [K] is given +1
if k = x0 and −1 o.w. For k ∈ [K], let bjk ≡ bkj /2 and define µj ≡

∑
k∈[K] b

k
j /2.

Then, observe that (22) is equivalent to

r = 〈x,vj〉+
∑
k∈[K]

x0kbjk + µj + εj ,

= 〈x′,v′j〉+
∑
k∈[K]

x0kbjk + εj , j ∈ [M ], (23)

where x′ = (x, 1) ∈ Rd+1 and v′j = (vj , µj) ∈ Rd+1.
Hence, a categorical feature can be incorporated in our analysis as follows.

First, given a dataset of ratings by non-privacy conscious users that reveal
their categorical feature x0 ∈ [K], the analyst first “binarizes” this feature,
constructing a vector x0 ∈ {−1, 1}K for each user. It then performs matrix
factorization on the ratings using (23), learning vectors v′j ∈ Rd+1, and biases

bj = (bjk)k∈[K] ∈ RK . A privacy-conscious user subsequently interacts with
the analyst using the standard scheme as follows. The analyst discloses the
biases bj for each j ∈ S, and the user reveals yj = rj −

∑
k∈[K] x0kbjk, j ∈ S,

where x0k is her binarized categorical feature. Finally, the analyst infers x′

through linear regression over the pairs (yj ,v
′
j), j ∈ S.
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Dataset Private featureUsersItemsRatings
All 365 50 18K

PTV Gender (F:M) 2.7:1 - 2.7:1
Politics (R:D) 1:1.4 - 1:1.4
All 6K 3K 1M

MovielensGender (F:M) 1:2.5 - 1:3
Age (Y:A) 1:1.3 - 1:1.6
All 26K 9921 5.6M

Flixster Gender (F:M) 1.7:1 - 1.5:1

Figure 3: Statistics of the datasets used
for evaluation. The ratios represent the
class skew Females:Males (F:M) for gen-
der, Young:Adult(Y:A) for age and Re-
publican:Democrats (R:D) for political
affiliation.
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Figure 4: Privacy risk and prediction accuracy on PTV,
obtained using four classifiers and obfuscation schemes
(NO-No obfuscation, MP - Midpoint Protocol, r - Round-
ing, IA - Item Average, FA - Feature Average, SS - Sub-
Sampling). The proposed protocol (MP) is robust to pri-
vacy attacks with hardly any loss in predictive power.
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Figure 5: Privacy risk and prediction accuracy on Movielens and Flixster (sparse
datasets), obtained using four classifiers and obfuscation schemes (NO-No obfuscation,
MP - Midpoint Protocol, r - Rounding, IA - Item Average, FA - Feature Average, SS
- Sub-Sampling). The proposed protocol (MPSS) is robust to privacy attacks without
harming predictive power.

7 Evaluation

In this section we evaluate our protocols on real-world datasets. Our experi-
ments confirm that MP and MPSS are indeed able to protect the privacy of
users against inference algorithms, including non-linear algorithms, with little
impact on prediction accuracy.

7.1 Experimental Setup

We study two types of datasets, sparse and dense. In sparse datasets, the set
of items a user rates is often correlated with the private feature. This does not
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happen in dense datasets because all users rate all (or nearly all) items.

Datasets. We evaluate our methods on three datasets: Politics-and-TV, Movie-
lens and Flixster. Politics-and-TV (PTV) [38] is a ratings dataset that includes
5-star ratings of users to 50 TV-shows and, in addition, each user’s political
affiliation (Democrat or Republican) and gender. To make it dense, we consider
only users that rate over 40 items, resulting in 365 users; 280 provide ratings
to all 50 TV shows. Movielens4 and Flixster5 [20] are movie recommender sys-
tems in which users rate movies from a catalog of thousands of movies. Both
Movielens and Flixster datasets include user gender. Movielens also includes
age groups; we categorize users as young adults (ages 18–35), or adults (ages
35–65). We preprocessed Movielens and Flixster to consider only users with
at least 20 ratings, and items that were rated by at least 20 users. Table 3
summarizes the statistics of these three datasets.

Methodology. Throughout the evaluation, we seek to quantify the privacy
risk to a user as well as the impact of obfuscation on the prediction accuracy.
To this end, we perform 10-fold cross-validation as follows. We split the users in
each dataset into 10 folds. We use 9 folds as a training set (serving the purpose
of a dataset of non privacy-conscious users in Figure 2) and 1 fold as a test set
(whose users we treat as privacy-conscious).

We use the training set to (a) compute extended profiles for each item by
performing matrix factorization, (b) empirically estimate the probabilities p+,
p− for each item, and (c) train multiple classifiers, to be used to infer the private
features. We describe the details of our MF implementation and the classifiers
we use below.

We split the ratings of each user in the test set into two sets by randomly
selecting 70% of the ratings as the first set, and the remaining 30% as the
second set. We obfuscate the ratings in the first set using MP, MPSS, and
several baselines as described in detail below. The obfuscated ratings are given
as input to our classifiers to infer the user’s private feature. We further estimate
a user’s extended profile using the LSE method described in Section 3.3, and use
this profile (including both x and the inferred x0) to predict her ratings on the
second set. For each obfuscation scheme and classification method, we measure
the privacy risk of the inference through these classifiers using the area under
the curve (AUC) metric [18, 19]. Moreover, for each obfuscation scheme, we
measure the prediction accuracy through the root mean square error (RMSE)
of the predicted ratings. We cross-validate our results by computing the AUC
and RMSE 10 times, each time with a different fold as a test set, and reporting
average values. We note that the AUC ranges from 0.5 (perfect privacy) to 1
(no privacy).

Matrix Factorization. We use 20 iterations of stochastic gradient descent [24]
to perform MF on each training set. For each item, feature biases vj0 were com-
puted as the half distance between the average item ratings per each private

4http://www.grouplens.org/node/73
5http://www.sfu.ca/~sja25/datasets/
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feature value. The remaining features vj were computed through matrix fac-
torization. We computed optimal regularization parameters and the dimension
d = 20 through an additional 10-fold cross validation.

Privacy Risk Assessment. We apply several standard classification meth-
ods to infer the private feature from the training ratings, namely Multinomial
Näıve Bayes [44], Logistic Regression (LR), non-linear Support Vector Machines
(SVM) with a Radial Basis Function (RBF) kernel, as well as the LSE (6). The
input to the LR, NB and SVM methods comprises the ratings of all items pro-
vided by the user as well as zeros for movies not rated, while LSE operates
only on the ratings that the user provides. As SVM scales quadraticaly with
the number of users, we could not execute it on our largest dataset (Flixster,
c.f. Table 3).

Obfuscation Schemes. When using MP, the obfuscated rating may not be
an integer value, and may even be outside of the range of rating values which
is expected by a recommender system. Therefore, we consider a variation of
MP that rounds the rating value to an integer in the range [1, 5]. Given a non-
integer obfuscated rating r, which is between two integers k = brc and k + 1,
we perform rounding by assigning the rating k with probability r − k and the
rating k+ 1 with probability 1− (r− k), which on expectation gives the desired
rating r. Ratings higher than 5 and those lower than 1 are truncated to 5 and
1, respectively. We refer to this process as rounding, and denote the obfuscation
scheme as MPr for midpoint protocol with rounding and MPSSr for midpoint
protocol with sub-sampling and rounding.

We also consider two alternative methods for obfuscation. First, the item
average (IA) scheme replaces a user’s rating with the average rating of the
item, computed from the training set. Second, the feature average (FA) scheme
replaces the user’s rating with the average rating provided by the feature classes
(e.g., males and females), each with probability 0.5.

Finally, we evaluate each of the above obfuscation schemes, i.e., MP, MPr,
IA and FA, together with sub-sampling (SS). As a baseline, we also evaluated
the privacy risk and the prediction accuracy when no obfuscation scheme is used
(NO).

7.2 Experimental Results

Dense Dataset. We begin by evaluating the obfuscation schemes on the dense
PTV dataset using its two users’ features (gender and political affiliation), il-
lustrated in Figures 4a and 4b, respectively. Each figure shows the privacy risk
(AUC) computed using the 4 inference methods, and the prediction accuracy
(RMSE) on applying different obfuscation schemes.

Both figures clearly show that MP successfully mitigates the privacy risk
(AUC is around 0.5) whereas the prediction accuracy is hardly impacted (2%
increase in RMSE). This illustrates that MP attains excellent privacy in prac-
tice, and that our modeling assumptions are reasonable: there is little correlation
to the private feature after the category bias is removed. Indeed, strong cor-
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Figure 6: Distribution of inference probabilities for males and females using Movie-
lens dataset and logistic regression (left) before obfuscation and (right) after MPSS
obfuscation.

relations not captured by (7) could manifest as failure to block inference after
obfuscation, especially through the non-linear SVM classifier. This is clearly not
the case, indicating that any dependence on the private feature not captured by
(7) is quite weak.

Adding rounding (MPr), which is essential for real-world deployment of MP,
has very little effect on both the AUC and RMSE. Though IA and FA are suc-
cessful in mitigating the privacy risk, they are suboptimal in terms of prediction.
They severely impact the prediction accuracy, increasing the RMSE by roughly
9%. Finally, since this is a dense dataset, there is little correlation between the
private feature and the set of items a user rates. Therefore, MP without SS
suffices to mitigate the privacy risk.

Sparse Datasets. Next, we investigate the effect of partial feedback by evalu-
ating our obfuscation schemes on the Movielens and Flixster datasets. In these
datasets, in addition to the rating value, the set of items rated by a user can
be correlated with her private feature. The results for obfuscation on Movielens
and Flixster are in Figure 5.

For all three datasets, we observe that MP successfully blocks inference by
LSE, but fails against the other three methods. This is expected, as the items
rated are correlated to the private feature, and LSE is the only method among
the four that is insensitive to this set. For the same reason, SS alone defeats
all methods except LSE, which still detects the feature from the unobfuscated
ratings (AUC 0.69–0.71). Finally, MPSS and MPSSr have excellent performance
across the board, both in terms of privacy risk (AUC 0.5–0.55) and impact on
prediction accuracy (up to 5%). In contrast, IA and FA significantly increase
the RMSE (around 15%). We stress that, in these datasets, items are not rated
independently as postulated by (18). Nevertheless, the results above indicate
that MPSS blocks inference in practice even when this assumption is relaxed.

We further quantify the impact of sub-sampling in terms of the number of
items that are not reported to the analyst in a partial feedback setting. To
this end, we compute the ratio of items excluded in the feedback reported by
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Figure 7: Prediction accuracy (RMSE) vs. privacy risk (LSE AUC) tradeoff for vary-
ing levels of obfuscation. Our proposed schemes (MPSS and MPSSr) have little impact
on prediction accuracy as privacy is increased, whereas the prediction accuracy worsens
dramatically under the baseline schemes.

the user as a result of applying SS. We found that for the dense PTV dataset,
80% of the users include all their ratings in their partial feedback, and the
remaining 20% exclude at most 5% of their ratings. For the sparse Flixster
and Movielens datasets, 50% of the users do not include 10% and 23% of their
ratings, respectively. All users include at least 50% of their ratings, hence the
prediction accuracy does not suffer with MPSS obfuscation.

Overall, these results indicate that both MP and MPSS are highly effective
in real-world datasets – they mitigate the privacy risk while incurring very small
impact on the prediction accuracy. Moreover, these obfuscation schemes work
well even when facing non-linear inference methods, such as SVM, indicating
that in practice, they eliminate any dependency between the ratings and the
private feature.

Privacy Risk. To further illustrate how obfuscation defeats the inference of
a private feature, we focus of the effect of obfuscation on logistic regression
over the Movielens Gender dataset. Figures 6(a) and 6(b) plot the distribution
of log (PMale/PFemale) (a) before obfuscation and (b) after obfuscation with
MPSS. Here, PMale and PFemale are the posterior probabilities for the two
classes as obtained through logistic regression. Prior to obfuscation, there is
a clear separation between the distributions of males and females, enabling
successful gender inference (AUC 0.82 as shown in Figure 5a). However, after
obfuscation, the two distributions become indistinguishable (AUC 0.54).

Privacy-Accuracy Tradeoff. Finally, we study the privacy-prediction accu-
racy tradeoff by applying an obfuscation scheme on an item rating with proba-
bility α, and releasing the real rating with probability 1−α. We vary the value
of α between 0 and 1 in steps of 0.1, that is, when α = 0 no obfuscation is
performed, and α = 1 means that all ratings are obfuscated. For each α, we
measure the RMSE as well as the AUC of LSE.

Figure 7 shows the resulting RMSE-AUC tradeoff curves for MPSS, MPSSr
and the two baseline obfuscation schemes with sub-sampling. The figure shows
that MPSS and MPSSr provide the best privacy-accuracy tradeoff (the slopes of
the curves are almost flat), and consistently obtain better prediction accuracy
(lower RMSE) for the same privacy risk (inference AUC) than all other methods.
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8 Conclusion

We have introduced a framework for reasoning about privacy, accuracy, and
dislosure tradeoffs in matrix factorization. This naturally raises the question
of how these tradeoffs extend to other statistical or prediction tasks. An or-
thogonal direction to the one we pursued, when seeking a mininal disclosure,
is to investigate schemes that are not perfectly private. It would be interesting
to investigate, e.g., privacy-dislosure tradeoffs, rather than the usual privacy-
accuracy tradeoffs one encounters in literature. For example, it is not clear
whether one can construct protocols in which the distribution of the obfuscated
output differs accross users with opposite private attribute by, e.g., an ε fac-
tor, but leak less information than MP: such protocols could, e.g., disclose a
quantized version of the biases for each item.
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A Optimality of MPSS

We begin by defining the class of learning protocols within which we will show
that MPSS is optimal.

Learning Protocols. We define a learning protocol as a tupleR = (L, (SR, Y ), x̂)
where:

• The disclosure L : Rd+1
−0 × [0, 1] × [0, 1] → L at each item j ∈ S is now

a function of the extended profiles and the rating probabilities, i.e., `j =
L(vj , p

+
j , p

−
j ), j ∈ S. We again denote by ` = L(V, p) ∈ L|S| the vector of

disclosures.
• The obfuscated user feedback is constructed in two steps. First, the user

computes a set SR(S0, x0, `) ⊆ S0, which determines the items for which the
she will reveal her rating to the analyst; second, having determined SR, the
user produces an obfuscated output y = Y (rSR

, x0, `), where rSR
∈ R|SR|

the vector of ratings for items in set SR. Note that SR is constrained to be
a subset of S0: the user may only reveal ratings for a subset of the items she
has truly rated. The feedback of the user to the analyst is the pair (SR, y),
i.e., the user reveals along with the feedback y ∈ Y the items for which
she provides feedback. Formally, these two are determined by a mapping
SR : 2S × {−1,+1} × L|S| → 2S , that determines the set SR ⊆ S0, and a
family of mappings Y : R|SR|×{−1,+1}×L|SR| → Y, one for each SR ⊆ S.
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• The estimator x̂ = x((SR, y),V) is now a mapping x̂ : 2S × Y × (Rd+1
−0 )|S|

that depends on the user’s feedback (SR, y), as well as the profile information
available to the analyst.

We can naturally define partial orderings of learning protocolsR = (L, (SR, Y ), x̂)
with respect to the extent of disclosure by extending Definition 3 in a straight-
forward fashion. Regarding accuracy, we say that R is more accurate than R′
if it yields a smaller expected `2 loss conditioned on S0. Finally, regarding pri-
vacy, we say that R is privacy-preserving if the joint distribution of the random
variables (SR, y) does not depend on x0: both the set R, as well as the cor-
responding obfuscated feedback y, are equal in distribution when x0 = +1 or
x0 = −1 .

We will further restrict our analysis to protocols that satisfy the following
property.

Definition 4. Let

S+ = {j ∈ S : ρj ≤ 1}, S− = {j ∈ S : ρj > 1}, (24)

be the set of items more likely to be rated by “positive” and “negative” users
respectively. We say that R = (L, (SR, Y ), x̂) is positive-negative independent
(PNI) if the random sets SR∩S+ and SR∩S− are independent random variables.

Note that MPSS is a PNI protocol, and so is any protocol in which the events
{j ∈ SR} are independent Bernoulli variables for every j ∈ S.

Optimality. The following theorem holds

Theorem 2. Under (7) with Gaussian noise, and (18):

1. MPSS is privacy preserving.
2. There is no privacy preserving, PNI learning protocol that is strictly more
accurate than MPSS.
3. Any privacy preserving, PNI learning protocol that does not disclose as much
information as MPSS must also be strictly less accurate.

Proof. We begin our proof of Theorem 2 by establishing a few auxiliary results.
Denote by R = (L, (SR, Y ), x̂) be the MPSS protocol. Our first lemma states
that (20) is an upper bound among privacy preserving protocols:

Lemma 2. Let R′ = (L′, (S ′R, Y ′), x̂′) be privacy-preserving. Then Px,V,p(j ∈
S ′R) ≤ min(p+j , p

−
j ).

Proof. Recall that, by construction S ′R ⊆ S0, the actual items rated by a user.
Hence P(+1,x),cV,p(j ∈ S ′R) ≤ p+j and P(−1,x),cV,p(j ∈ S ′R) ≤ p−j . As R is privacy
preserving, these l.h.s. probabilities are equal, and the lemma follows.

In fact, this inequality becomes strict if L′ does not disclose ρj = p−j /p
+
j , for

some j ∈ S.
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Lemma 3. Let R′ = (L′, (S ′R, Y ′), x̂′) be privacy-preserving, and suppose that
L′ does not disclose ρ = p−/p+–i.e., there is no φ : L′ → R such that p−/p+ =
φ(L′(v, p+, p−)) for all v, p+, p−. Then, there exist values p+, p− ∈ [0, 1], an
extended profile v ∈ Rd+1

−0 , and an x0 ∈ {−1,+1} such that Px,V,p(j ∈ SR) <

min(p+j , p
+
j ) for all V and p such that vj = v and (p+j , p

−
j ) = (p+, p−).

Proof. Assumption that R′ does not disclose ρj , for some j ∈ S. Then, there
exist probabilities p+, q+, p−, q− ∈ [0, 1] and extended vectors v, v′ ∈ Rd+1

−0 such
that

ρ ≡ p−/p+ < q−/q+ ≡ ρ′,

while L(v, p+, p−) = L(v′, q+, q−). Consider any two V,V ′ ⊆ Rd+1
−0 and p, p′ ∈

([0, 1]× [0, 1])|S| such that all item profiles and probabilities are identical for all
kS, but differ in j: the j-th elements in V, p are v and (p+, p−), respectively,
while the j-th elements of V ′, p′ are v′ and (q+, q−), respectively. Observe that
≡ L′(V, p) = L(V ′, p′).

Recall that S ′R depends on S0, x0, and the disclosure from the analyst.
Hence, as ≡ L′(V, p) = L(V ′, p′), conditioned on S0, S ′R is identically distributed
in both cases. In particular,

Px,V,p(j ∈ S ′R | S0 = A) = Px,V′,p′(j ∈ S ′R | S′ = A), (25)

for all A ⊆ S. As S ′R ⊆ S0, we have Px,V,p(j = S ′R)
(18)
= Z · px0

j where

Zx,V,p =
∑

A⊆S\{j}

Px,V,p(j∈S ′R |S0 = A ∪ {j})
∏
k∈A

px0

k

∏
k∈S\(A∪{j})

(1− px0

k )

AsR′ is privacy preserving, by Lemma 2 we get that Z ≤ min(1, ρx0). Repeating
the same steps for Px,V′,p′(j = S ′R), we get that also Zx,V′,p′ ≤ min(1, (ρ′)x0}.
By (25), these are equal, and thus

Z = Zx,V,p = Zx,V′,p′ ≤ min(1, (ρ)x0 , (ρ′)x0)

Recall that ρ < ρ′, by construction. If ρ < 1, then for x0 = +1 we get
min(1, (ρ)x0 , (ρ′)x0) = ρ. Then,

P(+1,x),V′,p′(j = S ′R) = Zq+≤ρq+<min(1, ρ′)q+=min(q+, q−)

and the lemma holds for x0 = +1, v′, and (q+, q−). If ρ ≥ 1, then for x0 = −1
we get min(1, (ρ)x0 , (ρ′)x0) = (ρ′)−1, and

P(−1,x),V,p(j = S ′R) = Zp−≤p−/ρ′<min(1, ρ−1)p−=min(p+, p−)

and the lemma holds for x0 = −1, v, and (p+, p−).

The PNI property allows us to couple S ′R and SR in a way that the latter
dominates the former.
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Lemma 4. Let R = (L, (SR, Y ), x̂) be the MPSS protocol, and R′ = (L′, (S ′R, Y ′), x̂′)
a privacy-preserving, PNI protocol. Then, there exists a joint probability space
in which S ′R ⊆ SR ⊂ S0.

Proof. Recall that S = S+∪S−, where S+,S− the sets of positive and negative
items in (24). Let S0+ and S0− the set of items rated by two users of type x0 =
+1 and x0 = −1, respectively. We construct S0+,S0− on the same probability
space as follows: for each j, draw Xj uniform in [0,1], and let j ∈ S0+ iff
Xj ≤ p+j and j ∈ S0− iff Xi ≤ p−i . The sets S0+,S0− can be intersected in the
obvious way with M(+) and M(-) yielding

S0+ = S+0+ ∪ S
−
0+, S0− = S+0− ∪ S

−
0−

Then we have, a.s. S+0+ ⊇ S
+
0− and S−0+ ⊆ S

−
0− Now, we can construct the set SR

reported by MPSS on the same space by letting SR = S+R ∪S
−
R where S+R = S+0−

and S−R = S−0+.
Now apply any privacy preserving mechanism R′ to S0+ and S0−. This will

yield sets QR+, QR−, that can also be decomposed as above:

QR+ = Q+
R+ ∪Q

−
R+, QR− = Q+

R− ∪Q
−
R−

The sets QR+, QR−, are not necessarily equal, but must satisfy the following
the properties:

Q+
R−⊆S

+
0−=S+R , Q

−
R+⊆S

−
0+=S−R , (by construction), (26)

Q+
R−

d
=Q+

R+, Q
−
R−

d
=Q−R+, (by privacy) (27)

where
d
= denotes equality in distribution. Define S ′R ≡ Q

+
R− ∪ Q

−
R+. By (26),

we get S ′R ⊆ SR with probability 1. Moreover, by (27) and the fact that R′ is

PNI, we get that S ′R
d
= QR+

d
= QR−.

We are ready to prove Theorem 2. Privacy follows directly from (20). The-
orem 1 implies MPSS yields minimal `2 loss conditioned on SR. Optimality
conditioned on S0 follows from Lemma 4, and the fact that the `2 loss (12)
is a monotone decreasing function of SR. Finally, any protocol that does not
does not disclose vj0, for some j ∈ S will lead to a higher loss by Theorem 1.
Moreover, by Lemmas 3 and 4, if a protocol R′ does not disclose ρj = p−j /p

+
j

for some j ∈ S, there exist x0, V, and p for which one can construct a coupling
of S ′R and SR such that S ′R ⊂ SR with non zero probability; the minimality
of the disclosure therefore follows, again from the fact that the `2 loss (12) is
decreasing in SR.
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