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Abstract

We consider a discriminative learning (regres-

sion) problem, whereby the regression function

is a convex combination of k linear classifiers.

Existing approaches are based on the EM algo-

rithm, or similar techniques, without provable

guarantees. We develop a simple method based

on spectral techniques and a ‘mirroring’ trick,

that discovers the subspace spanned by the clas-

sifiers’ parameter vectors. Under a probabilistic

assumption on the feature vector distribution, we

prove that this approach has nearly optimal sta-

tistical efficiency.

1. Introduction

Since Pearson’s seminal contribution (Pearson, 1894), and

most notably after the introduction of the EM algorithm

(Dempster et al., 1977), mixture models and latent variable

models have played a central role in statistics and machine

learning, with numerous applications—see, e.g., McLach-

lan & Peel (2004), Bishop (1998), and Bartholomew et al.

(2011). Despite their ubiquity, fitting the parameters of a

mixture model remains a challenging task. The most pop-

ular methods (e.g., the EM algorithm or likelihood maxi-

mization by gradient ascent) are plagued by local optima

and come with little or no guarantees. Computationally ef-

ficient algorithms with provable guarantees are an excep-

tion in this area. Even the idealized problem of learning

mixtures of Gaussians has motivated a copious theoretical

literature (Arora & Kannan, 2001; Moitra & Valiant, 2010).

In this paper we consider the problem of modeling a re-

gression function as a mixture of k components. Namely,
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we are given labels Yi ∈ R and feature vectors Xi ∈ R
d,

i ∈ [n] ≡ {1, 2, . . . , n}, and we seek estimates of the pa-

rameters of a mixture model

Yi
∣∣
Xi=xi

∼∑k
ℓ=1 pℓ f(yi|xi, uℓ) . (1)

Here k is the number of components, (pℓ)ℓ∈[k] are weights

of the components, and uℓ is a vector of parameters for

the ℓ-th component. Models of this type have been in-

tensely studied in the neural network literature since the

early nineties (Jordan & Jacobs, 1994; Bishop, 1998). They

have also found numerous applications ranging from object

recognition (Quattoni et al., 2004) to machine translation

(Liang et al., 2006). These studies are largely based on

learning algorithms without consistency guarantees.

Recently, Chaganty & Liang (2013) considered mixtures

of linear regressions, whereby the relation between la-

bels and feature vectors is linear within each component;

i.e., Yi = 〈uℓ, Xi〉 + noise (here and below 〈a, b〉 de-

notes the standard inner product in R
m). Equivalently,

f(yi|xi, uℓ) = f0(yi − 〈xi, uℓ〉) with f0( · ) a density of

mean zero. Building on a new approach developed by Hsu

et al. (2012) and Anandkumar et al. (2012), these authors

propose an algorithm for fitting mixtures of linear regres-

sions with provable guarantees. The main idea is to regress

Y q
i , for q ∈ {1, 2, 3} against the tensors Xi, Xi ⊗ Xi,

Xi ⊗ Xi ⊗ Xi. The coefficients of these regressions are

tensors whose decomposition yields the parameters uℓ, pℓ.

While the work of Chaganty & Liang (2013) is a significant

step forward, it leaves several open problems:

Statistical efficiency. Consider a standard scaling of the

feature vectors, whereby the components (Xi,j)j∈[p] are

of order one. Then, the mathematical guarantees of Cha-

ganty & Liang (2013) require a sample size n ≫ d6. This

is substantially larger than the ‘information-theoretic’ op-

timal scaling, and is an unrealistic requirement in high-

dimension (large d). As noted in (Chaganty & Liang,
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2013), this scaling is an intrinsic drawback of the tensor

approach as it operates in a higher-dimensional space (ten-

sor space) than the space in which data naturally live.

Linear regression versus classification. In virtually all

applications of the mixture model (1), labels Yi are

categorical—see, e.g., Jordan & Jacobs (1994), Bishop

(1998), Quattoni et al. (2004), Liang et al. (2006). In

this case, the very first step of Chaganty & Liang, namely,

regressing Y 2
i on X⊗2

i and Y 3
i on X⊗3

i , breaks down.

Consider—to be definite—the important case of binary la-

bels (e.g., Yi ∈ {0, 1} or Yi ∈ {+1,−1}). Then powers

of the labels do not provide additional information (e.g., if

Yi ∈ {0, 1}, then Yi = Y 2
i ). Also, since Yi is non-linearly

related to uℓ, Y
2
i does not depend only on u⊗2

ℓ .

Computational complexity. The method of Chaganty &

Liang (2013) solves a regularized linear regression in d3

dimensions and factorizes a third order tensor in d dimen-

sions. Even under optimistic assumptions (finite conver-

gence of iterative schemes), this requires O(d3n+ d4) op-

erations.

In this paper, we develop a spectral approach to learning

mixtures of linear classifiers in high dimension. For the

sake of simplicity, we shall focus on the case of binary la-

bels Yi ∈ {+1,−1}, but we expect our ideas to be more

broadly applicable. We consider regression functions of the

form f(yi|xi, uℓ) = f(yi|〈xi, uℓ〉), i.e., each component

corresponds to a generalized linear model with parameter

vector uℓ ∈ R
d. In a nutshell, our method constructs a

symmetric matrix Q̂ ∈ R
d×d by taking a suitable empir-

ical average of the data. The matrix Q̂ has the following

property: (d − k) of its eigenvalues are roughly degener-

ate. The remaining k eigenvalues correspond to eigenvec-

tors that—approximately—span the same subspace as u1,

. . . , uk. Once this space is accurately estimated, the prob-

lem dimensionality is reduced to k; as such, it is easy to

come up with effective prediction methods (as a matter of

fact, simple K-nearest neighbors works very well).

The resulting algorithm is computationally efficient, as its

most expensive step is computing the eigenvector decom-

position of a d× d matrix (which takes O(d3) operations).

Assuming Gaussian feature vectors Xi ∈ R
d, we prove

that our method is also statistically efficient, i.e., it only

requires n ≥ d samples to accurately reconstruct the sub-

space spanned by u1, . . . , uk. This is the same amount of

data needed to estimate the covariance of the feature vec-

tors Xi or a parameter vector u1 ∈ R
d in the trivial case

of a mixture with a single component, k = 1. It is un-

likely that a significantly better efficiency can be achieved

without additional structure.

The assumption of Gaussian feature vectors Xi’s is admit-

tedly restrictive. On one hand, as for the problem of learn-

ing mixtures of Gaussians (Arora & Kannan, 2001; Moitra

& Valiant, 2010), we believe that useful insights can be

gained by studying this simple setting. On the other, and as

discussed below, our proof does not really require the dis-

tribution of the Xi’s to be Gaussian, and a strictly weaker

assumption is sufficient. We expect that future work will

succeed in further relaxing this assumption.

1.1. Technical contribution and related work

Our approach is related to the principal Hessian directions

(pHd) method proposed by Li (1992) and further developed

by Cook (1998) and co-workers. PHd is an approach to

dimensionality reduction and data visualization. It gener-

alizes principal component analysis to the regression (dis-

criminative) setting, whereby each data point consists of

a feature vector Xi ∈ R
d and a label Yi ∈ R. Sum-

marizing, the idea is to form the ‘Hessian’ matrix Ĥ =
n−1

∑n
i=1 YiXiX

T
i ∈ R

d×d. (We assume here, for ease

of exposition, that the Xi’s have zero mean and unit co-

variance.) The eigenvectors associated to eigenvalues with

largest magnitude are used to identify a subspace in R
d

onto which to project the feature vectors Xi’s.

Unfortunately, the pHd approach fails in general for the

mixture models of interest here, namely, mixtures of lin-

ear classifiers. For instance, it fails when each component

of (1) is described by a logistic model f(yi = +1|z) =
(1 + e−z)−1, when features are centered at E(Xi) = 0;

a proof can be found in the extended version of this pa-

per (Sun et al., 2013).

Our approach overcomes this problem by constructing Q̂ =
n−1

∑n
i=1 ZiXiX

T
i ∈ R

d×d. The Zi’s are pseudo-labels

obtained by applying a ‘mirroring’ transformation to the

Yi’s. Unlike with Ĥ , the eigenvector structure of Q̂ enables

us to estimate the span of u1, . . . , uk.

As an additional technical contribution, we establish non-

asymptotic bounds on the estimation error that allow to

characterize the trade-off between the data dimension d
and the sample size n. In contrast, rigorous analysis on

pHd is limited to the low-dimensional regime of d fixed as

n → ∞. It would be interesting to generalize the analysis

developed here to characterize the high-dimensional prop-

erties of pHd as well.

2. Problem Formulation

2.1. Model

Consider a dataset comprising n i.i.d. pairs (Xi, Yi) ∈
R
d × {−1,+1}, i ∈ [n]. We refer to the vectors Xi ∈ R

d

as features and to the binary variables as labels. We assume

that the features Xi ∈ R
d are sampled from a Gaussian dis-
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(a) (b) (c)

Figure 1. The mirroring process applied to a mixture of two 3-dimensional classifiers. Figure (a) shows labels generated by two classifiers

in R
3; the figure includes the parameter profiles as well as the corresponding classification surfaces. Figure (b) shows the mirroring

direction r̂ as a dashed vector, computed by (5), as well as the plane it defines; note that r̂ lies within the positive cone spanned by

the two classifier profiles, approximately. Finally, Figure (c) shows the result of the mirroring process: the region of points that was

predominantly positive has remained unaltered, while the region of points that was predominantly negative has been flipped.

tribution with mean µ ∈ R
d and a positive definite covari-

ance Σ ∈ R
d×d. The labels Yi ∈ {−1,+1} are generated

by a mixture of linear classifiers, i.e.,

Pr(Yi = +1 | Xi) =
∑k
ℓ=1 pℓ f(〈uℓ, Xi〉) . (2)

Here, k ≥ 2 is the number of components in the mix-

ture; (pℓ)ℓ∈[k] are the weights, satisfying of course pℓ > 0,∑k
ℓ=1 pℓ = 1; and (uℓ)ℓ∈[k], uℓ ∈ R

d are the normals to

the planes defining the k linear classifiers. We refer to each

normal uℓ as the parameter profile of the ℓ-th classifier; we

assume that the profiles uℓ, ℓ ∈ [k], are linearly indepen-

dent, and that k < n/2.

We assume that the function f : R→ [0, 1], characterizing

the classifier response, is analytic, non-decreasing, strictly

concave in [0,+∞), and satisfies:

lim
t→∞

f(t)=1, lim
t→−∞

f(t)=0, 1−f(t)=f(−t). (3)

As an example, it is useful to keep in mind the logistic func-

tion f(t) = (1 + e−t)−1. Fig. 1(a) illustrates a mixture of

k = 2 classifiers over d = 3 dimensions.

2.2. Subspace Estimation, Prediction and Clustering

Our main focus is the following task:

Subspace Estimation: After observing (Xi, Yi),
i ∈ [n], estimate the subspace spanned by

the profiles of the k classifiers, i.e., U ≡
span(u1, . . . , uk).

For Û an estimate of U , we characterize performance via

the principal angle between the two spaces, namely

dP (U, Û) = max
x∈U,y∈Û

arccos
(

〈x,y〉
‖x‖‖y‖

)
.

Notice that projecting the features Xi on U entails no loss

of information w.r.t. (2). This can be exploited to improve

the performance of several learning tasks through dimen-

sionality reduction, by projecting the features to the esti-

mate of the subspace U . Two such tasks are:

Prediction: Given a new feature vector Xn+1,

predict the corresponding label Yn+1.

Clustering: Given a new feature vector and la-

bel pair (Xn+1, Yn+1), identify the classifier that

generated the label.

As we will see in Section 5, our subspace estimate can be

used to significantly improve the performance of both pre-

diction and clustering.

2.3. Technical Preliminary

We review here a few definitions used in our exposition.

The sub-gaussian norm of a random variable X is:

‖X‖ψ2
= sup

p≥1

1√
p
(E[|X|p])1/p.

We say X is sub-gaussian if ‖X‖ψ2
< ∞. We say that a

random vector X ∈ R
d is sub-gaussian if 〈y,X〉 is sub-

gaussian for any y on the unit sphere S
d−1.

We use the following variant of Stein’s identity (Stein,

1973; Liu, 1994). Let X ∈ R
d, X ′ ∈ R

d′ be jointly Gaus-

sian random vectors, and consider a function h : Rd
′ → R

that is almost everywhere (a.e.) differentiable and satisfies

E[|∂h(X ′)/∂xi|] <∞, i ∈ [d′]. Then, the following iden-

tity holds:

Cov(X,h(X ′)) = Cov(X,X ′)E[∇h(X ′)]. (4)



Learning Mixtures of Linear Classifiers

Algorithm 1 SPECTRALMIRROR

Input: Pairs (Xi, Yi), i ∈ [n]

Output: Subspace estimate Û

1: µ̂← 1
⌊n/2⌋

∑⌊n/2⌋
i=1 Xi

2: Σ̂← 1
⌈n/2⌉

∑⌊n/2⌋
i=1 (Xi − µ̂)(Xi − µ̂)T

3: r̂ ← 1
⌊n/2⌋

∑⌊n/2⌋
i=1 YiΣ̂

−1(Xi−µ̂)
4: for each i ∈ {⌊n/2⌋+ 1, . . . , n}:

Zi ← Yi sgn〈r̂, Xi〉

5: Q̂← 1

⌈n/2⌉
n∑

i=⌊n/2⌋+1

ZiΣ̂
−1/2(Xi−µ̂)(Xi−µ̂)T Σ̂−1/2

6: Find eigendecomposition
∑d
ℓ=1 λℓwℓw

T
ℓ of Q̂

7: Let λ(1), . . . , λ(k) be the k eigenvalues furthest from

the median.

8: Û ← span
(
Σ̂−1/2w(1), . . . , Σ̂

−1/2w(k)

)

3. Subspace Estimation

In this section, we present our algorithm for subspace es-

timation, which we refer to as SPECTRALMIRROR. Our

main technical contribution, stated formally below, is that

the output Û of SPECTRALMIRROR is a consistent estima-

tor of the subspace U as soon as n ≥ C d, for a sufficiently

large constant C.

3.1. Spectral Mirror Algorithm

We begin by presenting our algorithm for estimating the

subspace span U . Our algorithm consists of three main

steps. First, as pre-processing, we estimate the mean and

covariance of the underlying features Xi. Second, using

these estimates, we identify a vector r̂ that concentrates

near the convex cone spanned by the profiles (uℓ)ℓ∈[k]. We

use this vector to perform an operation we call mirroring:

we ‘flip’ all labels lying in the negative halfspace deter-

mined by r̂. Finally, we compute a weighted covariance

matrix Q̂ over all Xi, where each point’s contribution is

weighed by the mirrored labels: the eigenvectors of this

matrix, appropriately transformed, yield the span U .

These operations are summarized in Algorithm 1. We dis-

cuss each of the main steps in more detail below:

Pre-processing. (Lines 1–2) We split the dataset into two

halves. Using the first half (i.e., all Xi with 1 ≤ i ≤ ⌊n2 ⌋),
we construct estimates µ̂ ∈ R

d and Σ̂ ∈ R
d×d of the fea-

ture mean and covariance, respectively. Standard Gaussian

(i.e., ‘whitened’) versions of features Xi can be constructed

as Σ̂−1/2(Xi−µ̂).

Mirroring. (Lines 3–4) We compute the vector:

r̂ =
1

⌊n/2⌋
∑⌊n/2⌋
i=1 YiΣ̂

−1(Xi−µ̂) ∈ R
d. (5)

We refer to r̂ as the mirroring direction. In Section 4, we

show that r̂ concentrates around its population (n = ∞)

version r ≡ E[Y Σ−1(X−µ)]. Crucially, r lies in the inte-

rior of the convex cone spanned by the parameter profiles,

i.e., r =
∑k
ℓ=1 αℓuℓ, for some positive αℓ > 0, ℓ ∈ [k]

(see Lemma 2 and Fig. 1(b)). Using this r̂, we ‘mirror’ the

labels in the second part of the dataset:

Zi = Yi sgn〈r̂, Xi〉, for ⌊n/2⌋ < i ≤ n.

In words, Zi equals Yi for all i in the positive half-space

defined by the mirroring direction; instead, all labels for

points i in the negative half-space are flipped (i.e., Zi =
−Yi). This is illustrated in Figure 1(c).

Spectral Decomposition. (Lines 5–8) The mirrored la-

bels are used to compute a weighted covariance matrix over

whitened features as follows:

Q̂ =
1

⌈n2 ⌉
n∑

i=⌊n/2⌋+1

ZiΣ̂
−1/2(Xi − µ̂)(Xi − µ̂)T Σ̂−1/2

The spectrum of Q̂ has a specific structure, that reveals the

span U . In particular, as we will see in Section 4, Q̂ con-

verges to a matrix Q that contains an eigenvalue with mul-

tiplicity n − k; crucially, the eigenvectors corresponding

to the remaining k eigenvalues, subject to the linear trans-

form Σ̂−1/2, span the subspace U . As such, the final steps

of the algorithm amount to discovering the eigenvalues that

‘stand out’ (i.e., are different from the eigenvalue with mul-

tiplicity n − k), and rotating the corresponding eigenvec-

tors to obtain Û . More specifically, let (λℓ, wℓ)ℓ∈[d] be the

eigenvalues and eigenvectors of Q̂. Recall that k < n/2.

The algorithm computes the median of all eigenvalues, and

identifies the k eigenvalues furthest from this median; these

are the ‘outliers’. The corresponding k eigenvectors, mul-

tiplied by Σ̂−1/2, yield the subspace estimate Û .

The algorithm does not require knowledge of the classifier

response function f . Also, while we assume knowledge

of k, an eigenvalue/eigenvectors statistic (see, e.g., Zelnik-

Manor & Perona (2004)) can be used to estimate k, as the

number of ‘outlier’ eigenvalues.

3.2. Main Result

Our main result states that SPECTRALMIRROR is a consis-

tent estimator of the subspace spanned by (uℓ)ℓ∈[k]. This is

true for ‘most’ µ ∈ R
d. Formally, we say that an event oc-

curs for generic µ if adding an arbitrarily small random per-

turbation to µ, the event occurs with probability 1 w.r.t. this

perturbation.
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Theorem 1. Denote by Û the output of SPECTRALMIR-

ROR, and let P⊥
r ≡ I − rrT /‖r‖2 be the projector orthog-

onal to r, given by (6). Then, for generic µ, as well as for

µ = 0, there exists ǫ0 > 0 such that, for all ǫ ∈ [0, ǫ0),

Pr(dP (P
⊥
r U, Û) > ǫ) ≤ C1 exp(−C2

nǫ2

d
).

Here C1 is an absolute constant, and C2 > 0 depends on

µ, Σ, f and (uℓ)ℓ∈[k].

In other words, Û provides an accurate estimate of P⊥
r U

as soon as n is significantly larger than d. This holds for

generic µ, but we also prove that it holds for the specific

and important case where µ = 0; in fact, it also holds for

all small-enough µ. Note that this does not guarantee that

Û spans the direction r ∈ U ; nevertheless, as shown be-

low, the latter is accurately estimated by r̂ (see Lemma 1)

and can be added to the span, if necessary. Moreover, our

experiments suggest this is rarely the case in practice, as Û
indeed includes the direction r (see Section 5).

4. Proof of Theorem 1

Recall that we denote by r the population (n =∞) version

of r̂. Let g(s) ≡ 2f(s) − 1, for s ∈ R, and observe that

E[Y | X = x] =
∑k
ℓ=1 pℓg(〈uℓ, x〉). Hence,

r = E

[
Σ−1(X − µ) ·

(∑k
ℓ=1 pℓg(〈uℓ, X〉)

)]
. (6)

Then, the following concentration result holds:

Lemma 1. There exist an absolute constant C > 0 and

c1, c
′
1, c

′
2 that depend on ‖X‖ψ2

such that:

Pr(‖r̂ − r‖2≥ǫ)≤Ce−min
{

c2nǫ
2

d
,
(
c′
1

√
nǫ−c′

2

√
d
)
2
}
.

The proof of Lemma 1 relies on a large deviation inequality

for sub-Gaussian vectors, and is provided in (Sun et al.,

2013). Crucially, r lies in the interior of the convex cone

spanned by the parameter profiles:

Lemma 2. r =
∑k
ℓ=1 αℓuℓ for some αℓ > 0, ℓ ∈ [k].

Proof. From (6),

r =
∑k
ℓ=1 pℓΣ

−1
E[(X − µ)g(〈uℓ, X〉)].

It thus suffices to show that Σ−1
E[(X − µ)g(〈u,X〉)] =

αu, for some α > 0. Note that X ′ = 〈u,X〉 is normal

with mean µ0 = uTµ and variance σ2
0 = uTΣu > 0.

Since f is analytic and non-decreasing, so is g; moreover,

g′ ≥ 0. This, and the fact that g is non-constant, im-

plies E[g′(X ′)] > 0. On the other hand, from Stein’s

identity (4), E[g′(X ′)] = 1
σ2

0

E[X ′g(X ′)] < ∞, as g is

bounded. Hence:

Σ−1
E[(X − µ)g(〈u,X〉)]

(4)
= Σ−1Cov(X, 〈u,X〉)E[g′(X ′)], where X ′ ∼ N (µ0, σ

2
0)

= Σ−1 · E[(X − µ)XTu] · E[g′(X ′)]

= Σ−1 · Σu · E[g′(X ′)] = E[g′(X ′)] · u
and the lemma follows.

For r and (αℓ)ℓ∈[k] as in Lemma 2, define

z(x) = E[Y sgn(〈r,X〉) | X = x]

=
(∑k

ℓ=1 pℓg(〈x, uℓ〉)
)
· sgn

(∑k
ℓ=1 αℓ〈x, uℓ〉

)
.

Observe that z(x) is the expectation of the mirrored label at

a point x presuming that the mirroring direction is exactly

r. Let Q ∈ R
d×d be the matrix:

Q = E[z(X)Σ−1/2(X − µ)(X − µ)TΣ−1/2].

Then Q̂ concentrates around Q, as stated below.

Lemma 3. Let ǫ0 ≡ min{α1, . . . , αk}σmin(U), where

the αℓ > 0 are defined as per Lemma 2 and σmin(U)
is the smallest non-zero singular value of U . Then for

ǫ < min(ǫ0, ‖r‖/2):
Pr(‖Q̂−Q‖2 > ǫ) ≤ C exp{−F (ǫ2)},

where F (ǫ) ≡ min
{
c1nǫ

2

d ,
(
c′1
√
nǫ− c′2

√
d
)2}

, C an ab-

solute constant, and c1, c
′
1, c

′
2 depend on µ, Σ, and ‖r‖.

The proof of Lemma 3 is also provided in (Sun et al., 2013).

We again rely on large deviation bounds for sub-gaussian

random variables; nevertheless, our proof diverges from

standard arguments because r̂, rather than r, is used as a

mirroring direction. Additional care is needed to ensure

that (a) when r̂ is close enough to r, its projection to U lies

in the interior of the convex cone spanned by the profiles,

and (b) although r̂ may have a (vanishing) component out-

side the convex cone, the effect this has on Q̂ is negligible,

for n large enough.

An immediate consequence of Lemma 2 is that r reveals a

direction in the span U . The following lemma states that

the eigenvectors of Q, subject to a rotation, yield the re-

maining k − 1 directions:

Lemma 4. Matrix Q has at most k + 1 distinct eigenval-

ues. One eigenvalue, termed λ0, has multiplicity d − k.

For generic µ, as well as for µ = 0, the eigenvectors

w1, . . . , wk corresponding to the remaining eigenvalues

λ1, . . . , λk are such that

P⊥
r U = span(P⊥

r Σ−1/2w1, . . . , P
⊥
r Σ−1/2wk),

where P⊥
r is the projection orthogonal to r.
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Proof. Note that

Q = E[z(X)Σ− 1

2 (X − µ)(X − µ)TΣ− 1

2 ]

= E[z(Σ1/2W + µ)WWT ], where W ∼ N (0, I)

= E
[ k∑

ℓ=1

pℓg(〈Σ
1

2W+µ,uℓ〉) sgn(〈Σ
1

2W+µ,r〉)WWT
]

= E
[ k∑

ℓ=1

pℓg(〈W + µ̃, ũℓ〉) sgn(〈W + µ̃, r̃〉)WWT
]

for ũℓ ≡ Σ
1

2uℓ, r̃ ≡ Σ
1

2 r, and µ̃ ≡ Σ− 1

2µ. Hence Q =∑k
ℓ=1 pℓQℓ where

Qℓ = E[g(〈ũℓ,W + µ̃〉) sgn(〈r̃,W + µ̃〉)WWT ].

By a rotation invariance argument, Qℓ can be written as

Qℓ = aℓI + bℓ(ũℓr̃
T + r̃ũTℓ ) + cℓũℓũ

T
ℓ + dℓr̃r̃

T (7)

for some aℓ, bℓ, cℓ, dℓ ∈ R. To see this, let Q̃ℓ =
[q̃ij ]i,j∈[d], and suppose first that

r̃ = [r̃1, r̃2, 0, . . . , 0] and ũℓ = [ũℓ1, ũℓ2, 0, . . . , 0]. (8)

Since W is whitened, its coordinates are independent.

Thus, under (8), q̃ij = 0 for all i 6= j s.t. i, j > 2, and

q̃ii = aℓ for i > 2, for some aℓ. Thus Q̃ℓ = aℓI + B,

where B is symmetric and 0 everywhere except perhaps on

B11, B12, B21, B22 (the top left block). Since the profiles

uℓ are linearly independent, so are ũℓ and r̃, by Lemma 2.

Hence, matrices ũℓr̃
T + r̃ũTℓ , ũℓũ

T
ℓ , r̃r̃

T span all such B,

so (7) follows. Moreover, since W is whitened, Q̃ℓ is ro-

tation invariant and thus (7) extends beyond (8); indeed, if

r̃′ = Rr̃, ũ′
ℓ = Rũℓ, µ̃

′ = Rµ̃ where R a rotation matrix

(i.e. RRT = I), then Q′ = RQRT . Hence, as (8) holds

for some orthonormal basis, (7) holds for all bases.

Let a =
∑k
ℓ=1 pℓaℓ. Then

Q− aI =
k∑

ℓ=1

pℓdℓr̃r̃
T + r̃(

k∑

ℓ=1

pℓbℓũℓ)
T+

+ (

k∑

ℓ=1

pℓbℓũℓ)r̃
T +

k∑

ℓ=1

pℓcℓũℓũ
T
ℓ .

Let P⊥
r̃ be the projector orthogonal to r̃, i.e., P⊥

r̃ =

I − r̃r̃T

‖r̃‖2

2

. Let vℓ ≡ P⊥
r̃ ũℓ. Lemma 2 and the linear in-

dependence of ũℓ imply that vℓ 6= 0, for all ℓ ∈ [k]. Define

R ≡ P⊥
r̃ (Q − aI)P⊥

r̃ =
∑k
ℓ=1 γℓvℓv

T
ℓ , where γℓ = pℓcℓ,

ℓ ∈ [k]. We will show below that for generic µ, as well

as for µ = 0, γℓ 6= 0 for all ℓ ∈ [k]. This implies that

rank(R) = k − 1. Indeed, R = P⊥
r̃

∑
γℓũℓũ

T
ℓ P

⊥
r̃ =

P⊥
r̃ R̃P⊥

r̃ , where R̃ has rank k by the linear indepen-

dence of profiles. As P⊥ is a projector orthogonal to a 1-

dimensional space, R has rank at least k − 1. On the other

hand, range(R) ⊆ Ũ , for Ũ = span(ũ1, . . . , ũℓ), and

r̃TRr̃ = 0 where r̃ ∈ Ũ \ {0}), so rank(R) = k − 1. The

latter also implies that range(R) = P⊥
r̃ Ũ , as range(R)⊥r̃,

range(R) ⊆ Ũ , and dim(range(R)) = k − 1.

The above imply that Q has one eigenvalue of multiplicity

n − k, namely a. Moreover, the eigenvectors w1, . . . , wk
corresponding to the remaining eigenvalues (or, the non-

zero eigenvalues of Q− aI) are such that

P⊥
r̃ Σ1/2U = P⊥

r̃ span(w1, . . . , wk).

The lemma thus follows by multiplying both sides of the

above equality with P⊥
r Σ−1/2, and using the fact that

P⊥
r Σ−1/2P⊥

r̃ = P⊥
r Σ−1/2.

It remains to show that γℓ 6= 0, for all ℓ ∈ [k], when µ is

generic or 0. Note that

cℓ〈ũℓ, vℓ〉2 (7)
= 〈vℓ, (Qℓ − aℓI)vℓ〉 = (9)

Cov(g(〈ũℓ,W + µ̃〉) sgn(〈r̃,W + µ̃〉); 〈W, vℓ〉2) ≡ c̃ℓ

It thus suffices to show that c̃ℓ 6= 0. Lemma 2 implies that

ũℓ = vℓ + cr̃ for some c > 0, hence

c̃ℓ = Cov[g(X + cY + zℓ(µ)〉) sgn(Y + z0(µ));X
2],

where X ≡ 〈vℓ,W 〉 and Y ≡ 〈r̃,W 〉 are independent

Gaussians with mean 0, and zℓ(µ) ≡ 〈ũℓ, µ̃〉, z0(µ) ≡
〈r̃, µ̃〉. Hence, c̃ℓ = Cov[F (X);X2] where

F (x) = EY [g(x+ cY + zℓ(µ)) sgn(Y + z0(µ))]

=

∫ ∞

−z0(µ)
g(x+cy +zℓ(µ))φ(y)dy−

∫ −z0(µ)

−∞
g(x+ cy + zℓ(µ)φ(y)dy

where φ the normal p.d.f. Assume first that µ = 0.

By (3), g is anti-symmetric, i.e., g(−x) = −g(x). Thus,

F (−x) = EY [g(−x + cY ) sgn(Y )]
Y ′≡−Y

= EY ′ [g(−x −
cY ′) sgn(−Y ′)] = F (x), i.e., F is symmetric. Further,

F ′(x) = Ey[g
′(x + cY ) sgn(Y )] =

∫∞
0

(g′(x + cy) −
g′(x − cy))φ(y)dy. The strict concavity of g in [0,∞)
implies that g′ is decreasing in [0,+∞), and the anti-

symmetry of g implies that g′ is symmetric. Take x > 0: if

x > cy ≥ 0, g′(x+cy) > g′(x−cy), while if x ≤ cy, then

g′(x − cy) = g′(cy − x) > g′(cy + x), so F ′(x) is neg-

ative for x > 0. By the symmetry of F , F ′(x) is positive

for x < 0. As such, F (x) = G(x2) for some strictly de-

creasing G, and c̃ℓ = Cov(G(Z);Z) for Z = X2; hence,

c̃ℓ < 0, for all ℓ ∈ [k].

To see that c̃ℓ 6= 0 for generic µ, recall that f is analytic

and hence so is g. Hence, c̃ℓ is an analytic function of µ,

for every ℓ ∈ [k]; also, as c̃ℓ(µ) < 0 for µ = 0, it is not

identically 0. Hence, the sets {µ ∈ R
d : c̃ℓ(µ) = 0}, ℓ ∈

[k], have Lebesgue measure 0 (see, e.g., pg. 83 in (Krantz

& Parks, 2002)), and so does their union Z. As such, c̃ℓ 6=
0 for generic µ; if not, there exists a ball B ⊂ R

d such that

B∩Z has positive Lebesgue measure, a contradiction.
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(a) sin(dP ) vs. n (b) sin(dP ) vs. n/d

Figure 2. Convergence of Û to U .
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Figure 3. Predicting the expected label given features using K-

NN (RMSE). Dotted lines are for K-NN after projecting the fea-

tures Xi onto Û .

Denote by λ0 the eigenvalue of multiplicity d − k in

Lemma 4. Let ∆ = minℓ∈[k] |λ0 − λℓ| be the gap between

λ0 and the remaining eigenvalues. Then, the following

lemma holds; this, along with Lemma 4, yields Theorem 1.

Lemma 5. Let Û be our estimate for U . If λ1, . . . , λk
are separated from λ0 by at least ∆, then for ǫ ≤
min(ǫ0/∆, 1

4 ), we have

Pr(dP (U, Û) > ǫ) ≤ C exp
(
− F (∆ǫ)

)
,

where ǫ0, F are defined as per Lemma 3.

Proof. If we ensure ‖Q̂−Q‖ ≤ ∆/4, then, by Weyl’s the-

orem (Horn & Johnson, 2012), d− k eigenvalues of Q̂ are

contained in [λk+1 −∆/4, λk+1 + ∆/4], and the remain-

ing eigenvalues are outside this set, and will be detected

by SPECTRALMIRROR. Moreover, by the Davis-Kahan

sin(θ) theorem,

dp(range(Q), range(Q̂)) ≤ ‖Q̂−Q‖2
∆− ‖Q̂−Q‖2

=
1

∆
‖Q̂−Q‖2

−1 .

Thus the event dp(U, Û) ≤ ǫ is implied by ‖Q̂ − Q‖2 ≤
∆ǫ
1+ǫ ≤ ∆ǫ. Moreover, this implies that sufficient condi-

tion for ‖Q̂ − Q‖2 ≤ ∆/4 (which is required for SPEC-

TRALMIRROR to detect the correct eigenvalues) is that

ǫ ≤ 1
4 . The lemma thus follows from Lemma 3.

Note that the Gaussianity of X is crucially used in the fact

that the ‘whitened’ features W are uncorrelated, which in

turn yields Eq. (7). We believe that the theorem can be

extended to more general distributions, provided that the

transform Σ− 1

2 de-correlates the coordinates of X .

5. Experiments

We conduct computational experiments to validate the per-

formance of SPECRALMIRROR on subspace estimation,

prediction, and clustering. We generate synthetic data us-

ing k = 2, with profiles uℓ ∼ N (0, I), ℓ = 1, 2 and

mixture weights pℓ sampled uniformly at random from

the k-dimensional simplex. Features are also Gaussian:

Xi ∼ N (0, I), i = 1, . . . , n; labels generated by the ℓ-th
classifier are given by yi = sgn(uTℓ Xi), i = 1, . . . , n.

Convergence. We study first how well SPECTRALMIR-

ROR estimates the span U . Figure 2(a) shows the conver-

gence of Û to U in terms of (the sin of) the largest princi-

pal angle between the subspaces versus the sample size n.

We also plot the convergence versus the effective sample

size n/d (Figure 2(a)). The curves for different values of d
align in Figure 2, indicating that the upper bound in Thm. 1

correctly predicts the sample complexity as n ≈ Θ(d).
Though not guaranteed by Theorem 1, in all experiments

r was indeed spanned by Û , so the addition of r̂ to Û was

not necessary.

Prediction through K-NN. Next, we use the estimated

subspace to aid in the prediction of expected labels. Given

a new feature vector X , we use the average label of its

K nearest neighbors (K-NN) in the training set to predict

its expected label. We do this for two settings: once over

the raw data (the ‘ambient’ space), and once over data for

which the features X are first projected to Û , the estimated

span (of dimension 2). For each n, we repeat this proce-

dure 25 times with K =
√
n and K = log n. We record the

average root mean squared error between predicted and ex-

pected labels over the 25 runs. Figures 3(a) and 3(b) show

that, despite the error in Û , using K-NN on this subspace

outperforms K-NN on the ambient space.

Prediction and Clustering through EM. We next study

the performance of prediction and clustering using the

Expectation-Maximization (EM) algorithm. We use EM

to fit the individual profiles both over the training set, as

well as on the dataset projected to the estimated subspace

Û . We conducted two experiments in this setting: (a) ini-

tialize EM close to the true profiles uℓ, ℓ ∈ [k], and (b)

randomly initialize EM and choose the best set of profiles

from 30 runs. For each n we run EM 10 times.

The first set of prediction experiments, we again compare

expected labels to the predicted labels, using for the lat-

ter profiles uℓ and mixture probabilities pℓ as estimated by
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Figure 4. (a) Predicting the label given features and the classifier using using EM (normalized 0-1 loss) from a starting point close to

ground truth. Dotted lines are for kNN after projecting the features onto the estimated subspace. (b) Predicting the label given features

and the classifier using using EM (normalized 0-1 loss) from a random starting point. (c) Predicting the classifier given features and the

label.

EM. Figure 4(a) measures the statistical efficiency of EM

over the estimated subspace versus EM over the ambient

space, when EM is initialized close to the true profiles. The

second set of experiments, illustrated in Figure 4(b), aims

to capture the additional improvement due to the reduction

in the number of local minima in the reduced space. In

both cases we see that constraining the estimated profiles

to lie in the estimated subspace improves the statistical ef-

ficiency of EM; in the more realistic random start experi-

ments, enforcing the subspace constraint also improves the

performance of EM by reducing the number of local min-

ima. We also observe an overall improvement compared to

prediction through K-NN.

Finally, we use the fitted profiles uℓ to identify the classi-

fier generating a label given the features and the label. To

do this, once the profiles uℓ have been detected by EM, we

use a logistic model margin condition to identify the classi-

fier who generated a label, given the label and its features.

Figure 4(c) shows the result for EM initialized at a random

point, after choosing the best set of profiles from out of 30

runs. We evaluate the performance of this clustering proce-

dure using the normalized 0-1 loss. Again, constraining the

estimated profiles to the estimated subspace significantly

improves the performance of this clustering task.

6. Conclusions

We have proposed SPECTRALMIRROR, a method for dis-

covering the span of a mixture of linear classifiers. Our

method relies on a non-linear transform of the labels, which

we refer to as ‘mirroring’. Moreover, we have provided

consistency guarantees and non-asymptotic bounds, that

also imply the near optimal statistical efficiency of the

method. Finally, we have shown that, despite the fact

that SPECTRALMIRROR discovers the span only approx-

imately, this is sufficient to allow for a significant improve-

ment in both prediction and clustering, when the features

are projected to the estimated span.

We have already discussed several technical issues that re-

main open, and that we believe are amenable to further

analysis. These include amending the Gaussianity assump-

tion, and applying our bounds to other pHd-inspired meth-

ods. An additional research topic is to further improve the

computational complexity of the estimation of the eigen-

vectors of the ‘mirrored’ matrix Q̂. This is of greatest in-

terest in cases where the covariance Σ and mean µ are a pri-

ori known. This would be the case when, e.g., the method

is applied repeatedly and, although the features X are sam-

pled from the same distribution each time, labels Y are gen-

erated from a different mixture of classifiers. In this case,

SPECTRALMIRROR lacks the pre-processing step, that re-

quires estimating Σ and is thus computationally intensive;

the remaining operations amount to discovering the spec-

trum of Q̂, an operation that can be performed more effi-

ciently. For example, we can use a regularized M-estimator

to exploit the fact that Σ−1/2Q̂Σ−1/2 should be the sum of

a multiple of the identity and a low rank matrix—see, e.g.,

Negahban et al. (2012).
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