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ABSTRACT
In this paper, we propose Structurally Guided Channel Attention
Networks (SGCA-Net), a principled way to guide the channel at-
tention of CNNs. Convolution operator constructs features maps
by using both channel and spatial information within the receptive
fields of its filters. Prior research has investigated the impact of
strengthening the representational power of CNNs using channel
attention modules. In this work, we guide the channel attention
of networks using feature vectors that contain clinically relevant
information. We do so by attaching guided attention modules into
a state-of-the-art network architecture, and guiding these attention
modules with domain knowledge using feature vectors. Experi-
ments on a dataset of 5512 posterior retinal images, taken using
a wide angle fundus camera, show that SGCA-Net achieves 0.983
and 0.948 AUC to predict plus and normal categories, respectively.
SGCA-Net achieves higher performance than CNNs without atten-
tion modules and CNNs with unguided attention modules.
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1 INTRODUCTION
Retinopathy of prematurity (ROP) is a disease that affects premature
infants and is a leading cause of childhood blindness [8]. Around
14,000-16,000 premature born infants are affected by of ROP in
the U.S. each year [13]. An international classification system to
standardize ROP diagnosis was developed in 2005 [6]. Plus disease
is the most important disease feature in determining the need for
treatment, and it is defined as abnormal tortuosity and dilation of
the posterior retinal blood vessels. An important factor for treat-
ment planing is the correct classification of three levels of plus
disease, normal, pre-plus, and plus. Early detection and treatment
of plus disease plays an important role to avoid impaired vision
or blindness [13]. As the survival rate of prematurely born babies
increases, the number of infants at risk of ROP also increases [7].
Lack of access to ROP experts remains a challenge. These factors
bring about a need for an accurate ROP detection system.

Neural networks havemade high impact onmanymedical tasks [5,
11, 16, 17], including detection of ROP from fundus images [3, 24].
State-of-the-art ROP detection systems employ convolutional neu-
ral networks (CNNs) [3] and achieve up to 0.947 and 0.982 area
under the ROC curve (AUC) in the discrimination of normal and
plus levels of ROP. Recent studies show that incorporating attention
in network architecture improves CNNs classification performance,
including ROP detection [22, 27].

Attention in neural networks is a set of additional operations
that generate a soft mask to weigh the outputs of intermediate
layers. It selectively emphasizes informative features and suppress
less useful ones. Attention masks in CNNs can be learned to weigh
the spatial information [9, 22, 27] or the channels of layer out-
puts [12, 26]. When used for channel attention, network generates
attention vectors to suppress channels of the layer outputs that are
irrelevant for target classification [12, 23]. Similarly, in an actual
diagnosis process, clinicians would only focus on relevant features
while diagnosing a disease. For example, in ROP diagnosis, ophthal-
mologists focus on abnormal tortuosity and dilation of the posterior
retinal blood vessels [6].

Clinicians’ focus on relevant features is based on their knowledge
of the disease. We believe that such structural domain knowledge
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can be leveraged to enhance CNN performance. In standard atten-
tion architectures, network tries to learn attention masks while only
supervised with the class labels. Although attention in CNNs has
been used for mimicing what clinicians do while diagnosing, most
of the current attention architectures do not incorporate structural
domain knowledge in training. Several studies [14, 19, 25] use spa-
tial attention to guide the network attention to clinically important
regions using manually annotated segmentation of classification
target, however, they do not suggest a principal way of incorporat-
ing domain knowledge in guidance of network attention.

Yildiz et al. [27] show that incorporating structural domain
knowledge in guiding spatial attention increases ROP detection
performance. They attach spatial attention modules into the state-
of-the-art ROP detection network [3], and improve its performance
up to 3% [27]. They guide the attention of the network to the re-
gions of an image that contains clinically relevant information. Our
work extends Yildiz et al. [27] by using guidance in channel atten-
tion. Specifically, we depart from Yildiz et al. by guiding network
attention for weighing the importance of feature map channels at
the output of convolutional layers instead of the spatial information
within feature maps. We do so by using domain knowledge-based
feature vectors during network training. Several studies extract
structural features dedicated to diagnosis of ROP [1, 15, 21, 28].
Closest to us, Yildiz et al. [28] achieve 0.94 AUC in detection of ROP
by extracting features related to tortuosity and dilation of posterior
blood vessels. We leverage features extracted by Yildiz et al. [28] in
guiding channel attention of ROP detection network.

In this paper, we propose structurally guided channel attention
networks (SGCA-Net). We present a novel way to incorporate do-
main knowledge in guiding channel attention of CNNs. We do so
by guiding the network using features dedicated to classification
task. By achieving 0.948 and 0.983 AUC in detection of normal and
plus ROP levels, we achieve higher performance than baseline ROP
classification network and baseline channel attention network.

2 MOTIVATION
Accurate classification of three levels of plus disease, which is char-
acterized by abnormal tortuosity and dilation in the posterior retinal
blood vessels plays an important role for treatment planing. We
present two sample fundus images from normal (top) and plus (bot-
tom) classes in the left column of Fig. 1. Also, the right column of
Fig. 1 presents images in which blood vessels are segmented via
the procedure proposed by Brown et al. [2]. In addition to methods
which detect ROP by quantifying structural featuers such as dilation
and tortuosity [1, 28], Brown et al. [3] employ CNNs. Our moti-
vation in this study is to improve the classification performance
of ROP detection CNN by incorporating structural features in the
training process of CNNs using attention mechanisms.

3 METHOD
3.1 Channel Attention
A convolutional layer in a CNN convolves its entire input with
multiple filters. It generates feature maps at the output of the layer
after summation of convolution channels. This process uses chan-
nel and spatial information only within the receptive field of the
filters. While channel dependencies are implicitly embedded in con-
volutional layers, they are entangled with the spatial correlations.

Figure 1: Sample fundus images (left) from normal (top) and
plus (bottom) classes with vessel segmentations (right).

Channel attention strengthens the representational power of a
CNN by learning to use global information in feature maps to selec-
tively emphasise informative feature map channels and suppress
less useful ones [12]. Hu et al. [12] use Squeeze-Excitation blocks
in channel attention networks and, improve networks classifica-
tion performance. Yildiz et al. [27] show that guiding the spatial
attention of network with features based on domain knowledge
during the attention process improves the network classification
performance. We believe that exploiting the impact of guiding
network attention with domain knowledge will also increase the
performance of channel attention networks.
3.2 Problem Definition
Given a dataset containing 𝑁 images, indexed by 𝑖 ∈ {1, 2, . . . , 𝑁 },
every image 𝑖 is represented as X𝑖 ∈ R𝐻×𝑊 where 𝐻 and𝑊 are
the height and width of the image, respectively. For each image
X𝑖 , a labeler generates a label 𝑦𝑖 ∈ {normal, pre-plus, plus}, which
indicates the ROP level. Let feature vectorm𝑓

𝑖
∈ [0, 1]𝑑 be the do-

main knowledge based features of X𝑖 . Our goal is to learn CNNs
that perform classification well, and simultaneously learn
to emphasise informative feature map channels as guided
by domain knowledge based features m𝑓

𝑖
.

As shown in Fig. 2, attention modules are effectively additional
layers generating attention vectors. Let 𝑗 ∈ {1, .., 𝑛} be the index
of the 𝑗-th attention module parameterized by 𝜃 𝑗 , and F𝑗,𝑖 , F𝑀𝑗,𝑖 ∈
R𝐶×𝐻 𝑗×𝑊𝑗 be the feature maps of X𝑖 before and after 𝑗-th attention
mask is applied, respectively. F𝑀

𝑗−1,𝑖 and attention vector m𝜃 𝑗

𝑖
∈

[0, 1]𝐶 are the input-output pair of the 𝑗-th attention module.

3.3 Squeeze-Excitation Networks
Hu et al. [12] use squeeze-excitation blocks for applying channel
attention in CNNs. Squeeze-excitation blocks use global informa-
tion in feature maps and alter their importance in three steps: (1)
squeeze, (2) excitation and (3) scaling.
Squeeze: Squeeze operation finds global information embedding of
featuremaps in convolutional layers. It squeezes the spatial informa-
tion in each feature map channel into a channel descriptor z ∈ R𝐶 .
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A bst r act . Convolut ional neural networks (CNNs) have shown great
performance in medical diagnost ic applicat ions. However, because of
their complexity and black-box nature, clinicians are reluctant to t rust
diagnost ic outcome of CNNs. Incorporat ing visual at tent ion capabilit ies
in CNNs enhances interpretability by highlight ing regions in the images
that CNNsut ilizes for predict ion. In medical images, cliniciansoften have
st ructural domain informat ion on what is important . In ret inal images
for diagnosing ret inopathy of prematurity (ROP), st ructural informat ion
such as tortuosity of vessels aid clinicians in diagnosing ROP. Generic
visual at tent ion method does not leverage st ructural domain informa-
t ion into account . In this paper, we propose a method, we call St ructural
Visual Guidance At tent ion Networks (SVGA-Net ), that leverages st ruc-
tural domain informat ion to guidevisual at tent ion in CNNs. Experiments
on a dataset of 5512 posterior ret inal images, taken using a wide-angle
fundus camera, show that SVGA-Net achieves 0.987 and 0.979 AUC in
predict ing plus versus not -plus and normal versus not -normal categories,
respect ively. SVGA-Net consistent ly results in higher AUC compared to
visual at tent ion CNNswithout guidance, baselineCNNs, and CNNswith
st ructured masks.
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Fig. 1: Proposed Structural Visual Guidance Attention Networks, SVGA-Net. The baseline Visual Attention Network is high-
lighted.

loss for claVVi¿caWiRQ LC :

L (X i , yi ) = LC (X i , yi ) = − log
⇣
esp i (X i ,⇥) /

P
l e
sl (X i ,⇥)

⌘
,
(2)

where pi is the index of the true class for image i , sl (X i ,⇥) is
the score of class l 2 { 1, 2, ..., L } produced by themodel, pa-
rameterized by ⇥, prior to the soft-max layer that is explicitly
indicated above, and L is thenumber of classes.

3 Method Formulation
Givenadataset containingN images, indexedby i 2 { 1, 2, . . . , N } ,
every image i is represented asX i 2 Rh⇥w whereh and w are
theheight andwidth of theimage, respectively. For each image
X i , a labeler generates a label yi 2 { normal, pre-plus, plus} ,
which indicates the ROP level, with plus being the most se-
vere. Let mask M f

i 2 [0, 1]h⇥w beadomain knowledgeguided
mask. Wepresent a structural way to generate M f

i for ROP in
Section 3.2. Our goal is to learn CNNs that per form claVVi¿-
cation well and at the same time learn attention masksM✓

i
that are more interpretable as guided by domain knowl-
edgemasksM f

i . In Section 3.1, wepresent away to guide the
network attention using M f

i . Fig. 1 presents the architecture
of our model.

3.1 Structural Visual Guidance Attention Net-
works: SVGA-Net

To improveclaVVi¿caWion performance aswell asprovide inter-
pretability, our loss function consists of two terms: (a) claVVi¿-
cation lossLC (X i , yi ) and (b) guidance loss LG (X i ,M f

i ). We
use categorical cross entropy loss in Eq. (2) for LC (X i , yi ).
Given image X i , we generate a mask that contains clinically
important regionsM f

i 2 [0, 1]h⇥w , asdescribed in Section 3.2.
Weuse these to guide theattention masksgenerated by thenet-
work M✓j

i 2 [0, 1]h j ⇥wj , via theguidance loss, wede¿Qe as:

LG (X i ,M f
i ) =

X

j

1
hj wj

kM f
i − M✓j

i k
2
F , (3)

where theFrobeniusmatrix norm k·kF : Rh j ⇥wj ! R isused.
Note that when calculating Frobenius norm, we resize M f

i to
the size of M✓j

i by using bicubic interpolation. Our proposed
SVGA-Net loss function isde¿Qed as:

L (X i , yi ,M f
i ) = LC (X i , yi ) + λLG (X i ,M f

i ), (4)

where λ is a trade-off control parameter between claVVi¿caWiRQ
and guidance loss.

3.2 Structural Feature Dependent Attention
Mask Generation

When diagnosing ROP, clinicians focuson highly tortuousand
dilated blood vessels [21]. We incorporate this domain knowl-
edge in thegeneration of attention masks. Yildiz et al. [25] ex-
tract clinically relevant features for ROPclaVVi¿caWiRQ. Weuse
their pipeline in generating feature dependent attention masks.
They useCumulative Tortuosity Index (CTI) and AverageSeg-
ment Diameter (ASD) metrics to measure vessel tortuosity and
dilation.

For every image X i , we generate two masks, M f
i ,C T I 2

[0, 1]h⇥w and M f
i ,A SD 2 [0, 1]h⇥w , around the 20% of vessel

segments that have thehighest CTI and ASD. Wealso generate
amask M f

i 2 [0, 1]h⇥w that contains both high CTI and ASD
regionsby taking element-wisemaximum of masksM f

i ,CTI and
M f
i ,ASD. Sample masks along with segmentation images are

presented in Fig. 2. From top to bottom, image labels arePlus,
Pre-Plus, Normal. It is seen that the feature dependent atten-
tion masks capture vessels that are more tortuous and dilated
in higher ROP levels.

4 Exper iments
We investigate if guidance with feature masks using the pro-
posed SVGA-Net leads to better ROP claVVi¿caWiRQ perfor-
mance compared to competing methods.

Dataset. We use a dataset that contains 5512 posterior
retinal images, taken using a wide angle fundus camera. Ac-
cording to its disease level, clinicians assign a label (as plus,
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Figure 2: Proposed architecture of Structurally Guided Channel Attention Networks, SGCA-Net
They obtain channel descriptors by applying global average pooling
to feature maps. Let F𝑖 ∈ R𝐶×𝐻×𝑊 be the feature maps of imageX𝑖 ,
channel descriptor z𝑖 is find by z𝑖,𝑐 = 1

𝐻𝑊

∑𝐻
ℎ=1

∑𝑊
𝑤=1 F𝑖,𝑐 (ℎ,𝑤),

where 𝑐 ∈ {1, ..,𝐶} is the index of the feature channel.
Excitation: After global information in feature map channels are
squeezed into channel descriptors, excitation operation aims to
capture the channel-wise dependencies.

Hu et al. [12] uses two fully connected layers as excitation opera-
tion. The first layer has𝐶/𝑟 nodes where 𝑟 is defined as a reduction
ratio. This layer is followed by a RELU activation function. The
second layer has𝐶 nodes followed by a sigmoid function. The dense
layers at 𝑗th attention block are parametrized with 𝜃 𝑗 . Excitation
function generates an attention vectorm𝜃 𝑗

𝑖
∈ R𝐶 .

Scaling: The attention vector m𝜃 𝑗

𝑖
is used for scaling the feature

map channels following F𝑚
𝑗,𝑖,𝑐

= m𝜃 𝑗

𝑖,𝑐
F𝑗,𝑖,𝑐 , where m

𝜃 𝑗

𝑖,𝑐
is the 𝑐th

element of attention vector m𝜃 𝑗

𝑖
, F𝑖, 𝑗,𝑐 is the 𝑐th channel of feature

maps F𝑖, 𝑗 , and F𝑚
𝑖,𝑗

are the attention applied channel maps.
Traditionally, attention module and base network layers are

trained jointly by minimizing categorical cross entropy loss L𝐶 :

L(X𝑖 , 𝑦𝑖 ) = L𝐶 (X𝑖 , 𝑦𝑖 ) = − log
(
𝑒𝑠𝑝𝑖 (X𝑖 ,Θ)/∑𝑙 𝑒

𝑠𝑙 (X𝑖 ,Θ)
)
, (1)

where 𝑝𝑖 is the index of the true class for image 𝑖 , 𝑠𝑙 (X𝑖 ,Θ) is the
score of class 𝑙 ∈ {1, 2, ..., 𝐿} produced by the model, parameterized
by Θ, prior to the soft-max layer that is explicitly indicated above,
and 𝐿 is the number of classes.

3.4 Guiding Channel Attention
We incorporate domain knowledge in guiding channel attention
networks by introducing an additive term in loss function. Our loss
function consists of two terms: (a) classification lossL𝐶 (X𝑖 , 𝑦𝑖 ) and
(b) guidance loss L𝐺 (m𝑖 ,m

𝑓

𝑖
). We use categorical cross entropy

loss in Eq. (1) forL𝐶 (X𝑖 , 𝑦𝑖 ). Given imageX𝑖 , we generate a feature
vector that contains important featuresm𝑓

𝑖
∈ [0, 1]𝑑 , as described

in Section 3.5. We use these to guide the attention vectors generated
by the network m𝜃 𝑗

𝑖
∈ [0, 1]𝐶 , via the guidance loss, we define as:

L𝐺 (m𝜃
𝑖 ,m

𝑓

𝑖
) =

∑
𝑗

1
𝑑

𝑑∑
𝑐=1

(m𝑓

𝑖,𝑐
−m𝜃 𝑗

𝑖,𝑐
)2, (2)

where the mean squared error (MSE) is used. Note that when cal-
culating MSE, we use the first 𝑑 elements of m𝜃 𝑗

𝑖
. Our proposed

SGCA-Net loss function is defined as:

L(X𝑖 , 𝑦𝑖 ,m𝜃
𝑖 ,m

𝑓

𝑖
) = L𝐶 (X𝑖 , 𝑦𝑖 ) + 𝜆L𝐺 (m𝜃

𝑖 ,m
𝑓

𝑖
), (3)

where 𝜆 is a trade-off control parameter between classification and
guidance loss.
3.5 Extracting ROP Features
Vessel dilation and tortuosity are commonly used for the definition
of ROP [6]. Following the pipeline fromYildiz et al. [28], we compute
143 features related to vessel tortuosity and dilation. For every
image X𝑖 , we generate a feature vector,m

𝑓

𝑖
∈ [0, 1]143.

4 EXPERIMENTAL SETUP
Dataset. Our dataset contains 5512 retinal fundus images. Accord-
ing to its disease level, clinicians assign a label (as plus, pre-plus or
normal) to each image following a reference standard diagnosis [18].
The dataset contains 163 plus, 802 pre-plus, and 4547 normal images.
We use images in which vessels are segmented via the procedure
proposed by Brown et al. [3].
4.1 Evaluation Metrics
We binarize labels as (a) plus vs. other classes (PvO), and (b) normal
vs. other classes (NvO). We calculate the Area Under the ROC Curve
(AUC), accuracy (ACC), F1 score (F1) and Area Under the Precision-
Recall Curve (PRAUC) scores with five fold cross-validation. We
present the mean of five folds and calculate the 95% confidence
intervals as 1.96 × 𝜎𝐴 , where 𝜎𝐴 is the standard deviation, we
calculate following Hanley et al. [10].

4.2 Base CNN Architecture and Training
As the base network to attach attention modules, we employ In-
ception v.1 architecture [20], which has shown great performance
in many classification tasks including ROP [3]. We initialize the
network weights with pretrained weights on ImageNet [4]. We
employ stochastic gradient descent with learning rate 0.0001 for
100 epochs to optimize the network weights.

4.3 Competing Methods
We explore the effects of guiding the channel attention in classifica-
tion of ROP in 3 different setups. When used, we attach an attention
module to inception 5a block.
No Attention [3]: We train the base CNN architecture without
any attention as in Brown et al. [3]’s ROP classification model.
UnguidedAttention [12]: We train the baseline channel attention
network as explained in Section 3.3.
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Guided Attention (SGCA-Net): We use the feature vectors for
guiding the network attention as explained in the Section 3.4. Also,
we study the effect of trade-off control parameter 𝜆 in Eq. (3) by
repeating the same experiment with 𝜆 values ranging in [0, 50].

5 RESULTS AND DISCUSSION

Table 1: Cross validation results for competing methods

Task No
Attention [3]

Unguided
Attention [12]

Guided with
Feature Vector

A
U
C NvsO 0.947(0.024) 0.944(0.025) 0.948(0.024)

PvsO 0.982(0.006) 0.983(0.006) 0.983(0.006)

A
CC

NvsO 0.872(0.001) 0.872(0.001) 0.876(0.001)
PvsO 0.916(0.0) 0.945(0.0) 0.943(0.0)

F1

NvsO 0.917(0.001) 0.917(0.001) 0.92(0.001)
PvsO 0.954(0.0) 0.971(0.0) 0.971(0.0)

PR
-

A
U
C NvsO 0.832(0.039) 0.838(0.039) 0.835(0.039)

PvsO 0.726(0.019) 0.699(0.019) 0.729(0.019)

We present the cross validation results of predicting normal vs
other and plus vs other classes in Table 1. SGCA-Net achieves 0.948
and 0.983 AUC in predicting normal vs other classes and plus vs
other classes, respectively. It achieves higher AUC than unguided
channel attention [12] in predicting normal vs other classes. Also,
SGCA-Net achieves higher scores than baseline ROP detection
network [3] in all metrics. In predicting normal vs other classes,
unguided network achieves lower AUC than baseline network,
whereas, SGCA-Net avoids the performance drop by incorporating
guidance in the attention. The results suggest that incorporating
guidance in channel attention increases the network performance.

6 CONCLUSION
In this paper, we propose a novel way to incorporate domain knowl-
edge in guiding channel attention in CNNs. We attach attention
modules into state-of-the-art network architecture and guide the
network by using feature vectors created with domain knowledge.
We do so with an additional guidance loss in network training. Ex-
periments show that guiding the network attention using domain
knowledge increases performance of ROP detection networks. We
believe that performance of SGCA-Net can be further improved
with different architectures in attention module. Also, SGCA-Net
guides the network attention in a predefined set of feature channels,
for example in this paper, we guided first 143 channels of inception
5a block. It would be interesting to select which feature channels
to guide based on their activations.
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