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Abstract. Graph embeddings have been tremendously successful at producing node
representations that are discriminative for downstream tasks. In this paper, we study
the problem of graph transfer learning: given two graphs and labels in the nodes of the
first graph, we wish to predict the labels on the second graph. We propose a tractable,
non-combinatorial method for solving the graph transfer learning problem by combining
classification and embedding losses with a continuous, convex penalty motivated by
tractable graph distances. We demonstrate that our method successfully predicts labels
across graphs with almost perfect accuracy; in the same scenarios, training embeddings
through standard methods leads to predictions that are no better than random.
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1. Introduction

We consider a graph transfer learning problem, illustrated by the following mo-
tivating example. An epidemic spreading through a graph is observed by an an-
alyst. The statistics governing the epidemic propagation are a priori unknown;
nevertheless, the analyst wishes to use this trace to predict how the epidemic
would spread over a new graph, potentially modeling a different population. More
broadly speaking, we wish to solve the following abstract problem. A learner is
presented with two structurally similar (but distinct) graphs GA and GB . Node
labels such as, e.g., infection probabilities and community membership, are pro-
vided only for nodes on GA. A learner wishes to use the labels on GA to predict
the labels on GB.

Intuitively, the success of such a transfer learning task relies on the fact that
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many interesting labels depend on structural or topological features of nodes. For
example, membership in a cluster, susceptibility to an infection during a cascade
and pagerank scores, are all properties that depend on the relative position
(w.r.t. clusters, weakly connected components, centrality, ...) nodes have in a
graph. A classifier trained over such labels in GA should be transferable to a
new, structurally similar graph GB . In the extreme, when graphs GA and GB

are isomorphic, GB ’s labels should be fully recoverable; conversely, one expects
transferability to degrade over highly dissimilar graphs.

A natural challenge that arises in this setting is in how to abstract (and trans-
fer) topological information across the two graphs. In this paper, we address
this challenge by leveraging graph embeddings [1–3]. Graph embeddings have
been tremendously successful at producing compact representations of nodes in
a graph, and have become a true workhorse of graph mining. In short, graph
embeddings map nodes of a graph into a lower-dimensional space (e.g., Rd, for
some small d); this mapping concisely captures node connectivity, recovered from
embeddings through an appropriate link function. Embeddings therefore natu-
rally abstract structural information through the node’s position in this lower-
dimensional space. In addition, embeddings reduce graph transfer learning to
classic transfer learning [4]: a classifier trained over labels and embeddings of
nodes in graph GA can be transferred to a new feature domain, namely, the
embeddings of GB ’s nodes.

Unfortunately, successfully transferring knowledge via state-of-the-art em-
beddings poses significant challenges. A classifier trained on embeddings of one
graph is generally no better than random guessing when applied to embeddings
of another graph: we provide a theoretical justification for this in Section 4.1,
and demonstrate it also experimentally in Section 6.2. In short, classifiers catas-
trophically fail to transfer across embeddings of different graphs because of an
embedding misalignment: as designed, none of the popular graph embedding
methods ensure that nodes of two distinct graphs are embedded over the same
lower-dimensional subspace or manifold. In general, embeddings capture only
the relative, rather than the absolute, position of nodes in Rd. This is suffi-
cient for inference tasks on nodes of the same graph (like, e.g., link prediction)
but disastrous when transferring knowledge across graphs: the same embedding
algorithms applied to two isomorphic graphs may generate vastly different em-
beddings, that are distorted via arbitrary shifts, rotations, or other transforms.
This severely hampers the ability to transfer structural classifiers across graphs.

We directly address this issue by producing a tractable, non-combinatorial
methodology for solving the graph transfer learning problem. We do so by learn-
ing joint embeddings across the two graphs. This allows us to successfully transfer
a classifier trained on labels of one graph to another. We make the following con-
tributions:

▶ We introduce novel methodology for solving the graph transfer learning prob-
lem in a non-combinatorial fashion. Our method is general, and can be applied
to a broad array of graph embedding algorithms. Moreover, it combines clas-
sification and embedding losses with a continuous, convex coupling penalty
motivated by tractable graph distances [5].

▶ Our continuous and convex coupling penalty seamlessly integrates with deep
embedding methods. We propose and implement an alternating minimization
algorithm that jointly embeds the two graphs. Our algorithm does so with-
out solving the combinatorial (and hard) problem of aligning the two graphs:
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instead, it alternates between using SGD and solving a convex optimization
problem constrained over the Birkhoff polytope [6].

▶ We extensively evaluate our proposed graph transfer learning methodology
over several synthetic and real-life datasets. We demonstrate that it success-
fully predicts labels across graphs with almost perfect accuracy; in the same
scenarios, training embeddings separately leads to predictions that are no bet-
ter than random.

To the best of our knowledge, we are the first to study the graph transfer learning
problem, and to propose a non-combinatorial method for its solution.

The rest of the paper is organized as follows. We review the previous work
related to problems on graph and node embeddings, graph distances and transfer
learning on graphs in Section 2. In Section 3, we focus on node embedding and
node label prediction tasks that serve as the backbone of our framework, which
we introduce in Section 4 and elaborate in Section 5, particularizing the options
for both exact and inexact solutions. We briefly discuss two natural extensions
of the framework: to graphs of different size and weighted graphs, in Section 5.4.
We present our experiments in Section 6, and finally conclude in Section 7.

2. Related Work

Graph Embeddings and Graph Neural Networks. Graph embedding re-
search has flourished recently [1–3, 7]. We thoroughly review techniques as well
as specific algorithms in Section 3, following the unifying framework of Hamil-
ton et al. [8]. Typically, embeddings preserve node similarity in the embedding
space, and thus require the definition of similarity on both the embedding space
as well as on graph nodes [9, 10]. We list several examples in Table 2. Graph
neural networks (GNNs) [8, 11–13] produce graph embeddings by generalizing
the notion of a convolution, aggregating information from neighboring nodes,
in analogy to conventional convolutional neural networks. Aggregation methods
vary from merely averaging of neighbor information [8] to more sophisticated ag-
gregation functions [13, 14] to spectral convolutions on graph nodes [15]. Gated
graph neural networks [12] propose a solution to vanishing/exploding gradients
that allows up to 20 layers in GNNs, by adapting recurrent neural network tech-
niques. Variational variants of GNNs also exist, e.g. [16]. Our transfer learning
approach is generic, and applies to the majority of the methods outlined above,
including GNNs. Moreover, the challenges posed by graph transfer learning we
outline in Section 4.1 are pertinent to all these methods, and are exacerbated by
deep models, as non-convexity increases the multiplicity of local minima.

Transfer Learning on Graphs. Transfer learning in the general machine
learning setting aims to apply knowledge gained while solving one task to a
different but related task [4, 17]. A quintessential example is transferring a text
classifier from language to another [18–20] Transfer learning has been applied
to graphs only recently; all current work however [21–23] considers classifying
(and transferring labels across) graphs, as opposed to nodes. Stone et al. [24,25]
measure similarity between rule graphs and then transfer a value function from
one graph to another. Other explored ways of transferring knowledge between
graphs include co-factorization [26,27] learning graph representations via GNNs
and mapping them via transfer matrix [22, 23], and performing classic transfer
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learning on graphs representations in the spectral domain [21]. Regardless of dif-
ferent ways used for knowledge transfer, the main common feature across all the
above works is that they consider classifying (and transferring labels of) graphs,
as opposed to nodes. To the best of our knowledge, we are the first to tackle
transferring structural node labels between graphs.

Graph Distances and Graph Matching. Graph distance scores find appli-
cations in varied fields such as image processing [28], chemistry [29,30] and social
network analysis [31,32], to name a few. Classic graph distance examples include
the edit distance [33, 34], the maximum common subgraph distance [35, 36], the
chemical distance [30], and the Chartrand-Kubiki-Shultz (CKS) distance [37].
Jain [38] proposes an extension of the chemical distance [30], that incorporates
edge attributes but is limited to the Frobenius norm. The reaction distance de-
vised by Koca et al. [39] is also directly related to the chemical distance [30]
when edits are limited to edge additions and deletions. All six [30,34,36–39] are
metrics but are hard to compute. Moreover, it is not immediately clear how to
relax [38, 39] to attain tractability. Our tractable penalty is based on, and in-
spired by, recent work by Bento and Ioannidis [5]. The authors propose a family
of graph distances that are (a) computable in polynomial time and (b) satisfy
the metric property and can be seen as convex relaxations of the chemical dis-
tance between two graphs. We incorporate this formulation as a penalty into our
framework and use it to couple the embeddings of two graphs in order to transfer
the learned classifier.

A straightforward approach to induce a metric over unlabeled graphs is to
embed graphs in a common metric space and then measure the distance between
these embeddings. Riesen et al. [40, 41] embed graphs into real vectors by com-
puting their edit distances to a set of prototype graphs. The same embedding
approach is also used to compute a median of graphs [42]. Other works [43–45]
map graphs to spaces determined by their spectral decomposition. Although all
described methods satisfy metric properties, the resulting embeddings do not
capture the full graph structure, and are thus not as discriminative as the met-
rics proposed in [5] and incorporated in our current work.

Graph matching (also sometimes referenced as graph alignment in litera-
ture) is inherently related to graph distance computations, as it is often a pre-
processing step towards computing graph distances. The literature on graph
matching heuristics is vast (see, e.g., [28, 32, 46–48]). Most are tractable, but
distances induced by these mappings do not satisfy the metric property [5].
Nevertheless, several graph matching methods are related to the approach we
take. Heimann [49] proposes an embedding-based graph matching that maps
nodes with similar node degree or structural connectivity to each other with
high probability. Chen [50] uses non-convex alternating optimization methods to
match the nodes with embedding-based nearest-neighbor search. By using ob-
jectives that take into account distance in the embedding space, these methods
are highly related to the trace penalty that Bento and Ioannidis [5] proposed,
that we also employ here.

Epidemic Learning. The seminal paper by Kempe et al. [51], has motivated
learning the parameters of an epidemic spread (e.g., [52–54]). Typically, this is
done via maximum likelihood estimation over a generative model, e.g., the inde-
pendent cascades (IC) or linear threshold (LT) models [51]. Though methodolog-
ically quite different from the approach we take here, these estimation methods
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Notation Description

GA, GB Graphs
V Node set of graphs GA, GB

EA, EB Edge sets of graphs GA, GB

zAi , zBj Embedding of nodes in GA and GB

sG(i, j) Topological similarity between nodes i, j ∈ V
sE(zi, zj) Similarity between node embeddings zi, zj

yAi Label of node vAi ∈ VA

ACC Classification accuracy
RMSE Root mean squares error
R2 Coefficient of determination
LS Embedding loss – Eq. (4b)
LC Classification loss – Eq. (8)
LP Penalty function – Eq. (15)
L Aggregate loss – Eq. (12a)

W,WA,WB ,W ′ Neural network weights
P Doubly stochastic matrix
B Birkhoff polytope – Eq. (18)
P Set of permutation matrices

Table 1. Summary of notation.

can be used for the influence cascade prediction task we study as a motivating
example, and that we also explore via our experiments in Section 6. In partic-
ular, the parameters of a propagation model can be trained on one graph, and
then used to predict propagation on another graph with similar structural char-
acteristics or known matched correspondences between nodes. In contrast, our
approach can be used to perform this task without any parameter inference. In
short, following our graph transfer learning method, we can learn how cascades
behave in one graph and then transfer this knowledge directly to another graph.
We thus avoid intermediate parameter inference and modeling assumptions (such
presuming that the IC or LT generative models hold during the cascade), that
may not hold in practice and introduce model bias in the prediction process.

3. Background

3.1. Node Embeddings

The goal of node embedding algorithms is to learn parsimonious node repre-
sentations that are discriminative w.r.t. downstream tasks such as community
detection, link prediction, etc. We follow the framework of Hamilton et al. [8]
that unifies multiple different node embedding methods.

A Unifying Framework. Given a graph G(V,E) with n = |V | nodes, let
xi ∈ {0, 1}n be the 1-hot encoding of a node i ∈ V in the graph. An embedding
is a parametric function f : Rn × Rm → Rd, where d ≪ n, mapping nodes to d
dimensional vectors; that is,

zi = f(xi,W ) ∈ Rd (1)

is the embedding zi of node i ∈ V , and W ∈ Rm, for some m ∈ N, are weights pa-
rameterizing the embedding function. For example, f could be a neural network
with weights W or an affine (shallow) function. Note that this representation
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Method sG(i, j) sE(zi, zj) Loss function ℓS

Laplacian Eigenmaps [2] n-neighborhood −∥zi − zj∥22 −sG(i, j) · sE(zi, zj)
Graph Factorization [1] Ai,j z⊤i zj (sG(i, j)− sE(zi, zj))

2

GraRep [7] Ai,j , A
2
i,j , . . . , A

k
i,j z⊤i zj (sG(i, j)− sE(zi, zj))

2

node2vec [3] p(i|j) e
z⊤i zj

Σk∈V e
z⊤
i

zk
−sG(i, j) log(sE(zi, zj))

Table 2. Different embedding methods expressed in the unifying framework
of Hamilton at al. [8]. Here, sG(i, j) and sE(zi, zj) denote topological and em-
bedding similarity, respectively, between nodes i and j, and for node2vec, p(i|j)
is the probability of visiting node j on a fixed-length random walk from node i.

can readily incorporate node attributes, that can be represented via features in
input vectors xi.

Keeping the exposition on one-hot encoding for concreteness, the parameters
of the embedding can be trained as follows. Given a topological similarity function
between nodes with the following formulation

sG : V × V → R (2)

as well as the following embedding similarity function between embeddings

sE : Rd × Rd → R, (3)

the node embedding task can be formulated via the following minimization prob-
lem:

min
W∈Rm

LS(W ;G), (4a)

where

LS(W ;G) =
∑
i,j∈V

ℓS(sG(i, j), sE(zi, zj)), and (4b)

zi = f(xi,W ), ∀i ∈ V, (4c)

and ℓS : R × R → R is an appropriately defined loss function. Typically, Prob-
lem (4) is solved via stochastic gradient descent over the nodes, although tech-
niques like hierarchical softmax [55] and negative sampling [56] can be incorpo-
rated to accelerate computations.

Examples. The topological similarity sG (2) can be, e.g., node adjacency or
proximity in path distance. That is, if A is the adjacency matrix of G(V,E), and
dij is the shortest path distance between i, j ∈ V then two possible similarities
are sG(i, j) = Aij and sG(i, j) = 1/dij . Other alternatives include, e.g., powers of
the adjacency matrix, the probability that a random walk starting at i terminates
at j after a small number of steps, etc. Several examples are provided in Table 2
(see also [8]). For example, Laplacian Eigenmaps [2] couple Euclidean distance
with a product loss, yielding:

LS(W ;G) =
∑
i,j∈V

∥zi − zj∥22 · sG(i, j), (5)
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while Graph Factorization [1] couples an inner product with a quadratic loss,
yielding:

LS(W,G) =
∑
i,j∈V

(z⊤i zj − sG(i, j))
2. (6)

3.2. Node Label Prediction

Node embeddings often serve as an intermediate step for downstream super-
vised learning tasks on graphs, such as community detection and link prediction.
For example, given binary labels yi ∈ {0, 1} for nodes i ∈ S ⊆ V , learning
embeddings that are discriminative w.r.t. these labels can be accomplished by
extending Problem (4) as follows:

min
W∈Rm,W ′∈Rm′

LS(W ;G) + LC(W,W ′; yS , G), (7)

where LS(W ;G) is the similarity loss (4b), while

LC(W,W ′; yS , G) =
∑
i∈S

ℓC
(
yi, g(zi,W

′)
)

(8)

is the classification loss with zi being the embedding (4c) of node i. Here, ℓC :
R×R → R is a loss function (such as, e.g., square error, logistic, or cross-entropy),

yS ∈ {0, 1}|S| is the vector of labels, and g : Rd × Rm′ → R is a function (i.e.,

a prediction model) parameterized by W ′ ∈ Rm′
, mapping node embeddings

to labels. This can again be a deep or shallow model (e.g., logistic regression).
Problem (7) can again be solved via stochastic gradient descent, where an epoch
iterates over batches node pairs i, j ∈ V and labeled nodes i ∈ S. Note that, in
this scenario, W and W ′ are trained jointly, i.e., over multiple epochs iterating
over the two objectives; alternatively, embeddings zi could be learned first via
SGD on W , as in Prob. (4), and subsequently used to train W ′ with embeddings
fixed.

4. Graph Transfer Learning

4.1. Problem Formulation

In this paper, we wish to solve the graph transfer learning problem. Given two
graphs and labels in the nodes of the first graph, we wish to predict the labels
on the second graph. As discussed in the introduction, labels such as community
membership, susceptibility to an infection and centrality, may be functions of
structural properties of a node and, as a result, may be transferable across graphs.
Formally, we are given two unweighted graphs GA(VA, EB) and GB(VB , EB) of
the same size (i.e., |VA| = |VB | = n), as well as a set of labels yi for i ∈ S ⊆ VA.
For example, yi ∈ {0, 1} for i ∈ S in a binary classification task and yi ∈ R in the
case of a regression task. We wish to train a neural network over labels in GA,
and use it to subsequently predict labels in GB . We focus first on unweighted
graphs of equal size for the sake of simplicity; we extend our method to weighted
graphs and graphs of unequal size in Section 5.4.
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Fig. 1. Example of two isomorphic embeddings and the failure to transfer a
learned classifier across them. In (a) embeddings of a GA are used to train
an almost perfect classifier between two classes. Embeddings of GB in (b) are
identical to GA but subject to a rotation; as a result, the classifier trained in GA

does not readily generalize to GB .

A Näıve Solution. The node embedding and node label prediction algorithms
we reviewed in Section 3 give a possible simple solution to the graph transfer
learning problem. First, a discriminative embedding is trained on graph GA, by
solving Prob. (7): this gives both an embedding f(·,WA) and a predictive model
g(·,W ′). Second, an embedding f(·,WB) is trained on graph GB , by solving
Prob. (4) on GB alone. Finally, the predictive model g(·,W ′) is applied on the
embeddings of nodes in graph GB to predict their labels. Altogether, this näıve
algorithm solves the following problem, which is separable over (WA,W

′) and
WB :

min
WA,WB ,W ′

LS(WA;GA) + LC(WA,W
′; yS , GA) + LS(WB ;GB), (9)

where LS ,LC are given by Eqs. (4b) and (8), respectively. Unfortunately, this
approach is bound to fail; we extensively demonstrate this experimentally in
Section 6.2, and give some intuition as to why this is the case below.

Non-Uniqueness. It can be noticed that Eq. (9) fails to transfer the learned
classifier by considering the case when the two graphs GA and GB are isomor-
phic. In this case, nodes that map to each other should have the same embed-
dings and, thereby, the same labels. Unfortunately, none of the methods outlined
in Table 2 are guaranteed to produce the same embeddings for nodes in VA and
VB. This is because of non-uniqueness: the non-convexity of the loss LS for all
of these methods implies that optimal embeddings (i.e., solutions to Prob. (4))
are non-unique. In turn, this non-uniqueness implies that the embeddings of the
same graph, or two isomorphic graphs, can be vastly different at two different
executions of the algorithm.

For several objectives, non-uniqueness manifests through arbitrary transfor-
mations of the latent space, via rotations, shifts, or other transforms. In turn, this
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“breaks” transferring a node classifier learned on one graph to another via the
above näıve method. This is illustrated in Fig. 1: noticeably, a classifier trained
on a set of samples fails to correctly classify exactly the same samples when
the latter are rotated. Simply put, the separating surface (e.g., hyperplane for a
shallow linear classifier like logistic regression) is not invariant to the aforemen-
tioned transforms that relate embeddings between different graphs; as a result,
embeddings trained across the two graphs can be misaligned. This suggests that
embeddings across graphs need to be trained jointly, maintaining an appropri-
ate alignment. We accomplish this, via a non-combinatorial method, in the next
section.

The use of different random seeds or starting points, the use of deep neu-
ral networks, that may introduce additional local minima, and departures from
perfect isomorphism (i.e., different edges in the two graphs), all further exac-
erbate the problem of non-uniqueness. Most importantly, as non-uniqueness is
a consequence of the non-convexity of the objective, it arises irrespective of
whether embedding functions are shallow or deep, whether inputs xi are features
or one-hot encodings, or whether, e.g., graph neural networks are used. In the
latter case, it is tempting to think that embeddings are, by design, linked to
topological properties of the position of a node in the graph, and thereby are
invariant (at least if graphs are isomorphic). However, this is not true: the non-
convexity of the objective makes such methods also susceptible to variations
due to randomness, initialization conditions, and departures from perfect iso-
morphism. We also demonstrate this experimentally in Section 6.2, exploring
three direct encoding methods, viz. Laplacian Eigenmaps [2], Graph Factoriza-
tion [1], and node2vec [3], as well as graph neural network GraphSAGE [13]: all
four algorithms fail to transfer across graphs for the aforementioned reasons (see
Table 4).

To make two of these examples concrete, non-uniqueness for both Laplacian
Eigenmaps and Graph Factorization (with objectives (5) and (6), respectively)
is quite easy to see, as demonstrated below. Indeed, if {z∗i }i∈V is an optimal
embedding obtained by Laplacian Eigenmaps, then so will be {R · z∗i }i∈V , where
R ∈ Rd×d is a rotation matrix. Similarly, in the case of Graph Factorization, if
{z∗i }i∈V is an optimal embedding, then so is {Q · z∗i }i∈V , where Q ∈ Rd×d is
an arbitrary orthogonal matrix. For exactly the same reason, other embeddings
in Table 2 that use inner products (e.g., node2vec) are non-unique. Finally, we
note that the above problem arises in the context of structural node label pre-
diction, but not for link prediction and, possibly, other pairwise classification
tasks that depend only on the distance or angle between node embeddings. This
is because the latter are not affected by rotation and the other transforms listed
above. Indeed, embeddings learned via Prob. (9) may work well at predicting
edges between two nodes in GB , even though classifier g(·,W ′) fails.

4.2. Graph Transfer Learning via Coupling Penalty

Graph Matching. To transfer graph embeddings across graphs, one would
need to know the correspondence between the nodes in the two networks. This
is generally known as the graph matching problem [28,57,58], and several algo-
rithms (mostly heuristics) exist for solving it. Assuming that graphs have the
same size, we would like to find a permutation that maps nodes from graph
GA to GB that minimizes edge discrepancies. Formally, let us denote the set of
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permutation matrices by

P = {P ∈ {0, 1}n×n : P1 = 1, P⊤1 = 1} (10)

and the Frobenius matrix norm by ∥ · ∥, then we seek P such that:

min
P∈P

∥AP − PB∥, (11)

where A and B are the corresponding adjacency matrices for GA and GB , respec-
tively. The permutation P indeed then captures the node mapping between the
two graphs that minimizes edge discrepancies; in particular, the minimum value
(11) is zero if and only if the two graphs are isomorphic. Unfortunately, no poly-
time algorithm is known for solving (11) [59], though research on approximation
algorithms and heuristics is vast (see, e.g., [28]).

Coupling Penalty. Rather than solving (11), we focus on its convex relaxation,
which was proposed by Bento and Ioannidis in [5]. We incorporate this relaxed
version of (11) into the optimization problem (9). In particular, we propose
solving the following optimization problem:

min
WA,WB

W ′,P

LS(WA;GA) + LC(WA,W
′; yS , GA) + LS(WB ;GB)

+ α∥AP − PB∥22 + β tr
(
P⊤D(WA,WB)

)
, (12a)

s.t. P ∈ Rn×n, P1 = 1, P⊤1 = 1, P ≥ 0, (12b)

where α, β > 0 are positive regularization parameters,

tr(P⊤D) =
∑
i∈VA
j∈VB

PijDij (13)

is the element-wise product between matrices P,D ∈ Rn×n, andD = D(WA,WB)
is a matrix comprising all the pairwise distances between the embeddings of nodes
across the two graphs; that is:

D(WA,WB) = [Dij ]i∈VA,j∈VB
∈ Rn×n, where (14a)

Dij = ∥zAi − zBj ∥2, ∀i ∈ VA, j ∈ VB , (14b)

zAi = f(xi,WA), ∀i ∈ VA, and (14c)

zBj = f(xj ,WB), ∀j ∈ VB . (14d)

Intuitively, Prob. (12) jointly determines (a) the embeddings of nodes in the two
graphs, via parameters WA,WB ∈ Rm, (b) the label classifier g, via parameters

W ′ ∈ Rm′
, and (c) a doubly stochastic matrix P ∈ [0, 1]n×n that couples the

nodes of the two graphs and their embeddings together through the penalty:

LP (P,WA,WB) ≡ α∥AP − PB∥22 + β tr(P⊤D). (15)

The first term of this penalty learns a probabilistic mapping between nodes in
the two graphs, via the doubly stochastic matrix P . Intuitively, if GA, GB are
isomorphic, ∥AP −PB∥ is zero under a mapping P that sends every node in GA

to its image in GB with probability 1; the double-stochasticity of P , enforced via
the constraints (12b), relaxes this to probabilistic mappings. The second term
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enforces nodes that map to each other to have similar embeddings. Indeed, if
Pij ∈ [0, 1] is high for some i ∈ VA, j ∈ VB , minimizing the penalty in Eq. (15)
forces Dij = ∥zAi − zBj ∥2 to be low.

Our approach has several advantages. It avoids finding a discrete, exact so-
lution to the graph isomorphism/graph matching problem, which is notoriously
hard [59]. The coupling penalty (15) is convex, making the optimization w.r.t.
P tractable given the node embeddings. The coupling via continuous, smoothly
evolving variables P translates to a smooth evolution of neural network weights,
which is beneficial in practice during SGD. Finally, as embeddings are fine-tuned,
the trace penalty helps discover better stochastic mappings P , as nodes with sim-
ilar embeddings are mapped to each other. Our solution to Prob. (12), discussed
next, exploits these properties.

5. An Alternating Minimization Algorithm for Solving the
Graph Transfer Learning Problem

We solve Prob. (12) via alternating minimization. Denote the combined weights
of the network embeddings f for each graph and the predictor g by W =
(WA,WB ,W

′) ∈ R2m+m′
. We rewrite (12) as

min
W∈R2m+m′ ,P∈B

L(W,P ), (16)

where

L : R2m+m′
× Rn×n → R (17)

is the aggregate loss (12a), and B ⊆ Rn×n is the set of doubly stochastic matrices
(a.k.a. the Birkhoff polytope):

B ≜ {P ∈ [0, 1]n×n : P1 = 1, P⊤1 = 1}. (18)

We solve Prob. (12) via alternating minimization as follows: at each iteration
k ∈ N we update weights W and matrix P via

W (k+1) = argmin
W∈R2m+m′

L(W,P (k)), (19a)

P (k+1) = argmin
P∈B

L(W (k+1), P ). (19b)

We describe these two alternating steps in detail below. In short, Eq. (19a) can
be solved via standard SGD. Eq. (19b) is a convex optimization problem, and
admits fast implementations via, e.g., the Frank-Wolfe (FW) algorithm [60] and
the Alternating Directions Method of Multipliers (ADMM) [61].

5.1. Updating Combined Weights W

Given P , minimizing L w.r.t. W amounts to the following problem:

min
WA,WB

W ′

LS(WA;GA) + LC(WA,W
′; yS , GA) + LS(WB ;GB) + β tr(P⊤D). (20)

This is almost identical to the näıve problem formulation (9) save for the linear
trace term tr(P⊤D), that indeed depends on the embeddings via (14b). We thus
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minimize this objective via stochastic gradient descent (SGD) w.r.t. the weights
W . We note that, in practice, we only run one epoch of SGD per iteration of
(19a) before switching to optimizing P , rather than executing SGD until full
convergence.

5.2. Updating Graph Mapping P

5.2.1. An Exact Solution: Constrained Optimization over the Birkhoff
Polytope.

Given W and, thereby, embeddings zAi , i ∈ VA, and zBj , j ∈ VB , (19b) amounts
to the following problem

min
P

LP (P ) = α∥AP − PB∥+ β tr(P⊤D), (21a)

s.t. P ∈ B (21b)

where D = D(WA,WB) is fully determined by the (fixed) embeddings and B is
the Birkhoff polytope, given by (18). This is a convex optimization problem and
can thus be solved via standard optimization toolboxes, such as, e.g., CVX OPT
[62]. Nevertheless, we can design efficient algorithms tailored to (21) and (19b)
precisely because (21) is constrained over the Birkhoff polytope. In particular,
Problem (21) can be solved efficiently via, e.g., the Frank-Wolfe (FW) algorithm
[60] and the Alternating Directions Method of Multipliers (ADMM) [61]. We
describe both in detail below.

Frank-Wolfe (FW) Algorithm. The FW algorithm [60] is an iterative algo-
rithm that solves (21) through a sequence of linear programs (LPs). The algo-
rithm starts from a feasible P 0 ∈ B, e.g., the identity matrix I, and proceeds
with the following iterations k ∈ N:

Sk = argmin
S∈B

tr
(
S⊤ · ∇LP (P

k)
)
, (22a)

P k+1 = (1− γk)P
k + γkS

k, (22b)

where LP is the objective in (21a), and γk is a step size set to be, e.g. γk =
1/(k + 2), or determined via line search [63] as follows:

γk = argmin
γk∈[0,1]

LP

(
(1− γk)P

(k) + γkS
(k)

)
. (23)

As LP is convex, this is guaranteed to converge to an optimal solution under mild
conditions [64]. Crucially, as B is a polytope, (22a) is a linear program; thus, it
has an optimal solution that is a vertex of B, by the fundamental theorem of
linear programming. By the Birkhoff-von Neuman theorem, the vertices of B are
in fact the permutation matrices. As a result, a solution to (22a) can be found
by solving:

argmin
P∈P

tr
(
S⊤ · ∇LP (P

k)
)
, (24)

instead, where P is the set of permutation matrices. This is precisely the so-
called assignment problem [65], and can be solved in strongly polynomial time
via the so-called Hungarian algorithm [65]. As we show in Section 6.2.2, using
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the Frank-Wolfe (22) combined with the Hungarian algorithm to solve assign-
ment problem (22a) has significant computational advantages compared to both
generic convex optimization methods for solving (19b), as well as generic LP
solvers for solving (22a).

Alternating Directions Method of Multipliers (ADMM). To employ
ADMM [61], we first incorporate constraints into the objective of Prob. (21)
using the indicator function χD : Rn×n → {0,∞}, where D is a convex set and
χD(P ) = 0 if and only if x ∈ P. Now we can reformulate Prob. (21) as the
following:

min LP (P ) + χR(P1) + χC(P2) (25a)

s.t. P = P1 (25b)

P = P2, (25c)

where

R = {P ∈ [0, 1]n×n : P1 = 1} (26)

and

C = {P ∈ [0, 1]n×n : P⊤1 = 1}. (27)

Note that P ∈ B if and only if P ∈ R and P ∈ C. Problem (25) is well-suited
for the ADMM algorithm [61], as it involves linear constraints and two sets of
variables, i.e., P and (P1, P2). With regard to the given problem, the steps of
ADMM amount to the following:

P (k+1) = argmin
P

LP (P ) +
ρ

2
(∥P−P

(k)
1 +U

(k)
1 ∥2+∥P−P

(k)
2 +U

(k)
2 ∥2) (28a)

P
(k+1)
1 = argmin

P1∈R
∥P (k+1) − P1 + U

(k)
1 ∥2 (28b)

P
(k+1)
2 = argmin

P2∈C
∥P (k+1) − P2 + U

(k)
2 ∥2 (28c)

U
(k+1)
1 = U

(k)
1 +

(
P (k+1) − P

(k+1)
1

)
(28d)

U
(k+1)
2 = U

(k)
2 +

(
P (k+1) − P

(k+1)
2

)
, (28e)

where ρ > 0 is an ADMM parameter controlling convergence and U1, U2 ∈ Rn×n

are (scaled) dual variables corresponding to (25b) and (25c), respectively. All
the steps in (28) can be executed efficiently; (28a) is an unconstrained strongly
convex problem which can be solved via, e.g., gradient methods. Problems (28b)
and (28c) are projections over the simplex, which can be solved efficiently via
strongly polynomial algorithms (see, e.g., Michelot [66]). Finally, dual variable
adaptations (28d) and (28e) can be executed in linear time.

5.2.2. An Inexact Solution: Projected Gradient Descent.

Though an optimal P can be obtained efficiently through the algorithms dis-
cussed above, combining it with stochastic gradient descent steps used to update
W has some drawbacks. In particular, different steps may oscillate across dif-
ferent values of P ; this, combined with the non-convexity of the objective (20),
may hinder the convergence of alternating minimization (19).
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Fig. 2. Schematic portrayal of the proposed framework. Here, LA
S and LB

S are
node embedding penalties (Eq. (4b)) for graphs GA, GB , respectively, LC is the
prediction model loss (Eq. (8)), and LP is the matching penalty (Eq. (15)).

For this reason, we consider the following alternative for updating P in (19b).
Rather than solving (21) exactly, we execute one step of projected gradient de-
scent, instead:

P (k+1) = ΠB(P
k − γ∇PLP (P

(k))), (29)

where ΠB is the orthogonal projection to the Birkhoff polytope B. The projection
involves a quadratic objective subject to the Birkhoff constraints; as such, it can
be solved again via Frank-Wolfe or ADMM, as outlined above, or by a standard
solver such as CVX OPT.

5.3. Overall Algorithm and Initialization

A summary of our overall framework for solving Prob. (12) is shown in Fig. 2. The
embeddings f for both graphs and the predictor network g are neural networks,
and their corresponding parameters can be trained via SGD. The optimization
w.r.t. P , appearing in penalty LP , requires customized solvers like Frank-Wolfe
or ADMM, or convex optimization solvers like CVX OPT. As the objective is not
convex, it is important to start from a good initialization point. To do so, we first
compute a matrix P ignoring embeddings (i.e., assuming that D = 0). Then, we
train the embedding and classifier for graph GA ignoring P (i.e., solving Eq. (7)
w.r.t WA) for one epoch; then, using the existing embedding of GA and P ,
we train the embedding of GB (i.e., solving Eq. (19a) w.r.t. WB alone). The
remaining alternating minimization proceeds as in Eq. (19), with each step as
described above.
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5.4. Extensions

Our approach naturally extends to weighted graphs and graphs of different size.

Graphs of Different Size. Given two graphsGA,GB of different size, there are
several ways of expanding them with “dummy” nodes such that the new graphs,
G′

A and G′
B , have the same number of nodes (see, e.g., [5,67]). A simple one is to

expand graph GA with |VGB
| dummy nodes and graph GB with |VGA

| dummy
nodes, resulting in two graphs of size |VA|+ |VB |. Dummy nodes are handled in
the coupling penalty (15) as follows. First, A,B are extended by adding edges of
weight 1/2 between dummy and normal nodes, as well as between dummy nodes:
using 1/2 differentiates such edges from edges in the original graph (that have
weight 1), which in turn penalizes maps between dummy and normal nodes. Such
maps can be further discouraged via D, by setting the distance between dummy
nodes in GA and non-dummy nodes GB to a large value (e.g., 100× the largest
distance between normal node embeddings), and vice versa, while the distance
between dummy nodes is set to 0. Note that dummy nodes have no embeddings,
so W updates (Eq. (20)) remain unaltered.

Weighted Graphs. The coupling penalty (Eq. (15)) remains the same under
weighted graphs, with A,B being now weighted adjacency matrices in Rn×n.
Handling weighted graphs thus only requires modifying the embedding functions,
taking weights into account when computing graph similarities sG; all methods
outlined in Table 2 can be appropriately adjusted to do so.

6. Experiments

To validate our proposed methodology, we perform a series of experiments on
real and synthetic datasets. We provide in detail our experimental setup in this
section, followed by description of results in Section 6.2.

6.1. Experimental Setup

6.1.1. Datasets

In our experiments, we use 3 real-world datasets, which are: Zachary Karate Club
(ZKC) [68], Email [69], and Infectious Disease Transmission Dataset (IDTD) [70],
and 3 synthetic graphs with C = 2, 4 and 6 equal-sized clusters. Zachary’s Karate
Club is a popular dataset for the classification task [14,71,72] because it contains
two distinct clusters. Email is a popular graph [53, 73, 74] with large number of
nodes and clusters. IDTD is a graph representing close proximity interactions at
an American high school, representing 655 students, 73 teachers, 55 staff, and
5 other persons. Nodes represent individuals and edges represent contacts. This
dataset is tailored to assessing the performance of our framework in an epidemic
spread task. We also constructed synthetic datasets with distinguishable clus-
ters; thus, they are good means to assess the performance and limitations of our
proposed framework on the classification task. Details for all six datasets are
summarized in Table 3.

The synthetic graph with 2 clusters, BP-2, contains one cluster generated
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BP-2 SB-4 SB-6 ZKC Email IDTD

|V | 50 100 120 34 986 788
|E| ∼331 ∼985 ∼1028 78 16064 118291

# of clusters 2 4 6 2 28 N/A

Table 3. Dataset summary.

via Erdős-Rényi model [75] G(25, 0.5), while the second cluster is a complete
bipartite graphK12,13; these two clusters are connected via a bipartite graph with
a one-to-one correspondence between nodes from the two clusters (see Fig. 3a).
In the 4-cluster and 6-cluster datasets, SB-4 and SB-6, graphs are generated via
the stochastic block model [76]. Each cluster is an Erdős-Rényi graph G(n, pini )
(n = 25 for the graph with 4 clusters and n = 20 for the graph with 6 clusters),
and pini varies for different clusters i. Clusters are connected as shown in Figs. 3b
and 3c, which also provide the inter- and intra- connection probabilities for both
stochastic block models.

6.1.2. Labels

We predict two types of labels in our experiments: clustering labels and epidemic
spread/influence labels. Both are structural (i.e., depend on the position of a
node in the graph), can be inferred from latent embeddings, and, as we show
below, are transferable across graphs.

Clustering labels are standard: each node is assigned with a single integer-
valued label representing a single cluster it belongs to. We use ground truth
cluster labels for ZKC as provided by Zachary in the original paper [68]. For
Email, we reorganize ground truth labels provided with the dataset as follows:
clusters with fewer than 10 nodes are dissolved, and their nodes are assigned to
a cluster with more than 10 nodes by a majority vote across their neighbors. We
use the IDTD dataset solely for epidemic experiments.

Influence/epidemic spread labels are generated with the Independent Cas-
cade (IC) model [51] from the Network Diffusion Library (NDlib) [77] as
follows. We first always select a center node, i.e. a node with eccentricity equal
to the radius of a graph, to be the infection seed. We set the transition probability,
i.e. the probability that a node will get infected by a neighbor, to pinfected = 0.5.
We then run independent cascades 1000 times to obtain labels. For each run,
the infection propagation process unfolds from active nodes in discrete steps
according to the following rule:

(a) When node v becomes active in step t, it is given a single chance to activate
each currently inactive, susceptible, neighbor w; it succeeds with a transition
probability pinfected. At step t = 0, only the infection seed is active.

(b) If w has multiple newly activated neighbors, their attempts are sequenced in
an arbitrary order.

(c) If v succeeds, then w will become active in step t + 1, and v itself changes
its status to removed. Whether or not v succeeds, it cannot make any further
attempts to activate w in subsequent rounds.

The process runs until no more activations are possible. All nodes that remain
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(a) BP-2 : Graph with 2 communities

(b) SB-4 : Graph with 4 communities

(c) SB-6 : Graph with 6 communities

Fig. 3. Synthetic graphs with (a) 2, (b) 4 and (c) 6 communities. Each community
is represented as a highly interconnected cluster of nodes. For SB-4, SB-6 graphs,
corresponding block adjacency matrices (left) depict probabilities of intra- and
inter-cluster connections; shallow inter-clusters connections produce asymmetric
structure of a graph.

susceptible after the process halts are declared as healthy, and the rest of the
nodes are considered as infected. We use the fraction of times a node was infected
as ground truth, and we utilize our proposed framework to regress them for both
synthetic and real-world datasets.
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6.1.3. Label Transfer Experiments

All of the datasets, both synthetic and real, contain only one graph GA. We
generate a second graph GB by randomly permuting GA as follows:

B = P⊤AP, (30)

where A,B are adjacency matrices of graphs GA, GB , respectively, and P is a
random permutation matrix, i.e., P ∈ P (Eq. (10)).

In the BP-2 dataset, we additionally remove ⌊ |V |
2 ⌋+1 edges from both graphs.

For SB-4 and SB-6 datasets, we randomly remove p · |V | edges subsequently
adding the same amount of new connections to a given graph GB . Here, param-
eter p identifies the percentage of existing edges to be removed and new edges
to be added, thus referred to as perturbation factor. The effect of this perturba-
tion is studied in Section 6.2.5, with the remaining results on SB-4 and SB-6
reported for p = 0.

Though we train embeddings over the entire graphs GA, GB , we train pre-
dictor g (Eq. (8)) using a subset S ⊂ VA containing only 80% of the nodes GA,
selected so that cluster class ratios are preserved. When reporting, the results
for this subset are denoted as tr. The rest 20% of GA’s nodes are used as a
test set (tA). All of GB nodes are used as a separate test set (tB), to validate
the success of our transfer learning algorithms. To ensure statistical significance,
we repeat all experiments 100 times with random initializations and splits, and
report averages and standard deviations of the metrics described below, except
for large graphs Email and IDTD, where we only conduct one experiment.

6.1.4. Metrics

To assess performance in experiments on clustering labels, we use accuracy, i.e.,
the fraction of correct predictions ŷi across all classes in the test set, which is
a common metric for classification problems on balanced or slightly imbalanced
datasets, given by

ACC =

∑
i∈test 1yi=ŷi

|test|
∈ [0, 1]. (31)

For influence/epidemic spread labels, we use root mean squared error

RMSE =

√∑
i∈test(yi − ŷi)2

|test|
∈ [0,∞) (32)

that is one of the most popular general purpose metrics for regression models
evaluation. Additionally, we measure the coefficient of determination [78, 79],
which can be more intuitively informative than RMSE due to its scale invariance.

R2 = 1−
∑

i∈test(yi − ŷi)
2∑

i∈test(y − yi)2
∈ (−∞, 1], (33)

where

y =
1

|S|
∑
i∈S

yi (34)

is the average label in the training set.
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6.1.5. Architectures

We implement Laplacian Eigenmaps [2],Graph Factorization [1], and node2vec [3]
embedding methods, whose loss and similarity functions are given in Table 2 and
briefly discussed in Section 3.1. For the Laplacian Eigenmaps and Graph Fac-
torization algorithms, default parameters proposed by authors were used in all
conducted experiments. The node2vec embedding algorithm is deployed with
the following parameters: 20 random walks of length 10 are generated for each
explored node with the window size equal to 4, return parameter p = 0.25 and in-
out parameter q = 4. Furthermore, negative sampling with n = 5 was used in the
experiments involving node2vec to reduce computation burden. We additionally
employ GraphSAGE [13], a graph neural network node-classification framework,
using an open-source implementation distributed by algorithm’s authors.

In order to ensure the adequate minimization of the label prediction loss
(Eq. (8)), we design the prediction branch of the framework to consist of 7
fully-connected hidden layers when learning node labels of the ZKC, Email and
IDTD datasets. A sole fully-connected hidden layer was exploited in the branch’s
design when training a framework on synthetic datasets BP-2, SB-4 and SB-6.
Each hidden fully-connected layer contains 10 neurons with hyperbolic tangent
activation function applied.

6.1.6. Solvers

We perform update Eq. (19b) via both exact solution (optP) as well as via one
iteration of projected gradient descent (iterP). We implemented both via the
CVX OPT solver, ADMM, and Frank-Wolfe. We compare these in efficiency
and use the best-performing solver for the rest of our experiments: Frank-Wolfe
for optP and ADMM for iterP, respectively.

We solve the graph transfer learning optimization problem (12) with a stochas-
tic gradient descent optimizer with Nesterov momentum and learning rate η =
0.025. Regularization parameters α, β, employed in the coupling penalty (Eq. (15)),
are both set to α = β = 1. The proposed framework is trained till convergence
on the training subset. The convergence is declared when the early stopping cri-
terion with the patience equal to 5 epochs is met. All stated parameter values
were selected through the exploration of the corresponding parameter spaces.

6.1.7. Graph Transfer Algorithms & Implementation

We compare the two versions of our graph transfer learning algorithm (optP,
using a full constrained optimization solver, and iterP, using one iteration of
projected gradient descent for Eq. (19b), respectively) to the following baselines.
First, we implement the näıve algorithm (9) that ignores the coupling penalty;
we refer to this algorithm as noP. We also solve Prob. (12) w.r.t W , assuming
the true permutation matrix P ∈ P mapping GA to GB is fixed and entered
in the objective of (12); we call this algorithm trueP. We also construct a dou-
bly stochastic P ∈ B that maps every node in one cluster in GA uniformly
to every node in the corresponding cluster in GB ; with this P fixed, we solve
again Prob. (12) w.r.t. W ; we call this algorithm dsP. Note that both trueP and
dsP are powerful benchmarks, as they exploit a priori knowledge of the ground
truth cluster maps across GA and GB .

We implement our proposed framework on Python 3.6, using Keras 2.2
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Dataset
Label/ LE [2] GF [1] N2V [3] GS [13]
Metric tr tA tB tr tA tB tr tA tB tr tA tB

SB-4
cl./ACC 0.62 0.53 0.31 0.79 0.69 0.33 0.99 0.95 0.32 0.96 0.85 0.27
inf./RMSE 0.13 0.13 0.16 0.10 0.11 0.15 0.09 0.09 0.15 0.09 0.12 0.15

SB-6
cl./ACC 0.59 0.48 0.23 0.54 0.42 0.24 0.97 0.93 0.21 0.98 0.63 0.17
inf./RMSE 0.15 0.16 0.16 0.09 0.13 0.19 0.07 0.12 0.23 0.08 0.13 0.22

Table 4. Performance of embedding algorithms w.r.t. solving node label predic-
tion optimization problem (7). We evaluate Laplacian Eigenmaps (LE), Graph
Factorization (GF), node2vec (N2V) and GraphSAGE (GS) methods w.r.t. ACC
and RMSE metrics predicting clustering and influence/epidemic spread labels, re-
spectively. We report both training and test accuracy on graph GA (tr and tA,
respectively), and test accuracy on graph GB (tB), to demonstrate that none
of the examined embedding methods succeeds to accurately transfer a learned
predictor across two graphs, even when GA and GB are isomorphic.

neural network interface with TensorFlow 1.10 backend. We make our code
publicly available.1

6.2. Experimental Results

6.2.1. Evaluating Architectures

We first evaluate four embedding algorithms (Laplacian Eigenmaps [2], Graph
Factorization [1], node2vec [3], and GraphSAGE [13]) to solve the node label
prediction Prob. (7) on the SB-4 and SB-6 datasets. Table 4 reports performance
on train (tr) and test (tA) subsets of graph GA, as well test graph GB (tB),
w.r.t. ACC and RMSE metrics for clustering and influence labels, respectively,
as described in Section 6.1.2. As expected, all examined embedding methods,
including the GNN GraphSage, fail to transfer across graphs. This is evident
by the close to random guess accuracy for the classification task and high RMSE
for the regression task over graph GB (tB) on both datasets. However, node2vec
algorithm has superior prediction performance for graph GA, both in train (tr)
and test (tA) subsets. Thus, in all further experiments, we focus on transfer
learning using this embedding method.

6.2.2. Solver Comparison

Figure 4 illustrates the convergence of four solvers on randomly generated graphs
with n = 100 nodes for both (a) constrained optimization (21) and (b) orthogonal
projection (29). The solvers are ADMM, CVX OPT, Frank-Wolfe with line-
search step sizes, and Frank-Wolfe with fixed step sizes.

All methods eventually converge to the same loss. For a straightforward con-
strained optimization solution (Fig.4a), Frank-Wolfe algorithm with fixed step
size exhibits the fastest convergence; we use it as the default algorithm in the
corresponding experiments, optP. For the projected gradient descent (Fig.4b),
ADMM converges the fastest; we use it in all upcoming experiments for iterP.

1 https://github.com/neu-spiral/GraphTransferLearning-NEU

https://github.com/neu-spiral/GraphTransferLearning-NEU
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Fig. 4. Convergence rate comparison of solvers used to solve (19b). In the exper-
iment both the two graphs GA and GB have |VA| = |VB | = 100 nodes. Analysis
reveals that (a) Frank-Wolfe algorithm with fixed step size has the steepest con-
vergence rate finding the solution of straightforward constrained optimization
problem (21), and (b) projected gradient descent (29) converges faster when im-
plemented via ADMM algorithm.

Fig. 5. Classification accuracy, ACC, w.r.t. clustering labels of different transfer
learning algorithms (noP, trueP, dsP, iterP, optP) on two synthetic datasets
(SB-4 and SB-6 ). Each group of 3 ACC values is for training (tr) and testing
(tA) subsets of graph GA, and testing subset of graph GB (tB). We observe
that (a) ACC under näıve scenario (noP) is no better than random on tB, while
(b) ACC when P is learned (both using projected gradient descent (iterP) and
constrained optimization (optP) methods) on tB is almost 1, which is on par
with tB accuracy when true permutation (trueP) and doubly stochastic (dsP)
matrices are used, and on par with train/test accuracies (tr, tA) on GA.
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Dataset
noP iterP

tr tA tB tr tA tB

BP-2 0.99 0.99 0.53 0.99 0.99 0.97
SB-4 0.99 0.95 0.32 0.98 0.95 0.97
SB-6 0.97 0.93 0.21 0.96 0.94 0.95
ZKC 1.0 0.85 0.5 0.98 0.88 0.96
Email 0.52 0.44 0.02 0.55 0.48 0.49

Table 5. Classification label accuracy, ACC, on BP-2, SB-4, SB-6, ZKC, and
Email datasets for the noP and iterP transfer algorithms. We report ACC on
training (tr) and testing (tA) sets of GA, as well as on the test set of graph GB

(tB); iterP significantly outperforms noP on tB.

6.2.3. Transferring Clustering Labels

Fig. 5 shows the performance of the five graph transfer algorithms, noP, trueP,
dsP, iterP, optP, described in Section 6.1.7 on two synthetic datasets, SB-4 and
SB-6. Algorithms are compared w.r.t. transfer test accuracy on GB (tB); for
reference purposes, we also show the training and testing accuracy on GA as
well (tr and tA, respectively). We make three important observations. First, the
näıve algorithm (noP, Eq. (9)) fails to accurately predict node labels for graph GB

for both topologies, doing almost no better than a random guess. This is antici-
pated, for the reasons illustrated in Fig. 1. Second, our two transfer algorithms
(iterP, optP) attain almost the same test accuracy on GB (tB) as in GA (tA):
this indicates that the classifier trained on GA is successfully transferred to GB .
Finally, our two transfer methods perform equally well as the powerful bench-
marks (trueP, dsP), that have full access to the ground truth mappings, yielding
accuracies that are comparable to both training (tr) and test (tA) accuracies
observed on GA.

Table 5 presents the accuracy for näıve (noP) and projected gradient descent
(iterP) graph transfer algorithms on the BP-2, SB-4, SB-6, ZKC, Email datasets.
Our earlier observations carry over to these graphs as well: noP fails to transfer
across graphs, yielding low ACC on tB, no better than a random guess. On the
other hand iterP universally performs as well on GB (tB) as on GA (tA). We
note that these observations persist on BP-2, where graphs GA and GB are not
isomorphic. We observe also that clusters are harder to learn on Email (on both
GA and GB), but the accuracy is considerably better than random guess (1/28 ≈
0.04, for 28 clusters); moreover, transfer accuracy (0.49 on tB) is comparable to
both train and test accuracy on GA (0.55 and 0.48, respectively), indicating that
the poorer performance is inherent to the embedding method and the trained
classifier, as opposed to the transfer method.

6.2.4. Transferring Epidemic Spread Labels

Fig. 6 illustrates the performance of the five algorithms, viz. noP, trueP, dsP,
iterP, optP, employed to transfer influence/epidemic spread labels from graph
GA to graph GB of two synthetic datasets, SB-4 and SB-6. In concordance with
previously discussed experiments on clustering labels, we compare algorithms’
performance on test subset of graph GB (tB) w.r.t. root mean squared error
RMSE and coefficient of determination R2.

Table 6 shows the predicted RMSE and R2 under noP and iterP transfer algo-
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Fig. 6. Performance of different transfer learning algorithms (noP, trueP, dsP,
iterP, optP) on epidemic spread/influence labels of two synthetic datasets (SB-4
and SB-6 ), w.r.t both coefficient of determination R2 and RMSE. We report 3 RMSE
values, for training (tr) and testing (tA) subsets of graph GA, and testing subset
of graph GB (tB), while we report only two R2 values (for test subsets, tA and tB,
respectively), for each algorithm. For RMSE, the smaller values the better; for R2 ∈
(−∞, 1], the higher the better. For the sake of visualization, we use exponential
scale for the latter: exp (R2) ∈ (0, e]. We observe that (a) näıve scenario (noP)
demonstrates much worse performance on tB than on tr and tA for both RMSE
and R2 metrics; (b) when P is learned (either using projected gradient descent
(iterP) or constrained optimization (optP) methods), RMSE on tB is on par with,
and R2 is on par or slightly worse than for trueP and dsP scenarios, when true
permutation and doubly stochastic matrices are used, respectively; and (c) the
performance under iterP and optP scenarios is on par with train accuracy, and
sometimes even surpasses test accuracy on GA (tr, tA).
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Dataset
noP iterP

tr tA tB tr tA tB
RMSE RMSE/R2 RMSE/R2 RMSE RMSE/R2 RMSE/R2

SB-4 0.09 0.09/0.29 0.15/ –1.49 0.10 0.10/0.38 0.11/0.14
SB-6 0.07 0.12/0.42 0.23/ –1.91 0.07 0.11/0.37 0.08/0.65
ZKC 0.09 0.09/0.49 0.26/ –2.17 0.10 0.11/0.48 0.11/0.45
Email 0.08 0.10/0.22 0.20/ –1.66 0.07 0.08/0.23 0.08/0.32
IDTD 0.10 0.10/0.41 0.17/ –3.44 0.10 0.10/0.25 0.10/0.16

Table 6. Influence/epidemic spread label prediction performance of noP and
iterP transfer learning algorithms on SB-4, SB-6, ZKC, Email and IDTD
datasets. We compare prediction performance on training (tr) and testing (tA)
sets on GA, and the test set graph GB (tB), w.r.t RMSE (the lower the better)
and R2 (the higher the better); note that the latter only applies to test sets (tA,
tB). We observe that prediction accuracy fails to transfer to GB under noP, even
attaining negative R2 values. In contrast, iterP successfully transfers labels, with
a predictive power that is comparable to the one over GA (tA).

rithms on SB-4, SB-6, ZCK, Email, IDTD datasets. We also show the training
RMSE (tr) as a baseline for comparison purposes.

Our observations align perfectly with our earlier clustering results: test RMSE
and R2 on GB (tB) indicate that noP fails to transfer, being sometimes worse
than predicting based on the training mean (R2 < 0), while prediction on GB

under iterP is almost as good as prediction on GA, sometimes even better (e.g.,
for SB-6 and Email).

6.2.5. Impact of Graph Perturbation

Fig. 7 illustrates performance with respect to prediction accuracy and RMSE
on the SB-4 and SB-6 datasets obtained for different perturbation factors (see
Section 6.1.3). Here, we use results on graph GA, tA, which does not have any
edges removed or added, and results on graph GB obtained with näıve method,
noP, as upper and lower bounds when assessing the influence of the amount
of perturbed edges on tB prediction performance. From all four plots, we can
observe a consistent behavior: performance on both clustering and regression
tasks remain largely unaffected when the perturbation factor does not exceed
10% (recall that this corresponds to 10% of edges removed and the same amount
of new edges added). Up until this level, performance is close to tA and trueP
performance. A degradation happens beyond this point; however, some level of
transferability is possible even with a 25% perturbation factor (prediction tB for
both iterP and optP scenarios is still better than for noP scenario).

7. Conclusion

We study the graph transfer learning problem using a group of synthetic and
real-world datasets. Our proposed method, being generic with respect to the
employed embedding methods, offers strong evidence that structural labels can
be successfully transferred across graphs. This can have important implications,
such as learning epidemics on one graph and transferring this knowledge on
another. Exploring this on real epidemics is an exciting direction. Accelerating
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Fig. 7. Effect of edge perturbations between GA and GB on the label prediction
performance (in ACC and RMSE for clustering and influence labels, respectively)
studied on synthetic datasets, SB-4 and SB-6. Transferability is possible even
with a 25% perturbation factor, with almost no impact in the < 10% range.

our methods, and scaling them to larger graphs, is an important open problem.
The invariance of embeddings to rotations and orthogonal matrices suggests
optimizations in which matrix P is orthogonal, rather than doubly stochastic;
exploring efficient algorithms for such constraints is also an interesting future
direction.
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[70]M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and J. H. Jones, “A High-
Resolution Human Contact Network for Infectious Disease Transmission,” Proceedings of
the National Academy of Sciences, vol. 107, no. 51, pp. 22 020–22 025, 2010.

[71]M. E. Newman and M. Girvan, “Finding and evaluating community structure in networks,”
Physical review E, vol. 69, no. 2, p. 026113, 2004.



Graph Transfer Learning 29

[72]Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive learning with adap-
tive augmentation,” in WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021. ACM / IW3C2, 2021, pp. 2069–2080.

[73]D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
2016, pp. 1225–1234.

[74]J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community structure in large
networks: Natural cluster sizes and the absence of large well-defined clusters,” Internet
Mathematics, vol. 6, no. 1, pp. 29–123, 2009.
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