
Cache-Enabled Federated Learning Systems
Yuezhou Liu

Northeastern University

Boston, MA, USA

liu.yuez@northeastern.edu

Lili Su

Northeastern University

Boston, MA, USA

l.su@northeastern.edu

Carlee Joe-Wong

Carnegie Mellon University

Pittsburgh, PA, USA

cjoewong@andrew.cmu.edu

Stratis Ioannidis

Northeastern University

Boston, MA, USA

ioannidis@ece.neu.edu

Edmund Yeh

Northeastern University

Boston, MA, USA

eyeh@ece.neu.edu

Marie Siew

Carnegie Mellon University

Pittsburgh, PA, USA

msiew@andrew.cmu.edu

ABSTRACT

Federated learning (FL) is a distributed paradigm for collaboratively

learning models without having clients disclose their private data.

One natural and practically relevant metric to measure the effi-

ciency of FL algorithms is the total wall-clock training time, which

can be quantified by the product of the average time needed for

a single iteration and the number of iterations for convergence.

In this work, we focus on improving FL efficiency with respect

to this metric through caching. Specifically, instead of having all

clients download the latest global model from a parameter server,

we select a subset of clients to access, with a smaller delay, a some-

what stale global model stored in caches. We propose CacheFL –

a cache-enabled variant of FedAvg, and provide theoretical con-

vergence guarantees in the general setting where the local data is

imbalanced and heterogeneous. Armed with this result, we deter-

mine the caching strategies that minimize total wall-clock training

time at a given convergence threshold for both stochastic and deter-

ministic communication/computation delays. Through numerical

experiments on real data traces, we show the advantage of our

proposed scheme against several baselines, over both synthetic and

real-world datasets.

CCS CONCEPTS

• Computing methodologies → Machine learning; Parallel
algorithms; Distributed algorithms; • Networks→ Network services.

KEYWORDS

Federated Learning, caching, system design, training efficiency

ACM Reference Format:

Yuezhou Liu, Lili Su, Carlee Joe-Wong, Stratis Ioannidis, Edmund Yeh,

and Marie Siew. 2023. Cache-Enabled Federated Learning Systems. In The
Twenty-fourth International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc
’23), October 23–26, 2023, Washington, DC, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3565287.3610264

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9926-5/23/10. . . $15.00

https://doi.org/10.1145/3565287.3610264

1 INTRODUCTION

Federated learning (FL), proposed by McMahan et al. [22], is a

promising paradigm that enables multiple entities (e.g, mobile de-

vices, hospitals, and banks) to jointly train a machine learning

model on their individual data without sending private data to a

central location. Though proposed recently, FL has already been

successful in many real-world applications, such as Gboard mobile

keyboard [12] and Android Messages [7]. FL typically involves a

parameter server and a collection of clients, each with its local data.

The training procedure is divided into iterations, each of which

includes the following three steps [22, 30]: 1) Initialization of local
model: each client downloads the current global model. 2) Local
updates: each client refines the downloaded global model by pass-

ing through local data for multiple epochs, and uploads the locally

updated model to the server. 3) Aggregation: the server aggregates
all the locally updated models to produce a new global model.

One main challenge of implementing FL in real world systems is

resource heterogeneity: clients may have heterogeneous computa-

tion capabilities and communication (downlink/uplink) capacities.

As a result, the time needed to complete a full iteration can be

dominated by stragglers, leading to long training time and resource

underutilization at faster clients. Mitigating the straggler issue and
reducing the time per iteration is a critical and open problem in

designing FL algorithms and systems [30, 36]. A number of works

examine the straggler issue; we review them in Sec. 2.

In this work, we propose a new technique based on caching and

design cache-enabled federated learning systems, aiming to reduce

the overall wall-clock training time of FL algorithms by reducing

per-iteration training time. Caching originates from computer sys-

tems, where copies of frequently used commands and data are

stored in memory [1], and is applied in network systems such as

content delivery networks (CDNs) [24] and information-centric

networks (ICNs) [25] for faster data delivery. In the proposed cache-

enabled FL systems, we deploy caches that store the global model

at clients or the server. The stored copies of the global model are

updated from time to time during the training process after a new

global model is available. Clients can get such model copies faster,

reducing the time needed to complete each iteration. Nevertheless,

this reduction in per-iteration time comes with a price: cached mod-
els may be stale, which can lead to a degradation in convergence

rate and an increase in the total iterations needed.

In light of this, we wish to design the best caching strategy

that minimizes the overall wall-clock training time. This gives rise

https://doi.org/10.1145/3565287.3610264
https://doi.org/10.1145/3565287.3610264

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Liu, et al.

to several challenges. First, determining the number of iterations

needed to guarantee an error floor in the presence of stale updates

is required; this, in itself, is a challenging task. Clients’ data hetero-

geneity and imbalance make this even more difficult, as the effect

of specific clients experiencing staleness to convergence should be

quantified. Second, having determined the impact of caching on

iterations, one needs to carefully design caching strategies that de-

cide which clients compute their local updates from a cached global

model, while others fetch the latest global model. The caching strat-

egy should strike a favorable trade-off between (a) the time a client

needs to retrieve a global model, affecting the time per iteration, and

(b) the total number of iterations, which is necessary to minimize

the overall wall-clock time of training.

Contributions. Our contributions can be summarized as follows:

• To the best of our knowledge, this is the first work that con-
siders caching of intermediate global models as a method to
improve FL efficiency. We design several cache-enabled FL

systems by placing caches at clients or the parameter server,

and discuss how per-iteration training time is reduced and

how FL algorithms can be implemented in these systems.

• We analyze the convergence of CacheFL (Federated Averag-
ing [22] in proposed caching systems) by providing conver-

gence bounds as functions of clients using the cached models.

We show that the number of iterations needed is increased

by a factor depending on the data volume of these clients.

• We propose and solve optimization problems to find client

caching strategies that appropriately trade off between re-

ducing per-iteration time and increasing total iterations, min-

imizing the overall wall-clock time of FL algorithms.

• Through extensive experimentation on real mobile network

traces, we show the advantages of the proposed scheme in

faster per-iteration completion and wall-clock convergence

over baselines for both i.i.d. and non-i.i.d. local data distribu-

tions, and for both synthetic and real-world datasets.

From a technical standpoint, prior FL convergence bounds gen-

erally assume either fully synchronous or entirely asynchronous

model initialization and aggregation in each iteration, while our

work extends and refines their analysis to quantify the effect of

specific clients’ use of stale models. Such analysis is particularly im-

portant as clients’ data can be imbalanced and heterogeneous; the

convergence bound depends on which clients experience staleness

in caching systems.

Organizations.We present related works in Section 2. In Section 3,

we introduce cache-enabled FL systems and the CacheFL algorithm.

We make a convergence analysis of CacheFL in Section 4. In Sec-

tion 5, we discuss optimization problems that minimize the overall

wall-clock training time of CacheFL. We present numerical results

in Section 6 and conclude in Section 7.

2 RELATEDWORK

Hetergeneous and imbalanced data. Several algorithms have

been proposed to incorporate heterogeneous and imbalanced data

in FL, and guarantee good convergence rates. FedAvg [22] reduces it-

erations by letting clients train the local models for multiple epochs

instead of one before aggregation. FedProx [20] and FedDyn [5] use

regularization terms in local cost functions to limit the impact of

heterogeneous local data. SCAFFOLD [15] uses control variates to

correct the client-drift due to heterogeneity of local data in local up-

dates, and FedCOMGATE [10] takes a gradient tracking approach

to achieve the same goal. These algorithms can be implemented in

the proposed caching systems by letting some clients make local

updates based on cached global models. We discuss the conver-

gence of FedAvg in our caching systems, while analysis of other

algorithms in such systems is a possible future direction.

Reducing per-iteration training time. Effects of heterogeneous

computation capabilities can be reduced by allowing clients to per-

form variable amounts of local computation, through different local

epochs [20] or mini-batch sizes [19]. To reduce communication de-

lay, algorithmswith compressionmechanisms [10, 29, 37, 38] or sub-

space methods [28] are proposed, where the models are compressed

or projected to a subspace, respectively, before being transmitted

between the server and clients. In FL with wireless communication,

client selection, wireless resource blocks and transmit power are

optimized under resource constraints to minimize the communica-

tion delay [3, 4]. To mitigate the straggler issue, each iteration can

be stopped strategically with only a subset of local models being ag-

gregated [2, 43]. Another way is to allow clients to asynchronously

aggregate the local model at the server and start the next iteration

without waiting for others [35, 36]. The proposed caching method

is an independent and new direction that reduces per-iteration time,

which can be combined with aforementioned techniques such as

compression, wireless resource optimization, and asynchronism.

Networking and caching for FL. While there exist many works

that use FL to optimize network operations as well as caching deci-

sions in networks [33, 39–41], only a few works study the usage

of networking and caching techniques to boost machine learning

or federated learning performance. A few works [21, 31] study the

optimal routing of data samples for distributed ML in networks to

maximize model accuracy. In [44], caching for trained models is

studied to minimize the inference error of mobile users. Caching for

clients’ gradients is considered in [9], where cached gradients are

used for aggregation when clients drop out. Caching for stale statis-

tics in vertical FL (VFL) is recently explored to enable local updates

and improve communication efficiency [6]. VFL involves clients

that hold disjoint features but overlap on the instances, meaning

local training require the exchanges of intermediate computation

statistics among clients. Caching can help reduce the cost of this

communication. Our work is the first that proposes caching of global
models to improve training efficiency.

3 CACHE-ENABLED LEARNING SYSTEMS

In this section, we introduce the general learning problem in FL

as a preliminary, and then introduce the designs for several cache-

enabled FL systems for use in different network scenarios. The goal

of our system design is to enable FL algorithms to solve federated

learning problems with smaller overall wall-clock time, i.e.,

TIME = 𝑇 × T , (1)

where𝑇 is the number of iterations for an FL algorithm to converge

to an error floor, andT is the time needed for all participating clients

to finish a single iteration, i.e., per-iteration training time [16]. We

also propose CacheFL as an algorithm in the cache-enabled systems

by extending the vanilla Federated Averaging [22].

Cache-Enabled Federated Learning Systems MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

3.1 Federated Learning Problem

Federated learning aims to train a single model by minimizing the

model’s empirical risk, i.e., the training loss over all data samples

distributed across multiple clients. Consider a set of clients 𝑘 ∈ K ,

|K | = 𝐾 , each having a local dataset D𝑘 = {(u𝑖 , 𝑣𝑖)} |D𝑘 |
𝑖=1

, where u𝑖
and 𝑣𝑖 are the features and label of the 𝑖-th sample, respectively. Let

D = ∪𝑘D𝑘 . We aim to minimize the following objective function:

𝐹 (w) = ∑
𝑘∈K 𝑑𝑘𝐹𝑘 (w), (2)

where 𝑑𝑘 =
|D𝑘 |
|D | and 𝐹𝑘 (w) are the local cost functions:

𝐹𝑘 (w) = 1

| D𝑘 |
∑

(u𝑖 ,𝑣𝑖) ∈D𝑘
𝑓 (w; u𝑖 , 𝑣𝑖), 𝑘 ∈ K, (3)

wherew is the parameter vector of the model and 𝑓 (w; u𝑖 , 𝑣𝑖) is the
loss function associated with the 𝑖-th data sample. The loss function

depends on the machine learning model and can be either convex

(e.g., logistic regression) or non-convex (e.g., neural networks).

In general, FL algorithms consist of multiple iterations, each

comprising the following steps: First, clients initialize their local

models by downloading the current global model from the server.

Second, each client tries to minimize its local cost 𝐹𝑘 (usually for a

few epochs) and produces an updated local model. Finally, clients

upload their local models to the server, where they are aggregated

to produce a new global model. In this way, clients jointly minimize

the global objective 𝐹 without sharing their local data.

3.2 Cache-enabled system design

In FL, the per-iteration training time T is determined by the time

for the slowest client (straggler) to finish downloading the current

global model for initialization, making local updates, and uploading

the updated model. Let𝑇
DL,𝑘 ,𝑇UL,𝑘 , and𝑇COMP,𝑘 be the time needed

for client𝑘 to download the global model from the server, upload the

local model to the server, and finish local computation, respectively.

Without caching, the per-iteration completion delay for client 𝑘 is

T𝑘 = 𝑇
DL,𝑘 +𝑇

COMP,𝑘 +𝑇
UP,𝑘 , (4)

We propose cache-enabled systems, where we mitigate the strag-

gler issue by letting the stragglers obtain the global model from

caches for initialization to reduce T𝑘 and also T .

System Design. We propose different caching systems by placing

the caches at different locations, as appropriate for different network

conditions and device computation capacities. In all schemes, we

store the global model in a cache or caches, which is updated in

each iteration after a new global model is available, thus bounding

the staleness of the model in caches by one iteration. Aggregation is

still synchronized as in classic FL where the server aggregates the

local models it receives from all clients. On the other hand, caching

allows clients to asynchronously initialize their local models in each

iteration. In particular, by caching the global model, we give more

flexibility to clients in getting the global model for initialization

and make possible parallelism in some FL steps, thus reducing the

time for finishing an iteration.

We denote byKserver andKcache
,Kserver ∪K

cache
= K, the sets

of clients that use the latest global model and those that use the

global model from the caches to initialize their local models, re-

spectively, in each iteration. We refer to the strategy of partitioning

(a) Cache at access point (b) Caches at clients

(c) Cache at server (d) Caches at clients and server

Figure 1: Cache-enabled FL systems. Each system has a set

of clients 𝑘 ∈ K . The value near a communication link is the

time for transmitting a model over this link and 𝑇
COMP,𝑘 is

the computation time for 𝑘 to finish its local updates.

Table 1: Per-iteration delay of different caching systems

Caching systems Per-iter delay of 𝑘 ∈ K
cache

(T
cache,𝑘)

Cache at AP max{𝑇DL,𝑇COMP,𝑘 +𝑇UL}
Caches at clients max{𝑇

DL,𝑘 ,𝑇COMP,𝑘 +𝑇UL,𝑘 }
Cache at server max{𝑇

UL,𝑘 ,𝑇COMP,𝑘 +𝑇DL,𝑘 }
Caches at both

clients and server

min{max{𝑇
DL,𝑘 ,𝑇COMP,𝑘 +𝑇

UL,𝑘 },
max{𝑇

UL,𝑘 ,𝑇COMP,𝑘 +𝑇DL,𝑘 }}

K to Kserver and K
cache

as client partition, which is assumed to

be static during the training. The proposed caching systems are

shown in Fig. 1 and the reduced T𝑘 by caching in each system is

summarized in Table 1.

3.2.1 Cache at access point (AP) (Fig. 1(a)). Consider a scenario

where clients are located in proximity and communicate with the

server through the same access point (AP), where a cache is placed.

At the 𝑡-th iteration, when the server sends the latest model w𝑡
to the clients, passing through the AP, the content in the cache

is replaced by w𝑡 . Before that, the model in the cache is w𝑡−1
from the previous iteration. Clients with more limited computation

capabilities can start their local updates earlier by directly using

w𝑡−1 in the cache, saving the downloading time𝑇DL from the server

to the AP. Other faster clients can wait for the latest global model

w𝑡 . We ignore the delay on last-mile links between clients and the

AP, as it can be absorbed into local computation time 𝑇
COMP,𝑘 .

Assume that all clients share the same uplink/downlink delay be-

tween the server and AP in this case, then the slowest clients (with

the largest 𝑇
COMP,𝑘) should be assigned to K

cache
to reduce the

per-iteration training time T ; otherwise, T is determined by these

slowest clients regardless of whether other clients use the cache. Let

𝑇server = max𝑘∈Kserver
𝑇
COMP,𝑘 and 𝑇

cache
= max𝑘∈Kcache

𝑇
COMP,𝑘 .

Without caching, the overall training time per iteration is T =

𝑇DL + 𝑇
cache

+ 𝑇UL. With caching, the time is reduced to T =

max{𝑇
cache

+𝑇UL,𝑇DL +𝑇server +𝑇UL}, leading to a time reduction of

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Liu, et al.

(a) Caches at clients

(b) Cache at server

Figure 2: Example timing diagrams of two cases. In both cases,

client 1 is in Kserver, and clients 2&3 are in K
cache

. Due to

cache initialization, the per-iteration delay is𝑇DL,2+𝑇COMP,2+
𝑇UL,2 for both cases at 𝑡 = 0, while it is reduced to 𝑇COMP,2 +
𝑇UL,2 and 𝑇DL,2 + 𝑇COMP,2 in Fig. 2(a) and 2(b), respectively,

starting from 𝑡 = 1.

min{𝑇DL,𝑇cache −𝑇server}. When clients are heterogeneous in their

computation capabilities (e.g., some clients may be mobile phones

and some may be laptops with GPUs), such that we can find a client

partition under which𝑇
cache

−𝑇server ≥ 𝑇DL, then we save time𝑇DL
for an iteration by caching. Otherwise, we save 𝑇

cache
−𝑇server.

3.2.2 Caches at clients (Fig. 1(b)). In practice, clients may be located

in different areas and have heterogeneous communication delays

𝑇
DL,𝑘 and𝑇UL,𝑘 . To generalize the cache at AP case, we can maintain

a cache at each client. At the start of the 𝑡-th iteration, the server

sends the latest global model w𝑡 to all the clients, and the model

is stored in the clients’ caches. In this iteration, clients 𝑘 ∈ Kserver

wait for𝑇
DL,𝑘 of downlink transmission time and start local updates

based onw𝑡 , while 𝑘 ∈ K
cache

directly access their caches forw𝑡−1
and start immediately from w𝑡−1. The downloading of the latest

global model w𝑡 to 𝑘 ∈ K
cache

is done in parallel while doing local

updates and uploading the updated local model, reducing the delay

of this client for an iteration from T𝑘 given by (4) to

T
cache,𝑘 = max{𝑇

DL,𝑘 ,𝑇COMP,𝑘 +𝑇
UL,𝑘 }, (5)

saving time𝑇
DL,𝑘 if𝑇DL,𝑘 ≤ 𝑇

COMP,𝑘+𝑇UL,𝑘 (e.g., client 2 in Fig. 2(a)),
and 𝑇

COMP,𝑘 +𝑇UL,𝑘 otherwise (e.g., client 3 in Fig. 2(a)). Globally,

the per-iteration delay T is reduced from max𝑘∈K {T𝑘 } to

T = max

{{
T
cache,𝑘

}
𝑘∈Kcache

, {T𝑘 }𝑘∈Kserver

}
. (6)

3.2.3 Cache at server (Fig. 1(c)). Sometimes, the uplink can be more

expensive and slower than the downlink (e.g., mobile devices may

have limited transmission power), which motivates us to save the

uplink transmission time by putting a cache at the server.

The content in the cache at the server is replaced by the latest

global model, each time the server finishes global aggregation. With

this cache, after finishing local updates, a client 𝑘 can either wait

until all clients upload their updated models (at least for 𝑇
UL,𝑘) and

then download the latest global model, or immediately download

the model from the cache at the server and start the next round of

local updates. By using the cache, uploading the local models of

round 𝑡 − 1 can happen in parallel with the global model download-

ing and local computation for round 𝑡 , reducing the delay of this

client for an iteration from T𝑘 given by (4) to

T
cache,𝑘 = max{𝑇

UL,𝑘 ,𝑇COMP,𝑘 +𝑇DL,𝑘 }. (7)

A timing diagram is provided in Fig. 2(b). The per-iteration time T
is also given by (6), with 𝑇

cache,𝑘 given by (7).

3.2.4 Caches at both server and clients (Fig. 1(d)). Further combin-

ing the previous cases leads to new FL systems. For example, we

can have caches at both clients and server (combining Fig. 1(b) and

1(c)). Based on the relationships of downlink/uplink transmission

delay and computation delay, clients 𝑘 ∈ K
cache

can decide to get

the global model from any of the caches to best reduce their delay

in an iteration. By (5) and (7), the minimum achievable delay for 𝑘

in an iteration is given by the minimum of max{𝑇
DL,𝑘 ,𝑇COMP,𝑘 +

𝑇
UL,𝑘 } and max{𝑇

UL,𝑘 ,𝑇COMP,𝑘 + 𝑇
DL,𝑘 }. Thus, client 𝑘 may de-

cide to get the global model from the cache at the client when

max{𝑇
DL,𝑘 ,𝑇COMP,𝑘 + 𝑇

UL,𝑘 } ≤ max{𝑇
UL,𝑘 ,𝑇COMP,𝑘 + 𝑇

DL,𝑘 }, and
from the cache at the server otherwise.

Discussion. In these systems, cached global models are used by

some clients 𝑘 ∈ K
cache

to reduce their per-iteration delay, thus

mitigating the straggler issue and reducing T . This technique

is quite efficient when 𝑇
DL,𝑘 and 𝑇

COMP,𝑘 + 𝑇
UL,𝑘 or 𝑇

UL,𝑘 and

𝑇
COMP,𝑘 +𝑇DL,𝑘 are of a similar order of magnitude. As an example,

when 𝑇
DL,𝑘 ≈ 𝑇

COMP,𝑘 + 𝑇
UL,𝑘 , by using the global model in the

cache (at client 𝑘), client 𝑘 can reduce its delay by half (compare (4)

and (5)). On the other hand, this technique fails to efficiently re-

duce the per-iteration delay of a client when one part of the delay

is much larger than other parts, making parallelism less fruitful

(e.g., 𝑇
UL,𝑘 is extremely large due to an uplink connection failure).

This should be solved by excluding client 𝑘 in the client recruit-

ment phase [26] or not aggregating the local model of 𝑘 in certain

training iterations (for temporary connection failures). In Sec. 6,

we further show with experiments that the proposed systems can

effectively reduce per-iteration training time, using statistics of

computation and communication delay from real mobile networks.

All aforementioned caching systems are easily implementable with

low storage requirements. At the server or AP or each client device,

we need only space to store a model parameter vector.

3.3 CacheFL algorithm

We next introduce the CacheFL algorithm by extending FedAvg [22]

in our proposed cache-enabled systems, as described above.

3.3.1 FedAvg. minimizes 𝐹 (w) iteratively as follows:

Initialization of local models. At the start of each iteration 𝑡 =

1, . . . ,𝑇 − 1, the server broadcasts the current global model w𝑡 to
the clients to initialize their local models,

w(𝑡,0)
𝑘

= w𝑡 , ∀𝑘 ∈ K . (8)

Local Updates. Based on w(𝑡,0)
𝑘

, clients attempt to minimize their

local loss functions by stochastic gradient descent (SGD). To reduce

the communication overhead, each client runs SGD for 𝜏max epochs,

before sending the local model to the server. Let w(𝑡,𝜏)
𝑘

be the local

model of client 𝑘 at the 𝑡-th iteration and 𝜏-th epoch. For each

Cache-Enabled Federated Learning Systems MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

Algorithm 1: CacheFL (cache-enabled FedAvg)

Input: Initial model w0
, learning rate [, batch size 𝐵

1 for 𝑡 ∈ {0, 1, . . . ,𝑇 − 1} do
2 for Client 𝑘 ∈ K do

3 Let w(𝑡,0)
𝑘

= w𝑡 , if 𝑘 ∈ Kserver

4 Let w(𝑡,0)
𝑘

= w𝑡−1, if 𝑘 ∈ K
cache

5 for 𝜏 = 0, . . . , 𝜏max − 1 do

6 SG: g(𝑡,𝜏)
𝑘

= 1

𝐵

∑𝐵
𝑖=1 ∇𝑓 (w

(𝑡,𝜏)
𝑘

; u𝑖 , 𝑣𝑖)
7 Local update: w(𝑡,𝜏+1)

𝑘
= w(𝑡,𝜏)

𝑘
− [g(𝑡,𝜏)

𝑘

8 end

9 end

10 for Server after receiving w(𝑡,𝜏max)
𝑘

for all 𝑘 ∈ K do

11 Update global model w𝑡+1 =
∑
𝑘∈K 𝑑𝑘w

(𝑡,𝜏max)
𝑘

12 end

13 end

14 return w𝑇

𝑘 ∈ K and 𝜏 = 0, . . . , 𝜏max − 1, the client updates its local model as

w(𝑡,𝜏+1)
𝑘

= w(𝑡,𝜏)
𝑘

− [g(𝑡,𝜏)
𝑘

, (9)

where [is the learning rate and g(𝑡,𝜏)
𝑘

is the mini-batch stochastic

gradient (SG), with batch size 𝐵, computed as

g(𝑡,𝜏)
𝑘

= 1

𝐵

∑
(u,𝑣) ∈B ∇𝑓 (w(𝑡,𝜏)

𝑘
; u, 𝑣), (10)

where B is a random subset (|B| = 𝐵) sampled fromD𝑘 . g
(𝑡,𝜏)
𝑘

is an

unbiased estimator of local gradient, i.e., E[g(𝑡,𝜏)
𝑘

] = ∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

).
Aggregation. After the local updates, each client 𝑘 sends w(𝑡,𝜏max)

𝑘
to the server. At the end of iteration 𝑡 , i.e., when the server receives

all the local models from the clients, the server aggregates the local

models to update the global model for the next iteration by

w𝑡+1 =
∑
𝑘∈K 𝑑𝑘w

(𝑡,𝜏max)
𝑘

. (11)

3.3.2 CacheFL Learning Algorithm. We now extend traditional fed-

erated learning algorithms to cache-enabled systems. The essential

change is that some of the clients perform local updates based on a

global model stored in the cache, instead of the latest one. At the

start of each iteration 𝑡 = 1, . . . ,𝑇 − 1, each client initializes the

local model as following:

w(𝑡,0)
𝑘

=

{
w𝑡 , if 𝑘 ∈ Kserver,

w𝑡−1, if 𝑘 ∈ K
cache

,
(12)

instead of (8) as in classic FL algorithms. For 𝑘 ∈ K
cache

, w𝑡−1 is
obtained from the cache, and for 𝑘 ∈ Kserver, w𝑡 is sent from the

server. At the beginning of the training process, we have w(0,0)
1

=

· · · = w(0,0)
|K | = w0

. If we consider FedAvg as the implemented algo-

rithm in our proposed systems, then we replace the initialization

step (8) by (12), while each client still makes local updates according

to (9) and the server aggregates the updated local models accord-

ing to (11). We call the resulting algorithm CacheFL (Alg. 1). We

can easily implement other FL algorithms in the proposed caching

systems, as we make no specific assumptions about the local up-

dates and aggregation steps in our system designs. We note that all

proposed caching systems lead to the same algorithm, as different

cache deployments only affect the per-iteration delay reduction

(see Table 1), instead of the resulting algorithm.

We have shown the benefits of caching in reducing the per-

iteration training timeT . On the other hand, this benefit comeswith

the price of letting clients in K
cache

make updates on a stale global

model. One would naturally ask: 1) Can FL algorithms still converge

with the use of caching? 2) If they converge, what is the effect

of using a stale global model on the number of overall iterations

for convergence? 3) Is the benefit worth the price? We formally

answer the first two questions in the next section, by analyzing

the convergence of CacheFL and providing a convergence bound

as a function of the client partition (Kserver and K
cache

). In Sec. 5,

we further discuss the last question and show how to optimize the

trade-off by formulating and solving optimization problems.

4 CONVERGENCE ANALYSIS OF CACHEFL

We analyze CacheFL (Alg. 1) from a theoretical perspective and

provide a convergence bound for any given client partition.
1
We

show that the bound is increased by a factor depending on the data

volume fraction of clients 𝑘 ∈ K
cache

.

4.1 Assumptions

Formally, we introduce the following assumptions for the conver-

gence analysis, which are commonly made in the FL literature (e.g.

[30]). Specifically, assumption (i&ii) is about the algorithm choice

in CacheFL; assumptions (iii-v) are about the properties of the local

cost functions, and assumption (vi) is about the data heterogene-

ity across clients. These assumptions allow the local data to be

imbalanced and heterogeneously distributed.

(i) Each client 𝑘 ∈ K participates in every iteration.

(ii) As in (2), the objective function 𝐹 (w) is the weighted average

of local cost, i.e., 𝐹 (w) = ∑
𝑘∈K 𝑑𝑘𝐹𝑘 (w), where 𝑑𝑘 =

|D𝑘 |
|D | ,

to incorporate imbalanced local data.

(iii) Local cost functions 𝐹𝑘 (w) are convex and 𝐿-smooth,

𝐹𝑘 (w) ≤ 𝐹𝑘 (w′) + ⟨∇𝐹𝑘 (w′),w −w′⟩ + 𝐿
2
| |w −w′ | |2

(iv) The stochastic gradient g(𝑡,𝜏)
𝑘

is unbiased with uniformly

bounded variance, namely

E[| |g(𝑡,𝜏)
𝑘

− ∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) |w(𝑡,𝜏)
𝑘

| |2] ≤ 𝜎2 . (13)

(v) The stochastic gradients are bounded in expectation,

E[| |g(𝑡,𝜏)
𝑘

| |2] ≤ 𝐺2 . (14)

(vi) The weighted average of the dissimilarities between gradients

of the local functions and the gradient of the global function

is bounded, namely∑︁
𝑘∈K

𝑑𝑘 | |∇𝐹𝑘 (w) − ∇𝐹 (w) | |2 ≤ Z 2 . (15)

1
As most FL algorithms are variants of FedAvg, the convergence bound of CacheFL

can be extended to incorporate other algorithms.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Liu, et al.

In this analysis, we do not consider partial client participation

and non-convex loss functions (assumptions (i) and (iii)), to focus

attention on the effects of caching. We provide an initial result of

partial client participation at the end of this section, showing that

our scheme still guarantees convergence without the full client

participation assumption. In experiments, we try both convex and

non-convex loss functions and compare our scheme with client

selection related methods, e.g., eliminating stragglers. A more de-

tailed discussion of CacheFL with partial client participation and

non-convex losses will be a future work. Inequality (13) reflects the

sample dissimilarity within local datasets. Due to the heterogeneity

of local datasets, g(𝑡,𝜏)
𝑘

is not an unbiased estimator of the global

gradient in general, i.e., ∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) ≠ ∇𝐹 (w(𝑡,𝜏)
𝑘

), and we have

(15) to describe this heterogeneity.

4.2 Theoretical Results

We base our analysis on the proofs for FedAvg in [30] and [8] and

extend them to incorporate the use of caching for global models.

Besides bounding the convergence, we also need to quantify the

dependence on the clients that use the cache, i.e., the bound should

be a function of client partition.

To handle iterates frommultiple clients, a concept of shadow/virtual

sequence is adopted (commonly used in and originating from de-

centralized optimization), defined as

w(𝑡,𝜏)
:=

∑
𝑘∈K 𝑑𝑘w

(𝑡,𝜏)
𝑘

, (16)

where 𝑑𝑘 =
|D𝑘 |
|D | . Letting w𝑇 = 1

𝜏max𝑇

∑𝑇−1
𝑡=0

∑𝜏max

𝜏=1
w(𝑡,𝜏)

and w∗

be the minimizer of objective function 𝐹 , we show that E[𝐹 (w𝑇)] −
𝐹 (w∗) is upper bounded by a quantity decreasing with 𝑇 .

Following [30], we first show that there is a progress in each iter-

ation, by proving that E[1

𝜏max

∑𝜏max

𝜏=1
𝐹 (w(𝑡,𝜏)) − 𝐹 (w∗)] is bounded

by the difference of a potential function evaluated at the start and

the end of each iteration, plus additional small error terms:

Lemma 1. If the client learning rate satisfies [≤ 1

4𝐿
, then

E
[

1

𝜏max

∑𝜏max
𝜏=1

𝐹 (w(𝑡,𝜏)) − 𝐹 (w∗) |F (𝑡,0)
]

≤ 1

2[𝜏max

(
𝑊 (𝑡,0) − E

[
𝑊 (𝑡,𝜏max) |F (𝑡,0)

])
+ [𝜎2∑𝑘∈K 𝑑2𝑘

+ 𝐿
𝜏max

∑𝜏max−1
𝜏=0

∑
𝑘∈K 𝑑𝑘E

[
| |w(𝑡,𝜏)

𝑘
−w(𝑡,𝜏) | |2 |F (𝑡,0)

]
where𝑊 (𝑡,𝜏)

:= | |w(𝑡,𝜏)−w∗ | |2 and F (𝑡,0) is the 𝜎-field representing
all historical information up to the start of iteration 𝑡 .

Proof Sketch. It follows from Lemma 1 in [30], and further incor-

porates imbalanced local dataset sizes. See details in Appendix A.1.

□
Next, we show that all client iterates remain close to the vir-

tual/shadow sequence, i.e., the weighted average

∑
𝑘∈K 𝑑𝑘 | |w

(𝑡,𝜏)
𝑘

−
w(𝑡,𝜏) | |2 is bounded in expectation.

Lemma 2. Let 𝑉 (𝑡,𝜏) =
∑
𝑘∈K 𝑑𝑘 | |w

(𝑡,𝜏)
𝑘

−w(𝑡,𝜏) | |2, we have

E
[
𝑉 (𝑡,𝜏)

]
≤ 𝜏2max[

2𝐺2 + 2[2𝐺2 + 2𝜏max[
2Z 2 .

Proof Sketch. It is based on Lemma E.2 in [8], and makes necessary

extensions to incorporate caching.With the use of the cached global

model (K
cache

≠ ∅), we do not have𝑉 (𝑡,0) = 0 as in classic FedAvg,

thus should bound 𝑉 (𝑡,0)
carefully. See details in Appendix A.2.

□
Combining Lemma 1 and Lemma 2 leads to the following theo-

rem that gives the convergence bound of CacheFL:

Theorem 1. Under the aforementioned assumptions (i)-(v), if the
client learning rate satisfies [≤ 1

4𝐿
, then one has

E
[
𝐹 (w𝑇)

]
− 𝐹 (w∗) ≤ Δ2

2[𝜏max𝑇
+ [𝜎2𝑑sq + 2𝜏max[

2𝐿Z 2

+ 2[2𝐿𝐺2 + 𝜏2max[
2𝐿𝐺2, (17)

where Δ :=
√︁
1 + 𝑑cache · | |w(0,0)−w∗ | |,𝑑sq =

∑
𝑘∈K 𝑑

2

𝑘
, and𝑑cache =∑

𝑘∈Kcache 𝑑𝑘 . If further choosing the learning rate as

[= min

{
1

4𝐿
, Δ

𝑑
1

2

sq𝜏
1

2

max𝑇
1

2 𝜎

, Δ
2

3

𝜏
2

3

max𝐶

, Δ
2

3

𝜏
1

3

max𝐶

, Δ
2

3

𝜏max𝐶

}
,

where 𝐶 = 𝑇
1

3 𝐿
1

3𝐺
2

3 , we have

E[𝐹 (w𝑇)] − 𝐹 (w∗) ≤ 2𝐿Δ2

𝜏max𝑇
+

2𝑑
1

2

sq𝜎Δ√
𝜏max𝑇

+ 3𝐿
1

3 Z
2

3 Δ
4

3

𝜏
1

3

max𝑇
2

3

+ 3𝐿
1

3𝐺
2

3 Δ
4

3

𝜏
2

3

max𝑇
2

3

+ 2𝐿
1

3𝐺
2

3 Δ
4

3

𝑇
2

3

. (18)

Proof. Combining Lemma 1 and Lemma 2, we have

E
[

1

𝜏max

∑𝜏max

𝜏=1
𝐹 (w(𝑡,𝜏)) − 𝐹 (w∗) |F (𝑡,0)

]
≤ 1

2[𝜏max

(
𝑊 (𝑡,0) − E

[
𝑊 (𝑡,𝜏max) |F (𝑡,0)

])
+ [𝜎2∑𝑘∈K 𝑑2𝑘

+ 𝜏2
max

[2𝐿𝐺2 + 2[2𝐿𝐺2 + 2𝜏max[
2𝐿Z 2 . (19)

Let 𝑑server :=
∑
𝑘∈Kserver

𝑑𝑘 , by convexity, | |w(𝑡,0) − w∗ | |2 =

| |𝑑
cache

(w(𝑡−2,𝜏max) − w∗) + 𝑑server (w(𝑡−1,𝜏max) − w∗) | |2 ≤
𝑑
cache

| |w(𝑡−2,𝜏max) − w∗ | |2 + 𝑑server | |w(𝑡−1,𝜏max) − w∗ | |2, for

𝑡 ≥ 2. We also have | |w(1,0) − w∗ | |2 = | |𝑑
cache

(w(0,0) −
w∗) + 𝑑server (w(0,𝜏max) − w∗) | |2 ≤ 𝑑

cache
| |w(0,0) − w∗ | |2 +

𝑑server | |w(0,𝜏max) −w∗ | |2. Thus, by telescoping, we have∑𝑇−1
𝑡=0 (𝑊 (𝑡,0) −𝑊 (𝑡,𝜏max)) ≤ (1 + 𝑑

cache
) | |w(0,0) −w∗ | |2 .

By above, telescoping (19) with 𝑡 from 0 to 𝑇 − 1 and using the

convexity of 𝐹 , finishes the proof. □

Discussion. Compared to the convergence bound of FedAvg (e.g.,

Theorem 1 in [30]), the main difference is that CacheFL has an

extra term

√︁
1 + 𝑑

cache
in the definition of Δ. If no client uses the

cache (𝑑
cache

= 0), we recover the convergence bound for FedAvg

in [30]. If all clients use the cache (𝑑
cache

= 1), running CacheFL

is equivalent to running one FedAvg at the odd iterations and

running another FedAvg at the even iterations. Thus, CacheFL

intuitively needs twice the iterations to achieve the same error as

FedAvg. We also see this from the convergence bound, where we

have Δ2

CacheFL
= 2| |w(0,0) −w∗ | |2 = 2Δ2

FedAvg
. As 𝑇 increases the

expected error is dominated by the second term of the RHS in (18).

Thus, having Δ2

CacheFL
= 2Δ2

FedAvg
leads to the same result that

CacheFL needs twice iterations for the same error.

Cache-Enabled Federated Learning Systems MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

For arbitrary 𝑑
cache

, by (18) and letting the expected error be

smaller than 𝜖 , we have the following bound on 𝑇 ,

𝑇 (𝜖) = O
(
𝐿Δ2

𝜏max𝜖
+ 𝑑sq𝜎

2Δ2

𝜏max𝜖
2
+ 𝐿

1

2 ZΔ2

𝜏
1

2

max
𝜖
3

2

+ 𝐿
1

2𝐺Δ2

𝜏max𝜖
3

2

+ 𝐿
1

2𝐺Δ2

𝜖
3

2

)
, (20)

where Δ2 = (1+𝑑
cache

) | |w(0,0)−w∗ | |2, which gives the dependence
of𝑇 on 𝑑

cache
, i.e.,𝑇 ∝ 1 +𝑑

cache
. In Sec. 5, we use this dependence

to approximate the total number of iterations required for training.

Partial client participation.While we mainly focus on full client

participation in this section, we also provide the following initial re-

sult with client sampling: in each iteration 𝑡 , a subset S (𝑡)
of clients

with |S (𝑡) | = 𝑆 , is sampled uniformly from 𝐾 clients for training.

For 𝑘 ∈ S (𝑡)
, the local update is given by w(𝑡,𝜏+1)

𝑘
= w(𝑡,𝜏+1)

𝑘
−

` 𝐾
𝑆
g(𝑡,𝜏)
𝑘

, such that ES (𝑡)
1

𝐾

∑
𝑘∈S (𝑡)

𝐾
𝑆
g(𝑡,𝜏)
𝑘

= 1

𝐾

∑
𝑘∈K g(𝑡,𝜏)

𝑘
.

Theorem 2. Under the aforementioned assumptions (ii)-(v) with
the above client sampling and local update methods, if the client
learning rate satisfies [≤ 1

4𝐿
and 𝑑𝑘 = 1

𝐾
for all 𝑘 ∈ K , then

E
[
𝐹 (w𝑇)

]
− 𝐹 (w∗) ≤ Δ2

2[𝜏max𝑇
+ [𝜎

2

𝐾
+ 2𝜏max[

2𝐿Z 2

+ 2[2 𝐾
𝑆
𝐿𝐺2 + 3

𝑆
𝐾−𝑆 𝜏

2

max[
2𝐿𝐺2, (21)

where Δ :=

√︃
1 + 𝑆

𝐾
𝐾cache
𝐾

· | |w(0,0) −w∗ | |.

Proof. See details in Appendix B. □

5 OPTIMIZING OVERALL TRAINING TIME

In this section, we formulate optimization problems to decide the

client partition strategy that minimizes the overall wall-clock train-

ing time of CacheFL by minimizing the following trade-off: As

shown in Sec. 3, the global per-iteration training time T is a non-

increasing set function of K
cache

. If more clients use the cache to

reduce their delay, then there is a chance to decrease T more. On

the other hand, as discussed in Sec. 4, an increase of the clients in

K
cache

leads to an increase in the number of needed iterations 𝑇 .2

By (20), we upper bound the total number of iterations needed

for CacheFL to reach a certain error as

𝑇 = 𝑎 × (1 + 𝑑
cache

) = 𝑎 × (1 +∑
𝑘∈K 𝑑𝑘𝑥𝑘), (22)

where 𝑎 is a constant and 𝑥𝑘 ∈ {0, 1}, 𝑘 ∈ K , are the decision

variables indicating whether client 𝑘 uses the cache, i.e., K
cache

=

{𝑘 |𝑥𝑘 = 1, 𝑘 ∈ K} and Kserver = {𝑘 |𝑥𝑘 = 0, 𝑘 ∈ K}. Let x =

{𝑥𝑘 }𝑘∈K be the vector of decision variables that we will optimize.

Let 𝑇 𝑡
DL,𝑘

, 𝑇 𝑡
UL,𝑘

, and 𝑇 𝑡
COMP,𝑘

be the time needed for client 𝑘

to download the global model from the server, upload the local

model to the server, and finish local computation at 𝑡-th iteration,

respectively. As discussed in Sec. 3, the time for 𝑘 ∈ Kserver to

finish the 𝑡-th iteration is

T 𝑡
𝑘

= 𝑇 𝑡
UL,𝑘

+𝑇 𝑡
COMP,𝑘

+𝑇 𝑡
DL,𝑘

,

and the time for 𝑘 ∈ K
cache

to finish the 𝑡-th iterations (i.e., T 𝑡
cache,𝑘

)

varies for different caching schemes and is summarized in Table 1.

2
This section considers full client participation, using Theorem 1, but it is ready to be

extended to the partial client participation case.

Algorithm 2: Prob. (23)

Input: 𝑥1 = · · · = 𝑥𝐾 = 0, xout = x0 = x
1 Compute 𝑇min = TIME(x0), Tmax = T (x0)
2 for 𝑘 = 0, 1, . . . , 𝐾 do

3 If Tmax > T𝑘 : Break
4 Set 𝑥𝑘 = 1 and x𝑘 = x
5 Compute Tmax = T (x𝑘)
6 If 𝑇min > TIME(x𝑘): 𝑇min = TIME(x𝑘), xout = x𝑘
7 end

8 return xout

Then, the training time for 𝑡-th iteration is,

T 𝑡 = max

{{
T 𝑡
cache,𝑘

· 𝑥𝑘
}
𝑘∈K

,

{
T 𝑡
𝑘

· (1 − 𝑥𝑘)
}
𝑘∈K

}
We formulate optimization problems considering different cases

of transmission and computation delay, i.e., deterministic, offline

random, and online random:

Deterministic case. We start with the transmission delay and

computation delay being fixed, i.e.,𝑇 𝑡
DL,𝑘

= 𝑇
DL,𝑘 ,𝑇

𝑡
UL,𝑘

= 𝑇
UL,𝑘 , and

𝑇 𝑡
COMP,𝑘

= 𝑇
COMP,𝑘 for all 𝑡 . Thus, we have T 𝑡 = T being constant

across 𝑡 . This assumption relates to cross-silo FL, where clients

have static and reliable links with the server, and allocate abundant

computation resources for local updates [42]. We formulate the

following problem to minimize the total wall-clock time of training:

min TIME = T ·𝑇 (23)

s.t. 𝑥𝑘 ∈ {0, 1},∀𝑘 ∈ K (24)

Though the problem is an integer optimization problem, which is

often hard to solve in reasonable time, we exploit the structure

of (23) to derive an efficient algorithm. Assume the clients being

indexed in decreasing order with the value T𝑘 = 𝑇
DL,𝑘 +𝑇COMP,𝑘 +

𝑇
UL,𝑘 . Prob. (23) can be solved by trying at most 𝐾 + 1 candidate

solutions x𝑘 for 𝑘 = 0, . . . , 𝐾 such that each of them set the first 𝑘

decision variables to 1 and the remaining to 0 (i.e., 𝑥1 = · · · = 𝑥𝑘 = 1

and 𝑥𝑘+1 = · · · = 𝑥𝐾 = 0). The final solution is the candidate with

minimum TIME. We formalize the procedure in Alg. 2.

Theorem 3. Alg. 2 finds the optimal solution of Problem (23)

with O(𝐾) time complexity for sorted clients.

Proof. T and𝑇 are non-increasing and non-decreasing set func-

tions of K
cache

. Moreover, for 𝑖 < 𝑗 and 𝑥𝑖 = 0, setting 𝑥 𝑗 to 0 or 1

leads to the same T , as T𝑖 ≥ T𝑗 ≥ T
cache, 𝑗 . Then, for any solution

x′ aside from the candidates, suppose the first 𝑘 coordinates are

1, and the (𝑘 + 1)-th is not, then we can set all coordinates after

𝑘 + 1 to zero, making T unchanged but 𝑇 decrease, leading to a

better solution, our candidate x𝑘 . Thus, trying x𝑘 for 𝑘 = 0, . . . , 𝐾

guarantees that we can find the optimal solution. This traversal can

stop earlier when finding T (x𝑘) ≥ T𝑘+1 (line 5 in Alg. 2), as further

assigning client 𝑖 > 𝑘 to K
cache

will not further reduce T . □

Offline random case.We now assume that the transmission delay

and computation delay are stationary random processes indexed

by 𝑡 , with E[𝑇 𝑡
DL,𝑘

] = `
DL,𝑘 , E[𝑇 𝑡

UL,𝑘
] = `

UL,𝑘 , and E[𝑇 𝑡
COMP,𝑘

] =
`
COMP,𝑘 . This assumption corresponds especially to cross-device

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Liu, et al.

FL that runs during off-peak hours, where the delay can vary from

time to time but their statistics are rather stable. In this case, the

statistics of the random delay can be collected beforehand (offline).

We wish to minimize the expected wall-clock time of training,

i.e., E[T 𝑡] ·𝑇 . However, in general, we cannot compute the closed-

form expression ofE[T 𝑡], the expectation of themaxima of random

variables, which motivates us to consider approximations. For such

expectation and with any distribution of the delays, Hamza’s theory

[11] provides a bound. As T 𝑡
cache,𝑘

has different expressions for

different caching schemes, we choose the caches at clients case

(Fig. 1(b)) as an example, where T 𝑡
cache,𝑘

is given by (5). For other

systems, we can obtain similar bounds with Hamaza’s theory.

Lemma 3 (Theorem 1 in [11]). For T 𝑡cache,𝑘 given by (5), we have

` ≤ E[T 𝑡] ≤ ` + 3𝐾 − 1

3𝐾
`max, where

` = 1

3𝐾

(∑
𝑘∈K (𝑀

1,𝑘 +𝑀2,𝑘) · 𝑥𝑘 +
∑
𝑘∈K 𝑀

3,𝑘 · (1 − 𝑥𝑘)
)
,

`max = max

{{
𝑀
1,2,𝑘 · 𝑥𝑘

}
𝑘∈K ,

{
𝑀
3,𝑘 · (1 − 𝑥𝑘)

}
𝑘∈K

}
,

and 𝑀
1,2,𝑘 = max{𝑀

1,𝑘 , 𝑀2,𝑘 }, with 𝑀1,𝑘 , 𝑀2,𝑘 , and 𝑀3,𝑘 be the
expectations of the maxima of 3𝐾 copies of the random variables
𝑇 𝑡UL,𝑘 +𝑇 𝑡COMP,𝑘 , 𝑇

𝑡
DL,𝑘 and 𝑇 𝑡UL,𝑘 +𝑇

𝑡
COMP,𝑘 +𝑇 𝑡DL,𝑘 , respectively.

Thus, one can approximate E[T 𝑡] by ` or `max. A remaining

challenge is that𝑀
1,𝑘 ,𝑀2,𝑘 and𝑀

3,𝑘 usually also have no closed-

form values for arbitrary 𝐾 . For certain distributions, nice ap-

proximations exist [13]: if the communication and computation

delay are Gaussian random variables: 𝑇 𝑡
DL,𝑘

∼ 𝑁 (`
DL,𝑘 , 𝜎

2

DL,𝑘
),

𝑇 𝑡
UL,𝑘

∼ 𝑁 (`
UL,𝑘 , 𝜎

2

UL,𝑘
), and 𝑇 𝑡

COMP,𝑘
∼ 𝑁 (`

COMP,𝑘 , 𝜎
2

COMP,𝑘
),

when 𝐾 → ∞, we have

𝑀
1,𝑘 = `

UL,𝑘 + `
COMP,𝑘 +

√︃
2(𝜎2

UL,𝑘
+ 𝜎2

COMP,𝑘
) ·

√︁
log𝐾,

and𝑀
2,𝑘 ,𝑀3,𝑘 can be computed similarly. For arbitrary distribution

and smaller 𝐾 , we use sampling to estimate𝑀
1,𝑘 ,𝑀2,𝑘 and𝑀

3,𝑘 , as

the statistics of each delay are already known in the offline random

case, and the sampling is needed only once before the training.

If we approximate E[T 𝑡] by `max, we have

min `max ·𝑇 subject to Eq. (24) (25)

which has the same form as Prob. (23), and the same algorithm with

O(𝐾) complexity can find its optimal solution.

Another option is approximating E[T 𝑡] by `. We have

min ` ·𝑇 subject to Eq. (24) (26)

which is a quadratic unconstrained binary optimization (QUBO)

problem, and can be solved by traditional combinatorial optimiza-

tion methods, such as Simulated Annealing.

Online random case.We further consider the transmission and

computation delay as non-stationary random processes. The statis-

tics are changing as in cross-device FL with clients having limited

computing resources (training processes need to compete with

other processes) and unreliable wireless communication links [30].

In this case, client partition needs to change over time with the

evolution of delay processes, and we should predict the delay for

each iteration using past observations. Gaussian Process Regression

(GPR) is a candidate method for prediction, which is nonparametric

and provides an analytical way to measure the uncertainty of the

0.5 0.6 0.7 0.8 0.9 1.0
Cache−OPT / FedAvg

0.000

0.025

0.050

0.075

0.100

0.125

Fr
eq

ue
nc

y

Mean: 0.72

Figure 3: Distribution of per-iteration delay of Cache-OPT.

Compared with FedAvg, CacheFL-OPT reduces the per-

iteration delay by 28% on average.

prediction [14]. While other prediction methods are also possible,

their selection is out of the scope of this paper.

At the 𝑡-th iteration, given the predicted delay 𝑇 𝑡
DL,𝑘

, 𝑇 𝑡
UL,𝑘

,

and 𝑇 𝑡
COMP,𝑘

, we can compute
ˆT 𝑡
cache,𝑘

(which varies for different

caching schemes) and
ˆT 𝑡
𝑘

= 𝑇 𝑡
COMP,𝑘

+ 𝑇 𝑡
UL,𝑘

+ 𝑇 𝑡
DL,𝑘

. Then, the

predicted per-iteration training time for this iteration is,

ˆT 𝑡 = max

{{
ˆT 𝑡
cache,𝑘

· 𝑥𝑘
}
𝑘∈K

,

{
ˆT 𝑡
𝑘

· (1 − 𝑥𝑘)
}
𝑘∈K

}
.

To decide the appropriate client partition in each iteration 𝑡 , we

formulate the following heuristic problem,

min
ˆT 𝑡 · (1 +∑

𝑘∈K 𝑑𝑘𝑥𝑘) s.t. Eq. (24) (27)

This problem is again of the same form as Prob. (23) and can be

solved in O(𝐾) time. Note that by (20), the remaining number of

iterations at any iteration can also be approximated as a constant

times 1+𝑑
cache

. Thus, by solving the above problem at each iteration

𝑡 , one greedily minimizes the remaining wall-clock training time,

assuming the estimation𝑇 𝑡
DL,𝑘

,𝑇 𝑡
UL,𝑘

, and𝑇 𝑡
COMP,𝑘

are the delay for

the following iterations.

Extending the convergence analysis in Sec. 4, we can show that

CacheFL can still converge if we change the client partition from

time to time. From the practical design perspective, we may set

Kserver = K for the first few iterations, as the estimation is not

accurate enough. Changing the partition of K
cache

and Kserver

by solving Prob. (27) can also be done less frequently, only when

there is a large change in the prediction of the delay, instead of in

every iteration. The server can adjust caching strategy in real-time

without significant overhead, as clients can collect past observations

of their own delays and use them to predict future delays. This

information can be sent to the server when the server and clients

exchange control information.

6 NUMERICAL EVALUATION

Wenow present empirical results of CacheFL comparedwith several

baselines, to show the advantage of cache-enabled systems.
3

Experiment Setting. We consider synthetic and real datasets, cu-

rated from prior work in FL: synthetic data Synthetic(1,1) [20],

and real image data MNIST [18], CIFAR-10 [17], and FMNIST [34].

We study both convex and non-convex classification problems on

3
Our code and data are publicly available at https://github.com/NormanLiu/CacheFL.

https://github.com/NormanLiu/CacheFL

Cache-Enabled Federated Learning Systems MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

(a) Synthetic(1,1) (b) MNIST-iid (c) MNIST-noniid (d) CIFAR10-iid (e) CIFAR10-noniid

Figure 4: Convergence comparison of different algorithms in iterations and wall-clock time, with logistic regression.

these datasets using logistic regression, MLP, and CNN with cross-

entropy loss. We consider 𝐾 = 50 clients.
4
The number of data

samples at each client is imbalanced, decided by the Zipf distribu-

tion with power 2 and scaled by 50, leading to the minimum and

maximum local dataset sizes of 50 and 700. Synthetic(1,1) generates

non-i.i.d. data for each client. For MNIST, CIFAR-10 and FMNIST,

we consider both i.i.d. and non-i.i.d. data partitions. In the latter

case, each client has samples of 2 classes out of 10.

To compare the wall-clock training time, we simulate the up-

link/downlink transmission delay and computation delay as follows:

The computation delay in each iteration is randomly sampled from

a real-world trace, collected as in [27], with values from 2 to 25.

The downlink/uplink transmission throughput of client 𝑘 in each

iteration is randomly sampled from the Mobiperf trace [23], with

resulting transmission delay ranging from 2 to 50. The compared

FL algorithms include FedAvg [22] and the following:

• CacheFL-OPT: The proposed scheme given by Alg. 1, with

K
cache

and Kserver decided by solving Prob. (25).

• CacheFL-random: Alg. 1, with a random client partition,

changed every 10 iterations.

• FedAvg-stragglers: FedAvg with clients in K
cache

(as strag-

glers) being excluded from the training process.

• FedProx [20], with penalty constant set to 0.1.

The learning rate is set to 0.05 for CNN and decided by grid-

search as in [32] for logistic regression and MLP. The number of

local epochs is 5. The mini-batch size is 10 for logistic regression

and 5 for MLP and CNN.

Per-iteration training time. We show how CacheFL-OPT can

efficiently reduce the per-iteration training time in Fig. 3, which

gives the distribution of T
CacheFL-OPT

/T
FedAvg

in 200 iterations of

training, where T
CacheFL-OPT

and T
FedAvg

are the per-iteration train-

ing time of CacheFL-OPT and FedAvg (no caching). CacheFL-OPT

can reduce the per-iteration delay by 28% on average and by 45%

(nearly reducing it by half) in the best iteration.

Convergence in iterations and wall-clock time.We compare

different algorithms in training logistic regression in Fig. 4. The first

4
We consider full client participation in the experiments. Additional experiments

with partial client participation and with a larger number of clients are included in

Appendix C.

(a) MLP on non-i.i.d. MNIST (b) CNN on non-i.i.d. FMNIST

Figure 5: Convergence comparisons in wall-clock time, when

training MLP and CNN, respectively.

row and the second row compare the convergence in iterations and

wall-clock time, respectively. For all datasets, CacheFL-OPT has a

convergence rate close to those of FedAvg and FedProx, even though

clients inK
cache

make local updates based on cached global models,

meaning that the penalty for caching in terms of the number of

iterations for convergence is not significant and the saving in the

time per iteration will be the deciding factor. Thus, CacheFL-OPT

has the fastest convergence in wall-clock time due to its ability to

reduce T . This advantage of CacheFL-OPT is more significant in

harder learning problems that need more iterations to converge (e.g.

Fig 4(d) and 4(e)). Moreover, though FedAvg-stragglers reduces T
by excluding stragglers, its training loss is much larger than others,

especially on non-i.i.d. local datasets, due to having fewer samples

for training. Lastly, CacheFL-random fails to improve the training

time over FedAvg and FedProx, with no optimization in the client

partition. The randomly decided client partition cannot efficiently

reduce T while possibly reducing the convergence rate by letting

too many clients use outdated global models. This emphasizes the

need of optimizing client partition (as in Sec. 5).

In Fig. 5, we present the results of training an MLP on non-

i.i.d. MNIST and training a CNN on non-i.i.d. FMNIST, respectively.

CacheFL-OPT still has the fastest convergence in wall-clock time

when solving non-convex problems, especially for CNN on FMNIST,

while CacheFL-random performs badly, further emphasizing the

need of optimizing client partition (as discussed in Sec. 5).

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Liu, et al.

102 103

Wall-clock Time

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random
FedAsync

102 103

Wall-clock time
0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random
FedAsync

Figure 6: Comparison with asynchronous FL, with logistic

regression on non-i.i.d. MNIST.

Comparison with asynchronous FL. Asynchronism is another

mechanism to mitigate the straggler issue. In Fig. 6, we compare

CacheFL-OPT with FedAsync [35], the asynchronous implemen-

tation of FedAvg where clients aggregate their local models asyn-

chronously to the global model with weights being dependent on

the staleness. FedAsync proceeds faster in the beginning, as fast

clients finish more local updates and model aggregation because of

asynchronism. However, FedAsync becomes slower than CacheFL-

OPT later due to larger staleness in clients’ local models.

7 CONCLUSION

In this paper, we design cache-enabled federated learning systems,

which allow clients to reduce per-iteration delay by making local

updates based on cached global models. We formulate and solve

for caching strategies that minimize the overall wall-clock training

time of FedAvg in the proposed systems.

Our current theoretical analysis focuses on convex loss functions.

The extension to non-convex loss is a future direction. Moreover,

the implementation of other algorithms in the proposed systems

and the combination with other efficiency-improving techniques

(e.g., compression) are also possible future directions.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from NSF (grants

2107062 and 2106891) and ARO grant W911NF-23-2-0014.

REFERENCES

[1] Duane Buck and Mukesh Singhal. 1996. An analytic study of caching in computer

systems. J. Parallel and Distrib. Comput. 32, 2 (1996), 205–214.
[2] Chen Chen, Hong Xu, Wei Wang, Baochun Li, Bo Li, Li Chen, and Gong Zhang.

2021. Communication-efficient federated learning with adaptive parameter

freezing. In 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). IEEE, 1–11.

[3] Mingzhe Chen, H Vincent Poor, Walid Saad, and Shuguang Cui. 2020. Conver-

gence time optimization for federated learning over wireless networks. IEEE
Transactions on Wireless Communications 20, 4 (2020), 2457–2471.

[4] Mingzhe Chen, Zhaohui Yang, Walid Saad, Changchuan Yin, H Vincent Poor,

and Shuguang Cui. 2020. A joint learning and communications framework

for federated learning over wireless networks. IEEE Transactions on Wireless
Communications 20, 1 (2020), 269–283.

[5] Alp Emre Durmus, Zhao Yue, Matas Ramon, Mattina Matthew, Whatmough

Paul, and Saligrama Venkatesh. 2021. Federated Learning Based on Dynamic

Regularization. In International Conference on Learning Representations.
[6] Fangcheng Fu, Xupeng Miao, Jiawei Jiang, Huanran Xue, and Bin Cui. 2022.

Towards communication-efficient vertical federated learning training via cache-

enabled local updates. arXiv preprint arXiv:2207.14628 (2022).
[7] Google. 2022. How Messages improves suggestions with federated technology.

https://support.google.com/messages/answer/9327902 Last accessed 22 July 2022.

[8] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. 2021. Local sgd: Unified the-

ory and new efficient methods. In International Conference on Artificial Intelligence
and Statistics. PMLR, 3556–3564.

[9] Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. 2021. Fast

federated learning in the presence of arbitrary device unavailability. Advances in
Neural Information Processing Systems 34 (2021), 12052–12064.

[10] Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad

Mahdavi. 2021. Federated learning with compression: Unified analysis and sharp

guarantees. In International Conference on Artificial Intelligence and Statistics.
PMLR, 2350–2358.

[11] Kais Hamza, Peter Jagers, Aidan Sudbury, and Daniel Tokarev. 2009. The mixing

advantage is less than 2. Extremes 12, 1 (2009), 19–31.
[12] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise

Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-

age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[13] Gautam Kamath. 2015. Bounds on the expectation of the maximum of samples

from a gaussian. (2015). www.gautamkamath.com/writings/gaussian_max.pdf

[14] Mehmet Karaca, Tansu Alpcan, and Ozgur Ercetin. 2019. Smart Scheduling and

Feedback Allocation over Non-stationary Wireless Channels. arXiv preprint
arXiv:1911.03632 (2019).

[15] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-

tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled

averaging for federated learning. In International Conference on Machine Learning.
PMLR, 5132–5143.

[16] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016.

Federated optimization: Distributed machine learning for on-device intelligence.

arXiv preprint arXiv:1610.02527 (2016).

[17] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images. (2009).

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE (1998), 2278–2324.

[19] Dongsheng Li, Yuxi Zhao, and Xiaowen Gong. 2021. Quality-Aware distributed

computation and communication scheduling for fast convergent wireless feder-

ated learning. In 2021 19th International Symposium on Modeling and Optimization
in Mobile, Ad hoc, and Wireless Networks (WiOpt). IEEE, 1–8.

[20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,

and Virginia Smith. 2020. Federated optimization in heterogeneous networks.

Proceedings of Machine Learning and Systems 2 (2020), 429–450.
[21] Yuezhou Liu, Yuanyuan Li, Lili Su, Edmund Yeh, and Stratis Ioannidis. 2022.

Experimental design networks: A paradigm for serving heterogeneous learn-

ers under networking constraints. In IEEE INFOCOM 2022-IEEE Conference on
Computer Communications. IEEE, 210–219.

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Artificial intelligence and statistics. PMLR.

[23] Mobiperf. [n. d.]. https://www.measurementlab.net/tests/mobiperf/.

[24] Georgios Paschos, George Iosifidis, Giuseppe Caire, et al. 2020. Cache optimiza-

tion models and algorithms. Foundations and Trends® in Communications and
Information Theory 16, 3–4 (2020), 156–345.

[25] Dario Rossi and Giuseppe Rossini. 2011. Caching performance of content cen-

tric networks under multi-path routing (and more). Relatório técnico, Telecom
ParisTech 2011 (2011), 1–6.

[26] Yichen Ruan, Xiaoxi Zhang, and Carlee Joe-Wong. 2021. How valuable is your

data? optimizing client recruitment in federated learning. In 2021 19th Interna-
tional Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless
Networks (WiOpt). IEEE, 1–8.

[27] Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, and Carlee Joe-Wong. 2021. Towards

flexible device participation in federated learning. In International Conference on
Artificial Intelligence and Statistics. PMLR, 3403–3411.

[28] Zai Shi and Atilla Eryilmaz. 2021. Communication-efficient Subspace Methods

for High-dimensional Federated Learning. In 2021 17th International Conference
on Mobility, Sensing and Networking (MSN). IEEE, 543–550.

[29] Sebastian U Stich and Sai Praneeth Karimireddy. 2020. The error-feedback

framework: Better rates for SGD with delayed gradients and compressed updates.

Journal of Machine Learning Research 21 (2020), 1–36.

[30] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMa-

han, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly,

Deepesh Data, et al. 2021. A field guide to federated optimization. arXiv preprint
arXiv:2107.06917 (2021).

[31] Su Wang, Yichen Ruan, Yuwei Tu, Satyavrat Wagle, Christopher G Brinton, and

Carlee Joe-Wong. 2021. Network-aware optimization of distributed learning for

fog computing. IEEE/ACM Transactions on Networking 29, 5 (2021), 2019–2032.

[32] Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins,

Brendan Mcmahan, Ohad Shamir, and Nathan Srebro. 2020. Is local SGD better

than minibatch SGD?. In International Conference on Machine Learning. PMLR.

[33] Yuting Wu, Yanxiang Jiang, Mehdi Bennis, Fuchun Zheng, Xiqi Gao, and Xiaohu

You. 2020. Content popularity prediction in fog radio access networks: A feder-

ated learning based approach. In ICC 2020-2020 IEEE International Conference on
Communications (ICC). IEEE, 1–6.

https://support.google.com/messages/answer/9327902
www.gautamkamath.com/writings/gaussian_max.pdf
https://www.measurementlab.net/tests/mobiperf/

Cache-Enabled Federated Learning Systems MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

[34] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel

image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[35] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated

optimization. arXiv preprint arXiv:1903.03934 (2019).
[36] Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. 2021. Asynchro-

nous federated learning on heterogeneous devices: A survey. arXiv preprint
arXiv:2109.04269 (2021).

[37] Hang Xu, Chen-Yu Ho, AhmedMAbdelmoniem, Aritra Dutta, El Houcine Bergou,

Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis. 2020. Compressed
communication for distributed deep learning: Survey and quantitative evaluation.
Technical Report.

[38] Haibo Yang, Jia Liu, and Elizabeth S Bentley. 2021. CFedAvg: achieving efficient

communication and fast convergence in non-iid federated learning. In 2021 19th
International Symposium on Modeling and Optimization in Mobile, Ad hoc, and
Wireless Networks (WiOpt). IEEE, 1–8.

[39] Shuai Yu, Xu Chen, Zhi Zhou, Xiaowen Gong, and Di Wu. 2020. When deep rein-

forcement learning meets federated learning: Intelligent multitimescale resource

management for multiaccess edge computing in 5G ultradense network. IEEE
Internet of Things Journal 8, 4 (2020), 2238–2251.

[40] Zhengxin Yu, Jia Hu, Geyong Min, Zi Wang, Wang Miao, and Shancang Li. 2021.

Privacy-preserving federated deep learning for cooperative hierarchical caching

in fog computing. IEEE Internet of Things Journal (2021).
[41] Zhengxin Yu, Jia Hu, Geyong Min, Zhiwei Zhao, Wang Miao, and M Shamim

Hossain. 2020. Mobility-aware proactive edge caching for connected vehicles

using federated learning. IEEE Transactions on Intelligent Transportation Systems
22, 8 (2020), 5341–5351.

[42] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. 2020.

{BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo} federated

learning. In 2020 USENIX annual technical conference (USENIX ATC 20). 493–506.
[43] Yupeng Zhang, Lingjie Duan, and Ngai-Man Cheung. 2022. Accelerating Fed-

erated learning on non-IID data against stragglers. In 2022 IEEE International
Conference on Sensing, Communication, and Networking (SECON Workshops).

[44] Xin-Ying Zheng, Ming-Chun Lee, and Y-W Peter Hong. 2021. Knowledge Caching

for Federated Learning. In 2021 IEEE Global Communications Conference (GLOBE-
COM). IEEE, 1–6.

A FULL CLIENT PARTICIPATION

This section includes the proofs of two lemmas for Theorem 1,

which gives the convergence bound of CacheFL when we consider

full client participation. The proofs are based on assumptions 1-5.

A.1 Proof of Lemma 1

By (9) and (16), we have w(𝑡,𝜏+1) = w(𝑡,𝜏) − [∑𝑘∈K 𝑑𝑘g(𝑡,𝜏)𝑘
, and

by parallelogram identity,∑︁
𝑘∈K

𝑑𝑘 ⟨g
(𝑡,𝜏)
𝑘

,w(𝑡,𝜏+1) −w∗⟩ = 1

2[
(| |w(𝑡,𝜏) −w∗ | |2

− ||w(𝑡,𝜏+1) −w(𝑡,𝜏) | |2 − ||w(𝑡,𝜏+1) −w∗ | |2) .
(28)

By convexity and 𝐿-smoothness of 𝐹𝑘 , we have

𝐹𝑘 (w(𝑡,𝜏+1))

≤ 𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) + ⟨∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

),w(𝑡,𝜏+1) −w(𝑡,𝜏)
𝑘

⟩

+ 𝐿
2

| |w(𝑡,𝜏+1) −w(𝑡,𝜏)
𝑘

| |2 (smoothness)

≤ 𝐹𝑘 (w∗) + ⟨∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

),w(𝑡,𝜏+1) −w∗⟩

+ 𝐿
2

| |w(𝑡,𝜏+1) −w(𝑡,𝜏)
𝑘

| |2 (convexity)

≤ 𝐹𝑘 (w∗) + ⟨∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

),w(𝑡,𝜏+1) −w∗⟩

+ 𝐿 | |w(𝑡,𝜏+1) −w(𝑡,𝜏) | |2 + 𝐿 | |w(𝑡,𝜏)
𝑘

−w(𝑡,𝜏) | |2, (29)

where the last step is due to triangle inequality. Combining (28)

and (29) yields

𝐹 (w(𝑡,𝜏+1)) − 𝐹 (w∗) =
∑︁
𝑘∈K

𝑑𝑘 (𝐹𝑘 (w(𝑡,𝜏+1)) − 𝐹𝑘 (w∗))

≤
∑︁
𝑘∈K

𝑑𝑘 ⟨∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) − g(𝑡,𝜏)
𝑘

,w(𝑡,𝜏+1) −w∗⟩

+ 𝐿 | |w(𝑡,𝜏+1) −w(𝑡,𝜏) | |2 + 𝐿
∑︁
𝑘∈K

𝑑𝑘 | |w
(𝑡,𝜏)
𝑘

−w(𝑡,𝜏) | |2

+ 1

2[
(| |w(𝑡,𝜏) −w∗ | |2 − ||w(𝑡,𝜏+1) −w(𝑡,𝜏) | |2 − ||w(𝑡,𝜏+1) −w∗ | |2) .

(30)

Since E[∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) − g(𝑡,𝜏)
𝑘

|F (𝑡,𝜏)] = 0, we have

E[
∑︁
𝑘∈K

𝑑𝑘 ⟨∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) − g(𝑡,𝜏)
𝑘

,w(𝑡,𝜏+1) −w∗⟩|F (𝑡,𝜏)]

=E[
∑︁
𝑘∈K

𝑑𝑘 ⟨∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) − g(𝑡,𝜏)
𝑘

,w(𝑡,𝜏+1) −w(𝑡,𝜏) ⟩|F (𝑡,𝜏)]

≤[E[| |
∑︁
𝑘∈K

𝑑𝑘 (∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) − g(𝑡,𝜏)
𝑘

) | |2 |F (𝑡,𝜏)]

+ 1

4[
E[| |w(𝑡,𝜏+1) −w(𝑡,𝜏) | |2 |F (𝑡,𝜏)]

≤[𝜎2
∑︁
𝑘∈K

𝑑2
𝑘
+ 1

4[
E[| |w(𝑡,𝜏+1) −w(𝑡,𝜏) | |2 |F (𝑡,𝜏)], (31)

where the first inequality is by Young’s inequality and the last one

is by the bounded covariance assumption and independence across

clients. Plugging (31) back to the conditional expectation of (30)

yields

E[𝐹 (w(𝑡,𝜏+1)) − 𝐹 (w∗) |F (𝑡,𝜏)]

+ 1

2[
(E[| |w(𝑡,𝜏+1) −w∗ | |2 |F (𝑡,𝜏)] − ||w(𝑡,𝜏) −w∗ | |2)

≤[𝜎2
∑︁
𝑘∈K

𝑑2
𝑘
− (1

4[
− 𝐿)E[| |w(𝑡,𝜏+1) −w(𝑡,𝜏) | |2 |F (𝑡,𝜏)]

+ 𝐿
∑︁
𝑘∈K

𝑑𝑘 | |w
(𝑡,𝜏)
𝑘

−w(𝑡,𝜏) | |2

[≤ 1

4𝐿≤ [𝜎2
∑︁
𝑘∈K

𝑑2
𝑘
+ 𝐿

∑︁
𝑘∈K

𝑑𝑘 | |w
(𝑡,𝜏)
𝑘

−w(𝑡,𝜏) | |2

By the law of total expectation, telescoping 𝜏 from 0 to 𝜏max − 1

yields

E[1

𝜏max

𝜏max∑︁
𝜏=1

𝐹 (w(𝑡,𝜏)) − 𝐹 (w∗) |F (𝑡,0)]

≤ 1

2[𝜏max

(| |w(𝑡,0) −w∗ | |2 − E[| |w(𝑡,𝜏max) −w∗ | |2 |F (𝑡,0)])

+[𝜎2
∑︁
𝑘∈K

𝑑2
𝑘
+ 𝐿

𝜏max

𝜏max−1∑︁
𝜏=0

∑︁
𝑘∈K

𝑑𝑘E[| |w
(𝑡,𝜏)
𝑘

−w(𝑡,𝜏) | |2 |F (𝑡,0)] .

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Liu, et al.

A.2 Proof of Lemma 2

Let g(𝑡,𝜏) =
∑
𝑘∈K 𝑑𝑘g

(𝑡,𝜏)
𝑘

, we have

𝑉 (𝑡,𝜏+1) =
∑︁
𝑘∈K

𝑑𝑘 | |w
(𝑡,𝜏)
𝑘

−w(𝑡,𝜏) − [g(𝑡,𝜏)
𝑘

+ [g(𝑡,𝜏) | |2

= 𝑉 (𝑡,𝜏) + 2[
∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

, g(𝑡,𝜏)
𝑘

− g(𝑡,𝜏) ⟩

+ [2
∑︁
𝑘∈K

𝑑𝑘 | |g
(𝑡,𝜏)
𝑘

− g(𝑡,𝜏) | |2

= 𝑉 (𝑡,𝜏) + 2[
∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

, g(𝑡,𝜏)
𝑘

⟩

+ [2
∑︁
𝑘∈K

𝑑𝑘 | |g
(𝑡,𝜏)
𝑘

− g(𝑡,𝜏) | |2

Take the conditional expectation on both sides,

E[𝑉 (𝑡,𝜏+1) |F (𝑡,𝜏)] ≤ 𝑉 (𝑡,𝜏) + [2
∑︁
𝑘∈K

𝑑𝑘E[| |g
(𝑡,𝜏)
𝑘

| |2 |F (𝑡,𝜏)]

+ 2[
∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

,∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

)⟩, (32)

where the inequality is derived using variance decomposition (the

variance of 𝑋 equal to the expectation of 𝑋 squared minus the

expected value of 𝑋 squared), i.e.,∑︁
𝑘∈K

𝑑𝑘 | |g
(𝑡,𝜏)
𝑘

− g(𝑡,𝜏) | |2 =
∑︁
𝑘∈K

𝑑𝑘 | |g
(𝑡,𝜏)
𝑘

| |2 − ||g(𝑡,𝜏) | |2

≤
∑︁
𝑘∈K

𝑑𝑘 | |g
(𝑡,𝜏)
𝑘

| |2

The last term in (32) can be further bounded as∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

,∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

)⟩

=
∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

,∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) − ∇𝐹𝑘 (w(𝑡,𝜏))⟩

+
∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

,∇𝐹𝑘 (w(𝑡,𝜏))⟩

where the first term is non-positive by convexity, and the second

term equals to

∑
𝑘∈K 𝑑𝑘 ⟨w(𝑡,𝜏)−w(𝑡,𝜏)

𝑘
,∇𝐹𝑘 (w(𝑡,𝜏))−∇𝐹 (w(𝑡,𝜏))⟩

as

∑
𝑘∈K 𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)

𝑘
,∇𝐹 (w(𝑡,𝜏))⟩ = 0. Thus, we have∑︁

𝑘∈K
𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)

𝑘
,∇𝐹𝑘 (w

(𝑡,𝜏)
𝑘

)⟩

≤
∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

,∇𝐹𝑘 (w(𝑡,𝜏)) − ∇𝐹 (w(𝑡,𝜏))⟩

≤
∑︁
𝑘∈K

𝑑𝑘 (
1

2[𝜏max

| |w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

| |2

+ [𝜏max

2

| |∇𝐹𝑘 (w(𝑡,𝜏)) − ∇𝐹 (w(𝑡,𝜏)) | |2)

≤ 1

2[𝜏max

𝑉 (𝑡,𝜏) + [𝜏max

2

Z 2

where the second inequality is by Young’s inequality, and the last

one is by (15). Plugging the above equation to (32) yields

E[𝑉 (𝑡,𝜏+1) |F (𝑡,𝜏)] ≤(1 + 1

𝜏max

)𝑉 (𝑡,𝜏) + [2𝜏maxZ
2

+ [2
∑︁
𝑘∈K

𝑑𝑘E[| |g
(𝑡,𝜏)
𝑘

| |2 |F (𝑡,𝜏)] .

Take full expectation on both sides, by (14), we obtain

E[𝑉 (𝑡,𝜏+1)] ≤ (1 + 1

𝜏max

)E[𝑉 (𝑡,𝜏)] + [2𝐺2 + 𝜏max[
2Z 2 (33)

By telescoping,

E[𝑉 (𝑡,𝜏)] ≤ (1 + 1

𝜏max

)𝜏E[𝑉 (𝑡,0)] +
(1 + 1

𝜏max

)𝜏 − 1

1

𝜏max

([2𝐺2 + 𝜏max[
2Z 2)

Note that 𝑉 (𝑡,0)
may not be zero with the cached model (different

from that in classic FedAvg). Define 𝑑
cache

=
∑
𝑘∈Kcache

𝑑𝑘 and

𝑑server =
∑
𝑘∈Kserver

𝑑𝑘 (𝑑
cache

+ 𝑑server = 1), we have

E[𝑉 (𝑡,0)]
=𝑑

cache
E[| |w𝑡−1 − (𝑑

cache
w𝑡−1 + 𝑑serverw𝑡) | |2]

+ 𝑑serverE[| |w𝑡 − (𝑑
cache

w𝑡−1 + 𝑑serverw𝑡) | |2]
=𝑑

cache
E[| |𝑑server (w𝑡 −w𝑡−1) | |2] + 𝑑serverE[| |𝑑cache (w𝑡 −w𝑡−1) | |2]

=𝑑
cache

𝑑serverE| |w𝑡 −w𝑡−1 | |2 .

With full client participation, we further bound E| |w𝑡 −w𝑡−1 | |2 as
E| |w𝑡 −w𝑡−1 | |2

=E| |
∑︁
𝑘∈K

𝑑𝑘w
(𝑡−1,𝜏max)
𝑘

−w𝑡−1 | |2

=E| |
∑︁

𝑘∈Kcache

𝑑𝑘 (w𝑡−2 −
𝜏max−1∑︁
𝜏=0

[g(𝑡−1,𝜏)
𝑘

)

+
∑︁

𝑘∈Kserver

𝑑𝑘 (w𝑡−1 −
𝜏max−1∑︁
𝜏=0

[g(𝑡−1,𝜏)
𝑘

) −w𝑡−1 | |2

=E| |𝑑
cache

(w𝑡−2 −w𝑡−1) −
∑︁
𝑘∈K

𝑑𝑘

𝜏max−1∑︁
𝜏=0

[g(𝑡−1,𝜏)
𝑘

| |2

≤
∑︁
𝑘∈K

𝑑𝑘E[| |
𝑡∑︁

𝑡 ′=1

𝑑𝑡−𝑡
′

cache

𝜏max−1∑︁
𝜏=0

[g(𝑡
′−1,𝜏)

𝑘
| |2

≤(
𝑡∑︁

𝑡 ′=1

𝑑𝑡−𝑡
′

cache
)2𝜏2

max
[2𝐺2 ≤ 1

𝑑2
server

𝜏2
max

[2𝐺2

where the last inequality is derived by letting 𝑡 → ∞. Thus,

E[𝑉 (𝑡,𝜏)] ≤ 3𝑑
cache

𝑑server
𝜏2
max

[2𝐺2 + 2[2𝐺2 + 2𝜏max[
2Z 2 (34)

B PARTIAL CLIENT PARTICIPATION

This section includes the proof for Theorem 2 which gives the

convergence bound of CacheFL with partial client participation, as

well as the proofs for two necessary lemmas. The proofs are based

on assumptions 2-5, while assumption 1 is replaced by the following

client sampling assumption: We consider that in each iteration 𝑡 , we

uniformly sample 𝑆 clients from a total of𝐾 clients for participation.

Cache-Enabled Federated Learning Systems MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

We denote the set of clients that participate in 𝑡-th iteration as S (𝑡)
.

For 𝑘 ∈ S (𝑡)
, the local update is given by w(𝑡,𝜏+1)

𝑘
= w(𝑡,𝜏+1)

𝑘
−

` 𝐾
𝑆
g(𝑡,𝜏)
𝑘

, such that ES (𝑡)
1

𝐾

∑
𝑘∈S (𝑡)

𝐾
𝑆
g(𝑡,𝜏)
𝑘

= 1

𝐾

∑
𝑘∈K g(𝑡,𝜏)

𝑘
. For

other unsampled clients, we have w(𝑡,𝜏+1)
𝑘

= w(𝑡,𝜏+1)
𝑘

. We consider

balanced local data, where 𝑑𝑘 = 1

𝐾
for all 𝑘 ∈ K . Other parts of the

algorithm remain unchanged.

We define virtual sequence w(𝑡,𝜏) = 1

𝐾

∑
𝑘∈K w(𝑡,𝜏)

𝑘
and we

havew(𝑡,𝜏+1) = w(𝑡,𝜏) − `∑𝑘∈S (𝑡)
1

𝑆
g(𝑡,𝜏)
𝑘

. Let the global model at

iteration 𝑡 be w𝑡 = w(𝑡−1,𝜏max)
. At the start iteration, we initialize

w(𝑡,0) = w𝑡−1 for 𝑘 ∈ K (𝑡)
cache

and w(𝑡,0) = w𝑡−1 for other 𝑘 . Thus,

we have w(𝑡,0) =
𝐾

(𝑡)
cache

𝐾
w𝑡−1 + 𝐾−𝐾 (𝑡)

cache

𝐾
w𝑡 .

Lemma 4. For partial client participation, if the client learning
rate satisfies [≤ 1

4𝐿
, then

E

[
1

𝜏max

𝜏max∑︁
𝜏=1

𝐹 (w(𝑡,𝜏)) − 𝐹 (w∗) |F (𝑡,0)
]

≤ 1

2[𝜏max

(
𝑊 (𝑡,0) − E

[
𝑊 (𝑡,𝜏max) |F (𝑡,0)

])
+ [𝜎

2

𝐾

+ 𝐿

𝜏max

𝜏max−1∑︁
𝜏=0

1

𝐾

∑︁
𝑘∈K
E
[
| |w(𝑡,𝜏)

𝑘
−w(𝑡,𝜏) | |2 |F (𝑡,0)

]
where𝑊 (𝑡,𝜏)

:= | |w(𝑡,𝜏)−w∗ | |2 and F (𝑡,0) is the 𝜎-field representing
all historical information up to the start of iteration 𝑡 .

Proof. The proof follows directly from the proof of Lemma 1,

noticing that ES (𝑡)
1

𝐾

∑
𝑘∈S (𝑡)

𝐾
𝑆
g(𝑡,𝜏)
𝑘

= 1

𝐾

∑
𝑘∈K g(𝑡,𝜏)

𝑘
. □

Lemma 5. For partial client participation, let𝑉 (𝑡,𝜏) = 1

𝐾

∑
𝑘∈K | |w(𝑡,𝜏)

𝑘
−

w(𝑡,𝜏) | |2, we have

E
[
𝑉 (𝑡,𝜏)

]
≤ 𝜏2max[

2𝐺2 + 2

𝐾

𝑆
[2𝐺2 + 2𝜏max[

2Z 2 .

Proof. Let g(𝑡,𝜏) =
∑
𝑘∈S (𝑡)

1

𝑆
g(𝑡,𝜏)
𝑘

and g(𝑡,𝜏)
𝑘

= 0, for 𝑘 ∉ S (𝑡)
,

we have

𝑉 (𝑡,𝜏+1) =
∑︁
𝑘∈K

1

𝐾
| |w(𝑡,𝜏)

𝑘
−w(𝑡,𝜏) − [𝐾

𝑆
g(𝑡,𝜏)
𝑘

+ [g(𝑡,𝜏) | |2

= 𝑉 (𝑡,𝜏) + 2[
∑︁
𝑘∈K

1

𝐾
⟨w(𝑡,𝜏) −w(𝑡,𝜏)

𝑘
,
𝐾

𝑆
g(𝑡,𝜏)
𝑘

− g(𝑡,𝜏) ⟩

+ [2
∑︁
𝑘∈K

1

𝐾
| |𝐾
𝑆
g(𝑡,𝜏)
𝑘

− g(𝑡,𝜏) | |2

= 𝑉 (𝑡,𝜏) + 2[
∑︁
𝑘∈K

1

𝐾
⟨w(𝑡,𝜏) −w(𝑡,𝜏)

𝑘
,
𝐾

𝑆
g(𝑡,𝜏)
𝑘

⟩

+ [2
∑︁
𝑘∈K

1

𝐾
| |𝐾
𝑆
g(𝑡,𝜏)
𝑘

− g(𝑡,𝜏) | |2

≤ 𝑉 (𝑡,𝜏) + 2[
∑︁
𝑘∈K

1

𝐾
⟨w(𝑡,𝜏) −w(𝑡,𝜏)

𝑘
,
𝐾

𝑆
g(𝑡,𝜏)
𝑘

⟩

+ [2
∑︁

𝑘∈S (𝑡)

𝐾

𝑆2
| |g(𝑡,𝜏)
𝑘

| |2,

where the inequality is derived using variance decomposition. Take

the conditional expectation on both sides and consider g(𝑡,𝜏)
𝑘

with

its original definition for all 𝑘 ,

E[𝑉 (𝑡,𝜏+1) |F (𝑡,𝜏)] ≤ 𝑉 (𝑡,𝜏) + [2𝐾
𝑆
𝐺2

+ 2[
∑︁
𝑘∈K

1

𝐾
⟨w(𝑡,𝜏) −w(𝑡,𝜏)

𝑘
,∇𝐹𝑘 (w

(𝑡,𝜏)
𝑘

)⟩, (35)

The last term in (35) can be further bounded as∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

,∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

)⟩

=
∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

,∇𝐹𝑘 (w
(𝑡,𝜏)
𝑘

) − ∇𝐹𝑘 (w(𝑡,𝜏))⟩

+
∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

,∇𝐹𝑘 (w(𝑡,𝜏))⟩

where the first term is non-positive by convexity, and the second

term equals to

∑
𝑘∈K 𝑑𝑘 ⟨w(𝑡,𝜏)−w(𝑡,𝜏)

𝑘
,∇𝐹𝑘 (w(𝑡,𝜏))−∇𝐹 (w(𝑡,𝜏))⟩

as

∑
𝑘∈K 𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)

𝑘
,∇𝐹 (w(𝑡,𝜏))⟩ = 0. Thus, we have∑︁

𝑘∈K
𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)

𝑘
,∇𝐹𝑘 (w

(𝑡,𝜏)
𝑘

)⟩

≤
∑︁
𝑘∈K

𝑑𝑘 ⟨w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

,∇𝐹𝑘 (w(𝑡,𝜏)) − ∇𝐹 (w(𝑡,𝜏))⟩

≤
∑︁
𝑘∈K

𝑑𝑘 (
1

2[𝜏max

| |w(𝑡,𝜏) −w(𝑡,𝜏)
𝑘

| |2

+ [𝜏max

2

| |∇𝐹𝑘 (w(𝑡,𝜏)) − ∇𝐹 (w(𝑡,𝜏)) | |2)

≤ 1

2[𝜏max

𝑉 (𝑡,𝜏) + [𝜏max

2

Z 2

where the second inequality is by Young’s inequality, and the last

one is by (15). Plugging the above equation to (35) yields

E[𝑉 (𝑡,𝜏+1) |F (𝑡,𝜏)] ≤ (1 + 1

𝜏max

)𝑉 (𝑡,𝜏) + [2𝜏maxZ
2 + [2𝐾

𝑆
𝐺2 .

Take full expectation on both sides, by (14), we obtain

E[𝑉 (𝑡,𝜏+1)] ≤ (1 + 1

𝜏max

)E[𝑉 (𝑡,𝜏)] + [2𝐾
𝑆
𝐺2 + 𝜏max[

2Z 2 (36)

By telescoping,

E[𝑉 (𝑡,𝜏)] ≤ (1 + 1

𝜏max

)𝜏E[𝑉 (𝑡,0)] +
(1 + 1

𝜏max

)𝜏 − 1

1

𝜏max

([2𝐾
𝑆
𝐺2 + 𝜏max[

2Z 2)

Note that 𝑉 (𝑡,0)
may not be zero with the cached model (different

from that in classic FedAvg). Define 𝑑
(𝑡)
cache

=
∑
𝑘∈Kcache∩S (𝑡)

1

𝐾
and

𝑑
cache

= E[𝑑 (𝑡)
cache

] = 𝐾cache𝑆

𝐾2
, where |K

cache
| = 𝐾

cache
, we have

E[𝑉 (𝑡,0)] =E[𝑑 (𝑡)
cache

| |w𝑡−1 − (𝑑 (𝑡)
cache

w𝑡−1 + (1 − 𝑑 (𝑡)
cache

)w𝑡) | |2

+ (1 − 𝑑 (𝑡)
cache

) | |w𝑡 − (𝑑 (𝑡)
cache

w𝑡−1 + (1 − 𝑑 (𝑡)
cache

)w𝑡) | |2]

≤E[𝑑 (𝑡)
cache

(1 − 𝑑 (𝑡)
cache

) | |w𝑡 −w𝑡−1 | |2]

≤𝑑
cache

(1 − 𝑑
cache

)E[| |w𝑡 −w𝑡−1 | |2]

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Liu, et al.

With partial client participation:

| |w𝑡 −w𝑡−1 | |2

=| |𝑑 (𝑡)
cache

(w𝑡−2 −w𝑡 − 1) −
∑︁

𝑘∈S (𝑡−1)

[

𝑆

𝜏max−1∑︁
𝜏=0

g(𝑡−1,𝜏)
𝑘

| |2

=| |
𝑡∑︁

𝑡 ′=1

(
𝑡−𝑡 ′∏
𝑡 ′′=1

𝑑
(𝑡−𝑡 ′′)
cache

)
∑︁

𝑘∈S (𝑡 ′−1)

[

𝑆

𝜏max−1∑︁
𝜏=0

g(𝑡
′−1,𝜏)

𝑘
| |2

≤(
𝑡∑︁

𝑡 ′=1

𝑡−𝑡 ′∏
𝑡 ′′=1

𝑑
(𝑡−𝑡 ′′)
cache

)2𝜏2
max

[2𝐺2

where we let

∏
0

𝑡 ′′=1 𝑑
(𝑡−𝑡 ′′)
cache

= 1. Taking expectation on both sides,

E| |w𝑡 −w𝑡−1 | |2

≤E[(
𝑡∑︁

𝑡 ′=1

𝑡−𝑡 ′∏
𝑡 ′′=1

𝑑
(𝑡−𝑡 ′′)
cache

)2]𝜏2
max

[2𝐺2

≤(
𝑡∑︁

𝑡 ′=1

(𝑑
cache

)𝑡−𝑡
′
) (

𝑡∑︁
𝑡 ′=1

(𝑆
𝐾
)𝑡−𝑡

′
)𝜏2
max

[2𝐺2

≤ 1

1 − 𝑑
cache

𝐾

𝐾 − 𝑆 𝜏
2

max
[2𝐺2

Thus, we have

E[𝑉 (𝑡,𝜏)] ≤ 3

𝐾
cache

𝑆

(𝐾 − 𝑆)𝐾 𝜏
2

max
[2𝐺2 + 2[2

𝐾

𝑆
𝐺2 + 2𝜏max[

2Z 2 (37)

□

Combining Lemma 4 and Lemma 5, we have

E
[

1

𝜏max

∑𝜏max

𝜏=1
𝐹 (w(𝑡,𝜏)) − 𝐹 (w∗) |F (𝑡,0)

]
≤ 1

2[𝜏max

(
𝑊 (𝑡,0) − E

[
𝑊 (𝑡,𝜏max) |F (𝑡,0)

])
+ [𝜎2

𝐾

+ 2𝜏max[
2𝐿Z 2 + 2[2 𝐾

𝑆
𝐿𝐺2 + 3

𝑆
𝐾−𝑆 𝜏

2

max
[2𝐿𝐺2 . (38)

By convexity, E| |w(𝑡,0) −w∗ | |2 = E| |𝑑 (𝑡)
cache

(w(𝑡−2,𝜏max) −w∗) +
(1 − 𝑑 (𝑡)

cache
) (w(𝑡−1,𝜏max) − w∗) | |2 ≤ 𝐾cache𝑆

𝐾2
| |w(𝑡−2,𝜏max) − w∗ | |2 +

(1− 𝐾cache𝑆

𝐾2
) | |w(𝑡−1,𝜏max) −w∗ | |2, for 𝑡 ≥ 2. We also have E| |w(1,0) −

w∗ | |2 = E| |𝑑 (1)
cache

(w(0,0) −w∗) + (1−𝑑 (1)
server

) (w(0,𝜏max) −w∗) | |2 ≤
𝐾cache𝑆

𝐾2
| |w(0,0) −w∗ | |2 + (1 − 𝐾cache𝑆

𝐾2
) | |w(0,𝜏max) −w∗ | |2. Thus, by

telescoping, we have∑𝑇−1
𝑡=0 (𝑊 (𝑡,0) − E[𝑊 (𝑡,𝜏max)]) ≤ (1 + 𝐾cache𝑆

𝐾2
) | |w(0,0) −w∗ | |2 .

By above, telescoping (38) with 𝑡 from 0 to 𝑇 − 1 and using the

convexity of 𝐹 , finishes the proof of Theorem 2.

C ADDITIONAL EXPERIMENTAL RESULTS

In this appendix, we present additional experiment results. The

main experiment settings are the same as those in Sec. 6.

Effect of different client partitions. In Fig. 7, we further evaluate

the effect of client partition on the convergence rate of CacheFL.

We consider K
cache

of different sizes and for each size we include

the clients with highest per-iteration delay T𝑘 in K
cache

. When

|K
cache

| = 0, CacheFL reduces to FedAvg. We see that CacheFL has

a similar convergence rate in practice when |K
cache

| = 0, 10, 20, 30,

Figure 7: Effect of different number of clients using the cache

in convergence rate of CacheFL, with logistic regression on

non-i.i.d. CIFAR-10 dataset.

50 100 150 200
Number of Iterations

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

 V
al

ue

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random

2000 3000 4000 5000
Wall-clock time

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

 V
al

ue

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random

Figure 8: Convergence in loss value with client sampling

(partial client participation), with CNN on non-i.i.d. MNIST

50 100 150 200
Number of Iterations

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random

2000 3000 4000 5000
Wall-clock time

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random

Figure 9: Convergence in accuracy with client sampling (par-

tial client participation), with CNN on non-i.i.d. MNIST

50 100 150 200
Number of Iterations

0.6

0.8

1.0

Lo
ss

 V
al

ue

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random

2000 3000 4000 5000
Wall-clock time

0.6

0.8

1.0

Lo
ss

 V
al

ue

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random

Figure 10: Convergence in loss value with client sampling

(partial client participation), with CNN on non-i.i.d. F-MNIST

and slower convergence rate when |K
cache

| = 40, 50, i.e., the ma-

jority of the clients use the cache, showing that the effect of using

cached models in convergence rate is not significant and the benefit

Cache-Enabled Federated Learning Systems MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

50 100 150 200
Number of Iterations

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random

2000 3000 4000 5000
Wall-clock time

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

FedAvg
CacheFL-OPT
FedAvg stragglers
FedProx
CacheFL-random

Figure 11: Convergence in accuracy with client sampling

(partial client participation), with CNN on non-i.i.d. F-MNIST

in reducing the per-iteration delay plays a more important role if

we let K
cache

have a reasonable size.

Experiments with partial client participation. For every com-

pared algorithm, we further consider that in each iteration, 30 out

of 50 clients are sampled uniformly at random to participate in the

training, i.e., partial client participation. Fig. 8 and 9 compare the

convergence speed of the algorithms in training loss and testing ac-

curacy when training CNNs with MNIST data, while Fig. 10 and 11

present the results when training CNNs with FMNIST data. In these

experiments, CacheFL-OPT still converges the fastest in wall-clock

time. In Fig. 9, we can see that at the wall-clock time when CacheFL-

OPT achieves 60% testing accuracy, all other baseline algorithms

get accuracies about or below 30%.

	Abstract
	1 Introduction
	2 Related Work
	3 Cache-enabled Learning Systems
	3.1 Federated Learning Problem
	3.2 Cache-enabled system design
	3.3 CacheFL algorithm

	4 Convergence Analysis of CacheFL
	4.1 Assumptions
	4.2 Theoretical Results

	5 Optimizing overall Training Time
	6 Numerical Evaluation
	7 Conclusion
	References
	A Full Client Participation
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2

	B Partial Client Participation
	C Additional Experimental Results

