
Communication-Aware DNN Pruning
Tong Jian, Debashri Roy, Batool Salehi, Nasim Soltani, Kaushik Chowdhury, Stratis Ioannidis

Electrical and Computer Engineering Department, Northeastern University, Boston, MA, USA

Abstract—We propose a Communication-aware Pruning (CaP)
algorithm, a novel distributed inference framework for distribut-
ing DNN computations across a physical network. Departing
from conventional pruning methods, CaP takes the physical
network topology into consideration and produces DNNs that
are communication-aware, designed for both accurate and fast
execution over such a distributed deployment. Our experiments
on CIFAR-10 and CIFAR-100, two deep learning benchmark
datasets, show that CaP beats state of the art competitors by up
to 4% w.r.t. accuracy on benchmarks. On experiments over real-
world scenarios, it simultaneously reduces total execution time
by 27%–68% at negligible performance decrease (less than 1%).

Index Terms—Distributed Inference, Model Pruning

I. INTRODUCTION

With billions of pervasively deployed and connected IoT
devices, combined sensing and fusion can be used towards
massively distributed and diverse inference tasks. As a moti-
vating scenario, illustrated in Fig. 1, consider a smart city [1],
[2], involving a ubiquitous deployment of networked sensors
(cameras, LiDARs, acoustic sensors, wireless receivers etc.)
at different locations across a large urban area. Data collected
from these sensors can be used to perform a massive inference
task, such as, e.g., the detection of an adverse event (a fire or
an explosion) across the city, the assessment of enviromental
conditions such as temperature or pollution, the monitoring of
traffic and detection of congestion, etc.

Deep Neural Networks (DNNs) have shown tremendous
success at performing inference by fusing diverse, multi-modal
inputs [3]–[6]. However, performing inference via DNNs at a
such a massive scale lies at the frontier of current methods.
The naïve approach, namely, sending collected data at a
central location (e.g., the cloud, or a server belonging to
a municipal authority), and executing the DNN there, does
not scale: challenges arise when (a) raw data is large (e.g.,
video, LiDAR), (b) sensors are numerous and geographically
dispersed, and (c) inference needs to be (near) real-time, and
latency is a concern. In recent years, edge computing [7]–[9]
has been proposed as a solution, bringing computation closer
to the sensors, ideally reducing latency, accelerating inference,
distributing computation, and addressing privacy concerns.
However, distributing DNN inference over connected yet
resource-constrained IoT edge devices, without a reduction
of predictive accuracy, is a challenge. Existing network parti-
tioning approaches for distributed inference are tailored to a
fixed design of device connections, without considering their
physical network topology: literature on partitioning a DNN
across edge devices typically assumes all-to-all connections
[10]–[13], or no connections until the last layer [14]–[17]; the

Physical Network

Topology

Physical World

DNN Model

Partitioning

prediction

Fig. 1: Motivation of our CaP framework. We consider a smart
city as a motivating scenario, involving a ubiquitous deployment of
networked sensors at different locations across a large urban area.
To reduce latency and accelerate computation, inference over a DNN
is distributed across the network fabric. Using CaP, the DNN model
can be partitioned into sub-networks, each of which is mapped to
the physical network topology; our goal is to reduce latency while
maintaining predictive performance.

former results in high latency in a networked environment,
while the latter yields significant performance degradation
compared to centralized computation.

In this work, we assume that, to reduce latency and accel-
erate computation, inference over a DNN is distributed across
the network fabric, involving both edge and intermediate nodes
of an arbitrary physical network. As illustrated in Figure 1, the
DNN model is partitioned into sub-networks, each of which is
mapped to the physical network topology and executed on ei-
ther the edge or an intermediate network device (e.g., a router).
As inference computations occur in a distributed fashion,
communication needs to occur between devices tasked with
performing partial computations of the DNN’s layers. Our goal
is to take this into account while training the neural network.
In particular, we introduce the notion of communication-aware
DNN pruning: cognisant of the physical network topology over
which the DNN is mapped, we simultaneously train-and-prune
the network so that (a) neural connections are pruned in a way
that overall communication costs are reduced, while (b) the
resulting pruned DNN’s accuracy remains as high as that of a
fully dense network.

Our main contributions are as follows:

1) We propose a Communication-aware Pruning (CaP) al-
gorithm, a novel deep learning framework for distributed
inference. Our method simultaneously trains-and-prunes
a DNN in a communication-aware fashion, using (a)
a carefully-designed penalty capturing communication
costs, and (b) additional constraints enforcing spar-
sity; these are jointly optimized using the Alternating
Directions-Method of Multipliers [18], a technique often
used in DNN pruning [19], [20].

2) We compare CaP with state-of-the-art (SOTA) network
partitioning methods over parallel topology on two
benchmarks, CIFAR-10 and CIFAR-100, and show that
CaP has improved accuracy, beating SOTA methods by
up to 4% with 8 devices. Our ablation study shows
that CaP balances accuracy and communication costs
favorably, in an adaptive, tunable fashion.

3) We illustrate the impact and the effectiveness of CaP
via two real-life case studies, Radar Detection for
spectrum sharing in the CBRS band and Multimodal
Beamforming. In Radar Detection, we consider a sce-
nario in which a spectrum access system wishes to
detect the presence of a primary (radar) user through
distributed inference over environmental sensing capa-
bility stations. In Multimodal Beamforming, inference
over diverse sensors (GPS, LiDAR, and video) is used
to determine the optimal beam of a wireless station.
We thoroughly explore the end-to-end computation and
communication cost of CaP in these settings. We show
that CaP reduces the total execution time by 68% and
27% while incurring a negligible accuracy prediction
performance drop, 0.75% and 0.24%, for radar detection
and beamforming, respectively. This reduction enables
real-time inference. We pledge to release our code and
data to the community.

The remainder of this paper is structured as follows. We
review related work in Section II. In Section IV, we present our
method. Section V includes our experiments on both bench-
marks and real-life case studies; we conclude in Section VI.

II. RELATED WORK

Partitioning a workflow, represented as a directed acyclic
graph, and mapping it to to a distributed computation infras-
tructure is a classic distributed computing topic [21]–[23].
Recently, several works have proposed algorithms specifically
for the mapping of DNN computations over IoT devices,
partitioned either horizontally [24], [25] or vertically [10]–
[13]. Our approach can be combined with such methods (either
classic and edge-specific) and is orthogonal, as it assumes that
the mapping of the DNN to devices is a priori given.

Several works assume that the DNN is fixed (e.g., [10], [12],
[24], [25]) and split across communicating devices in a manner
that minimizes end-to-end execution. In contrast, weight-based
partitioning methods aim to distribute a DNN over parallel,
non-communicating workers. The disjoint sub-networks of the
DNN are typically generated-and, as in our case, retrained-
from a dense network via compression techniques, includ-

device v1

device v2 device v3

c(v1, v2) c(v1, v3)

c(v2, v3)

(a) Neural Network (b) Communication Network

(c) Distributed Inference & Communication Costs

Mapping

Neuron

Neuron connection

Communication link

Device

Legend

Fig. 2: An illustration of the communication-aware pruning problem.

ing low-rank factorization [26], knowledge distillation [27],
[28] and pruning [18], [29]–[31]. For example, NoNN [15]
compresses a large teacher into a set of parallel students;
each student mimics one part of the teacher’s output layer
through knowledge distillation, an approach also followed by
ParaDis [17]. RePurpose [16] rearranges and partitions the
neurons layer-wise so that connections among sub-networks
are minimized through ℓ0-regularized pruning. SplitNet [14]
splits the neural network in disjoint groups by regularizing
both the class-to-group and feature-to-group assignments over
weights. We depart in (a) considering a DNN execution over a
networked topology, leading to a hierarchical partitioning and
execution of the DNN’s dataflow, and, crucially (b) we allow
for cross-communication across devices. We thus introduce a
penalty tailored to the physical network topology; in practice,
cross-communication yields significant accuracy advantages
over (full) partitioning schemes (see Tables I and II in Sec. V).

III. PROBLEM FORMULATION

We assume that inference via a multi-layered DNN is to be
performed over data collected by distributed networked sen-
sors. Sensors are connected to each other as well as to a central
inference point (e.g., the cloud or a central server) through a
communication network. To accelerate computations, reduce
communication, and leverage computational resources within
the network, DNN computations are distributed across the net-
work; this is illustrated in Fig. 2. As a result, communication
costs accrue during DNN execution, affecting total execution
time. Our goal is to account for this during training, producing
a DNN that is communication-aware, designed for both fast
and accurate execution over such a distributed deployment.
Neural Network. Formally, we are given an L-layer DNN
fθ : Rdin → Rdout parameterized by θ ∈ RM , that performs
joint inference (i.e., fusion) over data collected by K sensors.
Data by each sensor k ∈ {1, . . . ,K} is represented by a vector
xk ∈ Rdk

, and the DNN operates on the concatenation of these
inputs, i.e., on x = [xk]Kk=1 ∈ Rdin , where din =

∑K
k=1 d

k.

We also represent the DNN by a directed acyclic graph
GDNN(VDNN, EDNN), comprising neurons VDNN and their respective
neural connections EDNN ⊂ VDNN×VDNN. Note that each neural
connection e ∈ EDNN is associated with a weight/parameter in
θ; we denote by θ(e) the coefficient of θ that corresponds to
connection e ∈ EDNN.1 We use subscript l ∈ {0, 1, . . . , L} to
indicate layers, where l = 0 is the input (x). Then, the neurons,
the neural connections, and the coefficients of layer l can be
represented as VDNN

l ⊂ VDNN, EDNN
l = EDNN∩ (VDNN

l−1×VDNN
l), and

θl(e) = {θ(e) : e ∈ EDNN
l }, respectively.

Communication Network. We assume that, in the physical
world, sensors are connected by a communication network.
We represent this physical network topology by an undirected
graph Gnet(Vnet, Enet), comprising network devices Vnet and
communication links Enet ⊂ Vnet × Vnet.2 Each communica-
tion link e ∈ Enet is associated with a cost c(e), capturing the
cost of unit transmission (e.g., delay per bit) over link e.
Distributed Inference. The computation of the DNN is dis-
tributed across the nodes of the communication network. In
particular, there exists a function M : VDNN → Vnet mapping
neurons to devices on which the neurons are computed (see
Fig. 2). For example, input neurons could map to edge devices,
attached to the sensors, and all output neurons could map to a
single (terminal) device, which computes the final inference
outcome. W.l.o.g,3 we assume that direct communication
between two devices that are assigned connected neurons is
feasible; formally, the M satisfies the following property:

Property 1. For all (n, n′) ∈ EDNN, if M(n) ̸= M(n′), then
(M(n),M(n′)) ∈ Enet.

Communication Costs. To enable computation at inference
time, each device stores all parameters/weights associated with
neurons it needs to compute. Formally, device v ∈ Vnet stores

θ(e) for all e = (n′, n) ∈ EDNN s.t. M(n) = v.

Crucially, connected neurons that are mapped to distinct
devices may incur communication costs at inference time.
In particular, the communication cost of a neural connection
e = (n, n′) ∈ EDNN is given by:

C (e) =

{
0, if M(n) = M(n′) or θ(e) = 0,

c (M(n),M(n′)) , otherwise.
(1)

Throughout our analysis, we assume that (a) the mapping
M is predetermined (e.g., by algorithms such as [13], [16],
[32]), and (b) devices are computationally homogeneous, so
that neuron computations take the same time, irrespective of
the device computing them. Under these assumptions, our goal
is to determine the DNN parameter weights θ so that (a)

1Mapping e 7→ θ(e) need not be 1-1: in convolutional layers, several neural
connections map to the same coefficient.

2To avoid confusion, we refer to DNN nodes and edges as neurons and
neural connections, respectively, and communication network nodes and edges
as devices and communication links.

3If the communication network is connected, we can represent it as a clique
with costs capturing end-to-end path delays, so that Property 1 holds.

communication costs are minimized, while simultaneously (b)
the accuracy of the DNN is not adversely impacted.
Communication-aware Pruning Problem. We assume that,
at training time, we are given access to a dataset D =
{(xi, yi)}Ni=1, comprising samples with features xi ∈ Rdin

and a corresponding labels yi ∈ Rdout .4 Let L(θ) =∑N
i=1 ℓ(fθ(xi), yi) be the aggregate loss on the dataset, where

ℓ is an appropriate loss (e.g., max-entropy, ℓ2-squared, etc.).
We wish to train DNN parameters θ as follows:

Minimize:
θ

L(θ) + λP (C,θ), (2)

where P is a communication-aware regularization penalty, and
λ > 0 is a regularization parameter controling the tradeoff
between accuracy and communication costs. Intuitively, by
Eq. (1), we wish to design P so that it encourages sparsity
(i.e., setting θ(e) = 0) along neural connections that are likely
to incur large communication costs.

IV. COMMUNICATION-AWARE PRUNING

Ideally, we would like to set the weights in such a way
so that the total delay due to communication is as small as
possible. Assuming that transmissions per layer are parallel
and thereby dominated by a slowest transmission, this is:

Pmax(C,θ) =
∑L

l=1 maxe∈EDNN
l
1([θ(e)] ̸=0) · C(e). (3)

Assuming that transmissions per layer contend with each other
and happen sequentially, the penalty becomes:

Pcount(C,θ) =
∑

e∈EDNN 1([θ(e)] ̸=0) · C(e). (4)

Intermediate penalties can capture partial contention between
transmissions (e.g., when they share a communication link, or
when links interfere); these can be expressed as a maximum
across sums of costs, each sum being over contending subsets
of transmissions. Nevertheless, this spectrum of penalties
present significant implementation challenges during training.
The main reason is that 1([θ(e)] ̸=0) is highly non-differentiable,
which can lead to sharp oscillations and lack of convergence
when using either Pmax or Pcount. We also observe this exper-
imentally (see Figure 4 in Section V-C).

A. The Communication-aware Pruning (CaP) Algorithm

To address this, we use a much smoother version of
penalty Pcount, which also has additional benefits w.r.t. accu-
racy/sparsity tradeoff attained. In particular, our CaP algorithm
solves the following optimization problem:

Minimize:
θ

L(θ) + λ
∑

e∈EDNN |θ(e)| · C(e)

subject to θl(e) ∈ Sl(αl), l = 1, · · · , L,
(5)

where set Sl, parameterized by αl, enforces sparsity to layer l.
We describe these sets in more detail below.

Intuitively, the CaP objective measures the importance of a
weight by its contribution to predictive power as well as its
communication cost; it then minimizes less-important weights,

4For categorical classification, we assume that labels are one-hot encoded.

device vk

sensor 1

sensor 2

sensor P

convolutions

Inputs P’ Feature maps

P’ filters

r

kernel width/height

R = r x
 r

ke
rn

el s
ize

P

ch
annels

device v1

device v2

P’ filters

P
 c

ha
nn

el
s

P’ filters

P
 c

ha
nn

el
s

device v1

device v2

device vk

to be

removed

...

Legend

CaP

Fig. 3: An illustration of our CaP framework over convolution layers. Data coming from different sensors is treated as a different channel in
the overall CNN. We assume that sensor inputs partitioned across k devices form separate input channels. Feature maps produced at each
layer output (which become channels in the higher convolution layer) are partitioned thusly. As a result, each convolution layer, represented
by a three-dimensional tensor θl ∈ RPl×P ′

l×Rl , can be partitioned into blocks along filter and channel dimensions. To better visualize the
partitioning, we color each entry of tensor by white for zeros, green for non-zeros within the same device, and red for parameters used in
cross-device communications. To perform efficient inference, we encourage kernels in off-diagonal blocks (i.e., those account for cross-device
communications) to be pruned.

while enforcing that the learnt weights are subject to the
sparsity constraints. Our use of the absolute value in the
penalty of (5) has the following additional advantage: For
parameters θ(e) whose neurons are mapped to the same device,
we have by Eq. (1) that C(e) = 0; hence, these parameters
are effectively unconstrained, and can grow as determined by
the loss L(θ) to attain good predictive accuracy. In contrast,
parameters θ(e) for which C(e) is non-zero are forced by
the penalty to have small norm, especially when C(e) is
high. Thus, pruning them as the algorithm enforces sparsity
constraints Sl does not have a significant effect in accuracy.
Penalties Pcount or Pmax do not exhibit this property.

We now turn our attention to the definition of constraint sets
Sl. As is typical in neural network pruning [18], [20], [33],
there can be tailored to different layer types (e.g., convolution
and fully-connected layers). Though these sets are non-convex
in general, as is standard practice [18], [20] to solve Prob. (5)
via ADMM; we describe how to do this in Sec. IV-B.
Fully-Connected (FC) Layers. For FC layers, we set:

Sl = {θl | ∥θl∥0 ≤ αl}, (6)

where ∥ · ∥0 is the size of θl’s support: i.e., the number of
non-zero l-layer parameters θl is at most αl.
Convolution Layers. We can use a similar sparsity constraint
as (6) for convolution layers. Nevertheless, practical consider-
ations make it more reasonable to follow a so-called structured
pruning [29], [34] approach for convolutional layers.

The main reason to do so is the following standard practice
in fusion literature: data coming for multiple sensors (not
necessary of the same dimension) is often expressed via
different input channels in a CNN (see, e.g., [6], [35] and
Fig. 3). As sensors are distinct, channels must be distributed
across sensor devices through mapping M. We make the
additional assumption/design choice that this separation is
repeated across layers: we assume that feature maps produced
at each layer output (which become channels in the higher
convolutional layer) are also partitioned by M.

To state this formally, note that θl can be considered as a
2D convolution and represented by a three-dimensional tensor
θl = [θl]i,j,r, i ∈ Pl, j ∈ P ′

l , r ∈ Rl, with each dimension

Pl, P
′
l , Rl ∈ N representing the number of channels, filters,

kernel size (i.e., kernel width × kernel height), respectively.
Hence, each layer can be (semantically) partitioned into blocks
along filter and channel dimensions (see Fig. 3); we represent
the per-channel partition via VDNN

l =
⋃P

j=1[VDNN
l]j . Then, M

satisfies the following property:

Property 2. For channel i, if n ∈ [VDNN
l]i and n′ ∈ [VDNN

l]i,
then M(n) = M(n′).

Given this assumption, we define set Sl as:

Sl =
{
θl |

(∑Pl

i=1

∑P ′
l

j=1 1([θl]i,j,:=0)

)
≤ αl

}
, (7)

In other words, this structured constraint enforces that the
number of non-zero kernels on the l-th layer does not exceed
αl. This is exactly tailored to maps M that satisfy Property 2,
and produces block structures of un-pruned/dense parameters
per device, along with sparse parameters to be communicated
across devices, as needed to attain good accuracy (see Fig. 3).

B. Solving CaP via ADMM

Both (6) and (7) are combinatorial constraints; to deal with
this, we follow an ADMM-based pruning strategy [18], [20].
In short, ADMM is a primal-dual algorithm designed for
constrained optimization problems with decoupled objectives.
Through the definition of an augmented Lagrangian, the algo-
rithm alternates between two primal steps that can be solved
efficiently and separately. The first subproblem optimizes a
communication-aware objective augmented with a proximal
quadratic penalty; this is an unconstrained optimization solved
by classic SGD, occurring in a continuous domain. The second
subproblem is solved by performing Euclidean projections
ΠSl(·) to the constraint sets Sl; even though the latter are
not convex, projections for sets given by Eq.(6) and Eq.(7)
can be computed in polynomial time (see, e.g., [18]). Sub-
sequent proximal optimization steps force the solution to be
closer to these (sparse) projections, constructing a final sparse
solution in a continuous fashion; the overall CaP framework
is summarized in Algorithm 1.

Algorithm 1 CaP Framework
Input: input samples {(xi, yi)}ni=1, a model fθ , communication
function c, sparsity parameter αl, learning rate β, proximal parame-
ters {ρl}Ll=1.
Output: parameter of model θ
Initialization: initialize θ by training on samples.
while θ has not converged do

Sample a mini-batch of size m from input samples.
SGD step:
θ ← θ− β∇

(
L(θ) + λ

∑
e∈EDNN |θ(e)| ·C(e) +

∑L
l=1

ρl

2
∥θl −

θ′l + ul∥2F
)

.
Projection step:
θ′l ← ΠSl

(
θl + ul

)
, for l = 1, . . . , L.

Dual variable update step:
u← u+ θ − θ′

end

C. Batch Normalization

Batch normalization (BN) [36] normalizes features in each
layer and introduces learnable parameters w.r.t. the mean and
standard deviation per layer. This may introduce communica-
tion across devices; to avoid this we execute separate BNs per
device, i.e., we introduce and train separate batch-normalizing
parameters of neurons mapped to each device.

V. EXPERIMENTS

In our experiments, (a) we show that our proposed CaP
outperforms the current state-of-the-art (SOTA) partitioning
algorithms in terms of accuracy on benchmark datasets; (b) we
explore tradoffs of different communication-aware penalties
w.r.t. accuracy and communication costs; and (c) we illustrate
the effectiveness of CaP via two real-life case studies, Radar
Detection and Multimodal Beamforming.

A. Experiment Setting for Benchmarks

We first evaluate CaP on two benchmarks, CIFAR-10 and
CIFAR-100 [37]. We compare to two SOTA weight-based par-
titioning algorithms: SplitNet5 [14] and NoNN [15], that split
the DNN across devices, allowing no cross-communication.
Experiment Details. We assume M devices and map all layers
across M − 1 worker devices, except the final output layer,
which is deployed on the remaining (central) device. We vary
the number of worker devices (2, 4, 8). Our map M is such
that consecutive neurons (along the channel dimension) are
split across workers equally.

We use the ResNet-18 [38] architecture for CIFAR-10, and
WideResNet-28-10 [39] for CIFAR-100. We use the same
dense model for all methods. We run CaP using SGD with
initial learning rate 0.01, momentum 0.9 and weight decay
10−4, and set ADMM and fine-tuning epochs to 300 and
100, respectively. For SplitNet and NoNN, we use code and
hyperparameters as provided by their respective authors.
CaP Parameters. We assume that worker devices communi-
cate simultaneously via 5G-NR links, and set the CaP cost
per communication link e as c(e) = 1. We control αℓ to

5SplitNet is designed only for CIFAR-100 and a partition over 8 devices.

TABLE I: Performance on CIFAR-10 via ResNet-18. For all methods,
we report test accuracy (in %), # params and inference FLOPs
for both overall and largest partition; the latter dominates parallel
computation. CaP{·} represents CaP with a sparsity ratio given by ·,
set to match the sparsity of competitors (full partition).

Methods # Devices
Overall Largest partition

Accuracy
% (↑)# Params FLOPs # Params FLOPs

×106 (↓) ×109 (↓) ×106 (↓) ×109 (↓)

Dense - 11.17 1.11 - - 94.44

NoNN 2 5.71 0.60 2.89 0.30 94.10
CaP50 5.60 0.56 2.79 0.28 94.50

NoNN 4 2.95 0.32 0.75 0.08 92.88
CaP75 2.81 0.28 0.70 0.07 93.98

NoNN 8 1.60 0.20 0.21 0.03 90.26
CaP87.5 1.41 0.14 0.18 0.02 92.35

TABLE II: Performance of CIFAR-100 via WRN-28-10. As in Table I
we report test accuracy (in %), and # params and inference FLOPs
for both overall and largest partition, and CaP{·} represents CaP with
a sparsity ratio given by ·, set to match the sparsity a full partition.

Methods # Devices
Overall Largest partition

Accuracy
% (↑)# Params FLOPs # Params FLOPs

×106 (↓) ×109 (↓) ×106 (↓) ×109 (↓)

Dense - 36.54 10.50 - - 80.17

NoNN 2 18.32 5.35 9.16 2.65 78.24
CaP50 18.30 5.25 9.15 2.62 80.11

NoNN 4 9.24 2.78 2.33 0.72 76.19
CaP75 9.19 2.63 2.30 0.68 79.95

SplitNet - 4.12 - - - 75.20
NoNN 8 4.72 1.44 0.59 0.20 75.83

CaP87.5 4.64 1.32 0.58 0.16 79.80

set the sparsity ratio, i.e., the ratio of pruned/zero parameters
vs. dense DNN size. We use the same sparsity ratio for all
layers, and set it to match the sparsity of competitors (i.e.,
full partition): this yields sparsity ratio (0.50, 0.75, 0.875) for
the (2, 4, 8)-worker settings, respectively.

Evaluation Metrics. We report the test accuracy of the final
trained models. We also evaluate the number of parameters
(non-zero weights), inference FLOPs, and communication
latency to demonstrate the efficiency of CaP. We compute
latency as follows. We measure the longest transmission
required per layer assuming that only transmissions over the
same point-to-point 5G-NR communication link contend; we
also account for the neurons sent from devices to the cloud for
final prediction, each having a distinct 5G-NR link. We assume
that each neuron is represented by a 32-bit floating point,
and thus estimate latency (in seconds) as N×4/10242/63.59,
where N is the number of neurons per link, and 63.59MBps
is the throughput using the 5G-NR standard [40], [41]; we
estimate the latter assuming 256-QAM modulation over 100
MHz bandwidth, and 132 symbols over 0.5ms slots.

Dense

C
on

v.
 L

ay
er

s

Bottom

Top

PoP
0.85 0.80 0.75 0.70

(a) Ablation study and explorations over (b) Explorations over sparsity ratio (SR)

Fig. 4: We perform an ablation study over the (a) balancing parameter λ and (b) sparsity ratio (SR) on CIFAR-10 by ResNet-18 under a
4-device setting. In particular, we set SR=0.75 for all variants in (a) and set λ=1e−6 when exploring SR in (b). For reference purposes, we
also include (a) a dense model, (b) a fully partitioned model PoP, and (c) NoNN. We show the trade-off between accuracy and communication
latency. To visualize the partitioning, we further show the learned tensors on selected layers, from bottom (i.e., nearer to the inputs) to top,
and color the weight tensor kernel-wise, resulting in a colored matrix with a size of P ′

l × Pl: each entry indicates the absolute sum over a
kernel, colored by white for zeros, green for non-zeros within the same device, and red for parameters used in cross-device communications.

B. Comparison with Partitioning Methods

Tables I and II report performance on CIFAR-10 and
CIFAR-100, comparing CaP with SplitNet and NoNN. From
both tables, we can clearly tell that CaP significantly out-
performs both SplitNet and NoNN in terms of predictive
power (measured in accuracy) while achieving similar or even
better computation efficiency (measured in FLOPs). Increasing
partitions (and decreasing parameters per partition), leads to
more pronounced difference between CaP and competitors
w.r.t. accuracy. Notably, on CIFAR-10, CaP achieves accuracy
+0.40%, +1.10%, +2.09% higher than NoNN with 2, 4, and
8 devices, respectively. This is even more pronounced when
moving to the (harder) dataset CIFAR-100: CaP maintains
high accuracy with only 0.37% drop (with 8 partitions) from
the dense model, while the accuracy achieved by SplitNet
and NoNN drops by 4.97% and 4.34%, respectively. CaP
successfully improves accuracy precisely by introducing cross-
partition communication; we discuss the intrinsic trade-off
between accuracy and communication next.

C. A Comprehensive Understanding of CaP

In Fig. 4, we compare several CaP variants on CIFAR-10
with ResNet-18, under 4 devices. We show both the trade-
off between accuracy and communication latency, as well
as the learned tensors on selected layers. We also compare
CaP to the following variants: (a) CaPPmax , using penalty
defined in Equation (3); (b) CaPPcount , using penalty defined
in Equation (4); and (c) CaPcnorm , where cnorm(e) =

1
Ne

, where
Ne is the numper of parameters per link, and (c) the dense
model distributed across the 4 devices.
Impact of λ. Fig. 4(a) shows the accuracy/latency tradeoff
when varying λ: decreasing λ to 1e−7, increases latency
but improves accuracy (94.15%), close to the dense model
(94.44%); when increasing λ, the communication cost gets
rapidly suppressed yet with accuracy drop. In particular,
increasing λ to ∞, which we refer to as Partition-only-Pruning
(PoP), leads to disjoint partitions, thus is immune to communi-
cation but drops accuracy significantly (91.70%). Among all,
setting λ=1e−6 attains a favorable trade-off between accuracy

TABLE III: Dataset, architecture and experiment setting summary.

Term Parameter Information
ESC FLASH

Dataset
Classes 2 34

Train samples 4,000 28,636
Test samples 1,000 3,287

Architecture

Conv. layers 5 -
FC layers 3 4

Params in conv. layers 60,384 -
Params in FC layers 5,439,488 4,509,376

Experiments

ADMM epochs 150
Finetune epochs 100

Learning rate 0.001
Optimizer SGD

(93.98%) and communication latency (3.78ms).
Impact of Sparsity Ratio. In Fig. 4(b), we observe that for
this 4-device setting, 0.75 sparsity ratio is the best choice:
higher sparsity ratios (i.e., 0.80 or 0.85) lead to sparser
kernels, decreasing predictive power; lower sparsity ratios
(i.e., 0.70) increase communication burden, without significant
improvement to predictions.
Ablation Study/Comparison to Variants. Fig. 4(a) indicates
that CaP attains a much more favorable trade-off between
accuracy and communication cost than other variants. We
observe that, Pabs, the smoother penalty used for CaP defined
in Eq. (5), is more effective than both Pmax and Pcount. Specif-
ically, CaP75(λ=1e−5) achieves 93.36% accuracy, which is
0.84% and 1.10% higher than CaPPmax and CaPPcount , while
reducing latency by +32% and +35%, respectively. We also
observe that, compared to CaPPmax , CaPPcount achieves better
performance w.r.t. both accuracy and latency reduction; this
is because the max term exacerbates non-differentiability.
We also observe that, to achieve similar accuracy as CaP,
CaPcnorm requires 1.5×–2× more latency. This is expected, as
CaPcnorm assumes cost equally across links, without considering
the corresponding feature map size. This is evident in the
colored tensors as well: CaPcnorm(λ=1e−5) prunes off-block
diagonal kernels uniformly across layers. On the contrary,
CaP75(λ=1e−6) more heavily prunes layers nearer to inputs,
thus achieving similar accuracy at lower latency.

D. Case Study: Radar Detection

The Citizen Broadband Radio Service (CBRS) band [42] is
a 150 MHz band in the mid-range frequencies between 3.55
and 3.70 GHz, that is originally reserved for Federal users
such as naval radars, in the US. The Federal Communication
Commission (FCC) has recently opened this band to secondary
users including cellular service providers, private networks,
and IoT applications, as the conventional bands of these users
become more and more crowded everyday. The usage of
this band by secondary users is allowed provided that the
activities of the primary (Federal) users are protected [43].
In order to realize if a radar activity exists in the band, a
central entity called Spectrum Access System (SAS) maintains
frequent messaging with Environmental Sensing Capability

(a) Star Topology (b) Tree Topology

SAS

Hierarchical

Edge Cloud

(0, 0)

ESC s2

ESC s4

ESC s5

(-90, 20)

(-70, 40)

(-10, 100)

(-30, 80)

ESC s1

(-40, 120)

ESC s3
(-50, 60)

(-100, 50)
5G BS

(0, 0)

ESC s2

ESC s4

ESC s5

(-90, 20)

(-70, 40)

(-10, 100)

(-30, 80)

ESC s1

(-40, 120)

ESC s3
(-50, 60)

(-100, 50)
5G BS

Wired links
Wireless links

Legend

LTE BS LTE BS

Fig. 5: A schematic of the deployment of CBRS case study using
CaP framework. All distance units are in km. We only focus on the
processing part of the deployment. During the deployment either of
(1) Star or (2) Tree topology are used. We provide the comparative
analysis between the two topologies in Table IV.

Fig. 6: Examination of learned weights on a per-layer basis. We show
the layer usage (i.e., percentage of non-zeros per layer, measured in
%) by the left y-axis, and the percentage of communication latency
contributed per layer by the right y-axis. We also use green for
non-zeros within the same device, and red for non-zeros used in
cross-device communications, the latter of which accounts for the
communication latency.

stations (ESCs) that have spectrum sensing abilities and are
deployed near coastal regions where radar pulses are received.
In our proposed CBRS spectrum sensing scheme, we assume
a network of geographically distributed ESCs connected to a
SAS, whose purpose is to detect the presence of a primary
user (i.e., radar transmission) using ESC-sensed signals [42].
ESC Dataset Description. To evaluate our distributed sens-
ing/computing scheme for the CBRS band, we assume a
network of 5 ESCs geographically located in a coastal area
(see Fig. 7). One LTE and one 5G base station are placed
close to the coastal region, within fixed distances from each
ESC sensor. We monitor each 10 MHz channel in the CBRS
band independently and create spectrograms with 10 MHz
frequency content (sampling rate) every 20 ms, at each ESC.
Each snapshot of the channel has a combination of 5 MHz
non-overlapping LTE and/or 5G signals in the Time Division
Duplexing (TDD) mode, which is a requirement of cellular
activity in the CBRS band [43]. For the radar signal, we select
a burst of radar pulses of Type 1 with 0.5 µs pulse width, 20
pulses per burst, and pulse repetition rate of 1010 per seconds.

TABLE IV: Performance of CaP on ESC dataset over both star and tree topologies . For reference purposes, we include the performance
attained by (a) DenseC , that sends all raw data to SAS and executes the dense model there, and (b) DenseD , that distributes the dense model
onto the communication network. Overall, CaP reduces the total execution time by up to 68% on both topologies with negligible AUC drop
(i.e., less than 0.3%). Moreover, CaP is able to perform real-time inference: spectrograms are created every 20 ms, and CaP requires <9ms,
thus can achieve real-time safely and efficiently. In contrast, DenseC and DenseD (∼25ms) cannot perform inference within this deadline.

Methods λ Sparsity

Star Topology Tree Topology
AUC
% (↑)

Time AUC
% (↑)

Time
Comp. Comm. Total Comp. Comm. Total

ms (↓) ms (↓)

DenseC - - 99.76 25.43 0.10 25.53 99.76 25.43 0.19 25.62
DenseD - - 99.76 25.43 0.44 25.87 99.76 25.43 0.91 26.34

PoP - 0.80 98.95 7.64 0.00 7.64 99.01 7.97 0.00 7.97

CaP80
1 0.80 99.56 8.53 0.09 8.58 99.64 8.66 0.07 8.70

1e+3 99.52 8.54 0.07 8.55 99.52 8.66 0.05 8.68
1 99.48 8.32 0.04 8.33 99.63 8.44 0.04 8.45CaP85 1e+3

0.85 99.44 8.33 0.03 8.34 99.52 8.44 0.03 8.45

This radar type is currently used for naval radars and might
or might not overlap with the cellular activity in the CBRS
band. Each ESC perceives the snapshots of the radar, 5G,
and LTE signals with signal strength and phase determined
by the distance from these sources. Therefore, through the
5 ESCs, the SAS has access to 5 different snapshots for
each 20 ms. To create the complete dataset, we simulate
500 spectrograms in MATLAB for each ESC, that sum up
to 2500 total spectrograms in the complete dataset. The goal
is to decide whether there is a radar pulse appearing in each
sampled 20 ms of the recorded data.
Backbone Network. The 5 ESCs connect to 5 edge cloud
servers using Sub-6 GHz 5G wireless channels (Frequency
Range 1 for 5G-NR standard). The edge cloud servers are
connected to the SAS via a 5G backhaul network using optical
fiber wired connections of 10 Gbps bandwidth. We study both
a (a) star and (b) tree network topology as, shown in Fig. 7.
As before, we set the latency of the wireless link considering
the throughput of 63.59MBps of the 5G-NR standard (see
Sec. V-A), and the latency of wired transmissions to be equal
to B/10Gbps, where B is the data transmission size.
Neural Network Topology. We design a fusion network as
described in Table III. It contains 5 convolution, 3 FC and
1 final output layers. Each sensor contributes 3 channels
(RGB) per spectrogram, resulting in inputs with the size of
(15, 320, 266) (15 channels in total). For the star topology, we
set c(e) = 1, and assume all convolution and FC layers are
equally partitioned across edge devices, with the final output
layer computed at the SAS. For the tree topology, we set
c(e) = #hops between devices and consider a mapping in
which (a) convolution layers are partitioned across the first
tree layer, (b) all FC layers are partitioned across the second
tree layer, and (c) the final output layer is mapped to the SAS.
Evaluation Metrics. We report the inference performance in
terms of AUC, as well as computation, communication, and
total execution time. To precisely estimate the computation
time (e.g., the time required to execute the largest partition
per stage and the final output layer), we evaluate the dedicated
architectures on a NVIDIA Jetson TX2 platform, which is
an industrial-graded GPU aided computer designed for GPU
computations. We construct architectures which have exactly

same number of channels/weight width (e.g., Pl/K) as the
largest partition of CaP, but maintain the original number of
filters/weight height (e.g., P ′

l). We then cut the intermediate
feature maps along channel/weight width to eliminate the
dimension mismatch introduced by this construction. We also
load the sparsified weights from the largest partition. We
measure communication time assuming transmissions over the
same (wired or wireless) link contend, using bandwidths as
reported above.
Results. Table IV shows the performance of CaP over both
star and tree topologies. For reference purposes, we include the
performance attained by (a) DenseC , that sends all raw data
to SAS and executes the dense model there, (b) DenseD, that
distributes the dense model onto the communication network
(without pruning), and (c) PoP, introduced in Section V-C,
that allows no cross-communication. Overall, CaP reduces
the total execution time by up to 68% on both topologies
with negligible AUC drop (i.e., less than 0.3%); even for the
extreme PoP case that producing disjoint partitions, the AUC
only drops less than 1%. In fact, CaP is able to perform real-
time inference: spectrograms are created every 20 ms, and
CaP requires <9ms, thus can achieve real-time safely and
efficiently. In contrast, DenseC and DenseD (∼25ms) cannot
perform inference within this deadline.

We also observe that CaP over tree topology costs more
than the star topology, especially for computation cost. The
reason is that the second tree layer contains two devices only,
thus each device is responsible for more computations than
the setting of star topology with five devices. Surprisingly,
communication latency is reduced more effectively over tree
topology: comparing to DenseD, CaP80(λ=1) reduces com-
munication latency by 95.6% and 88.6% over tree and star
topology, respectively.

To explore how CaP behaves on both topologies further, we
examine the learned weights on a per-layer basis. Fig. 6 shows
the layer usage as well as the percentage of communication
cost contributed per layer. Compared to the star topology,
CaP over tree topology preserves more weights on FC layers
due to the two-device mapping, increasing execution time but
improving AUC, as shown in Table IV. We also observe that
convolution layers contribute larger costs than FC layers, thus

GPS Lidar Camera

Edge Cloud

GPS Lidar Camera

Fusion

Network

Base
Networks

Beam Selection Beam Selection

Edge Cloud

CaP
Base networks

Edge cloud

Edge devices

5G wireless link

CaP partitions

Legend

(a) State-of-the-art (b) CaP Framework

Fig. 7: A schematic of the deployment of the multimodal beamform-
ing case study using CaP framework.

TABLE V: Performance of CaP on FLASH dataset. We examine two
sparsity levels SR= 0.67 and SR= 0.75 with a series of λ, ranging
from 1e−4 to 1e+2. We also report DenseC , DenseD and PoP for
reference. Among all variants, CaP67(λ=1e + 2) performs the best:
comparing to DenseC , it reduces communication latency by 41.7%,
resulting in a total of 27% reduction, under only negligible accuracy
loss (less than 1%).

Methods λ Sparsity Accuracy
% (↑)

Time
Comp. Comm. Total

ms (↓)

DenseC - - 90.31 9.20 2.59 11.79
DenseD - - 90.31 9.20 29.92 39.92

PoP - 0.67 83.18 7.88 0.01 7.89

CaP67

1e−3
0.67

90.62 7.89 4.69 12.58
1e−1 89.78 7.91 4.16 12.07
1e+2 89.56 7.77 1.51 9.28
1e−3 90.09 7.69 3.40 11.09
1e−1 88.78 7.67 1.38 9.07CaP75

1e+2
0.75

87.38 7.71 0.55 8.26

being pruned significantly, indicating the effectiveness of CaP.

E. Case Study: Multimodal Beamforming

Dataset Description. We also validate CaP on a publicly
available real-world dataset6 of multimodal beamforming [44],
[45] in a vehicle to infrastructure (V2I) scenario, as depicted
in Fig. 7. The FLASH dataset includes synchronized sensor
data from on-board Global Positioning System (GPS), a GoPro
Hero 4 camera, and a Velodyne Light Detection and Ranging
(LiDAR) sensors, along with the RF ground truth including the
received signal strength indicator (RSSI) of all beams recorded
by Talon AD7200 routers [46]. The onboard GPS records the
latitude and longitude of the vehicle as it passes in front of
the static base station. The camera is faced toward the base
station and records RGB samples with shape (3, 90, 160). The
LiDAR data is released as a quantized representation of the
environment with unique indicators that depict the location
of the transmitter, receiver, and obstacles [47]. The overall
dataset spans four different categories of experiment setups
with ∼32K samples.
Experiment Details. Following [35], we leverage three
convolution-based networks serving as base models for GPS,
Image, and LiDAR modalities, generating embeddings with

6Retrieved from https://www.rfdatafactory.com/datasets.

the size of (64, 64), (256, 64), (512, 64), respectively. The
fusion model, described in Table III, contains 4 FC and 1 final
output layers and takes inputs as the concatenated embedding
of each modality along the first dimension, resulting in an
input size of (832, 64). We consider 3 devices (one per
modality) in a dense topology, assuming a 5G communication
channel between them (as above).
Results. Table V shows the performance of CaP on two
sparsity levels SR=0.67 and SR=0.75 with a series of λ,
ranging from 1e−4 to 1e+2. We also report DenseC , DenseD,
and PoP for reference. We make the following observations.
First, CaP reduces computation cost largely, by up to 16.6%
comparing to DenseD. Second, CaP can maintain a favorable
trade-off between accuracy and communication cost by tuning
λ. Among all variants, CaP67(1e+2) performs the best: com-
paring to DenseC , it reduces communication cost by 41.7%,
resulting in a total of 27% reduction, under only negligible
accuracy loss (less than 1%); CaP67(1e−3), by paying less
than 1ms latency per round, even improves accuracy of the
dense model. Third, increasing the sparsity level reduces
communication costs effectively but harms accuracy more than
adjusting λ. Finally, not surprisingly, different from Fig. 4, CaP
prunes kernels roughly equally across layers. This is because
FlashNet contains only fully-connected layers, resulting in the
same (i.e., 1) size for each feature map.

VI. CONCLUSIONS

In this paper, we propose CaP, a framework to perform
model communication-aware pruning for distributed inference.
Our method simultaneously trains-and-prunes a DNN in a
communication-aware fashion, using (a) a carefully-designed
penalty capturing communication costs, and (b) additional
constraints enforcing sparsity. Experiments on benchmarks
demonstrate that CaP achieves significant improvement w.r.t
accuracy over SOTA competitors, by up to 4% with 8 edge
devices. Experiments on real-life applications show that CaP
reduces the total execution time by 27% and 68% while
incurring a negligible prediction performance drop (less than
1%), for radar detection and beamforming, respectively.

Our CaP framework can be extended in several ways. First,
CaP can be used as a basis for scaling inference to a much
larger number of sensors. Second, exploring more compli-
cated physical network structures and types of connections,
investigating robustness of CaP against a dynamic network, as
well applying CaP to more real-life applications are interesting
future directions. Finally, an important additional direction to
explore is the joint optimization of both partitioning/mapping
neurons to devices and pruning, combining CaP with existing
partitioning methods such as [13], [16], [32]. Our code is
publicly available. 7

ACKNOWLEDGMENT

The authors gratefully acknowledge the funding from the
US National Science Foundation (grants CCF-1937500 and
CNS-2112471).

7https://github.com/neu-spiral/CaP

https://www.rfdatafactory.com/datasets
https://github.com/neu-spiral/CaP

REFERENCES

[1] A. Gohar and G. Nencioni, “The role of 5g technologies in a smart city:
The case for intelligent transportation system,” Sustainability, vol. 13,
no. 9, 2021.

[2] S. K. Rao and R. Prasad, “Impact of 5g technologies on smart city
implementation,” Wireless Personal Communications, vol. 100, pp. 161–
176, 2018.

[3] K. Kim, C. Lee, D. Pae, and M. Lim, “Sensor fusion for vehicle tracking
with camera and radar sensor,” in ICCAS, 2017, pp. 1075–1077.

[4] H. Jha, V. Lodhi, and D. Chakravarty, “Object detection and identi-
fication using vision and radar data fusion system for ground-based
navigation,” in SPIN, 2019, pp. 590–593.

[5] D. Feng, C. Haase-Schütz, L. Rosenbaum, H. Hertlein, C. Gläser,
F. Timm, W. Wiesbeck, and K. Dietmayer, “Deep multi-modal object
detection and semantic segmentation for autonomous driving: Datasets,
methods, and challenges,” IEEE T-ITS, vol. 22, no. 3, pp. 1341–1360,
2021.

[6] D. Roy, Y. Li, T. Jian, P. Tian, K. Roy Chowdhury, and S. Ioannidis,
“Multi-modality sensing and data fusion for multi-vehicle detection,”
IEEE Transactions on Multimedia, 2022.

[7] T. Jian, Y. Gong, Z. Zhan, R. Shi, N. Soltani, Z. Wang, J. G. Dy, K. R.
Chowdhury, Y. Wang, and S. Ioannidis, “Radio frequency fingerprinting
on the edge,” IEEE Transactions on Mobile Computing, 2021.

[8] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE IoT Journal, vol. 7, no. 8, pp. 7457–7469, 2020.

[9] S. Singh, R. Sulthana, T. Shewale, V. Chamola, A. Benslimane, and
B. Sikdar, “Machine-learning-assisted security and privacy provisioning
for edge computing: A survey,” IEEE IoT Journal, vol. 9, no. 1, pp.
236–260, 2022.

[10] J. Mao, X. Chen, K. W. Nixon, C. D. Krieger, and Y. Chen, “Modnn:
Local distributed mobile computing system for deep neural network,” in
DATE, 2017, pp. 1396–1401.

[11] J. Mao, Z. Yang, W. Wen, C. Wu, L. Song, K. W. Nixon, X. Chen,
H. Li, and Y. Chen, “Mednn: A distributed mobile system with enhanced
partition and deployment for large-scale dnns,” in ICCAD, 2017, pp.
751–756.

[12] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge clus-
ters,” IEEE T-CADICS, vol. 37, no. 11, pp. 2348–2359, 2018.

[13] R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “Deeperthings: Fully distributed CNN inference on
resource-constrained edge devices,” IJPR, vol. 49, no. 4, pp. 600–624,
2021.

[14] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “Splitnet: Learning to
semantically split deep networks for parameter reduction and model
parallelization,” in ICML, D. Precup and Y. W. Teh, Eds., vol. 70, 2017,
pp. 1866–1874.

[15] K. Bhardwaj, C. Lin, A. L. Sartor, and R. Marculescu, “Memory- and
communication-aware model compression for distributed deep learning
inference on iot,” ACM T-ECS, vol. 18, no. 5, pp. 1–22, 2019.

[16] A. Abdi, S. Rashidi, F. Fekri, and T. Krishna, “Restructuring, pruning,
and adjustment of deep models for parallel distributed inference,” arXiv
preprint arXiv:2008.08289, 2020.

[17] A. Ozerov, A. Lambert, and S. K. Kumaraswamy, “Paradis: Par-
allelly distributable slimmable neural networks,” arXiv preprint
arXiv:2110.02724, 2021.

[18] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in ECCV, 2018, pp. 184–199.

[19] T. Li, B. Wu, Y. Yang, Y. Fan, Y. Zhang, and W. Liu, “Compressing
convolutional neural networks via factorized convolutional filters,” in
CVPR, 2019, pp. 3977–3986.

[20] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang,
“Admm-nn: An algorithm-hardware co-design framework of dnns using
alternating direction methods of multipliers,” in ASPLOS, 2019.

[21] M. Maheswaran and H. Siegel, “A dynamic matching and scheduling
algorithm for heterogeneous computing systems,” in HCW, 1998.

[22] Y. Xu, K. Li, L. He, and T. K. Truong, “A dag scheduling scheme on het-
erogeneous computing systems using double molecular structure-based
chemical reaction optimization,” Journal of Parallel and Distributed
Computing, vol. 73, no. 9, pp. 1306–1322, 2013.

[23] E. Ilavarasan and P. Thambidurai, “Low complexity performance effec-
tive task scheduling algorithm for heterogeneous computing environ-
ments,” Journal of Computer sciences, vol. 3, no. 2, pp. 94–103, 2007.

[24] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint dnn partition
deployment and resource allocation for delay-sensitive deep learning
inference in iot,” IEEE IoT Journal, vol. 7, no. 10, pp. 9241–9254,
2020.

[25] A. Parthasarathy and B. Krishnamachari, “DEFER: distributed edge
inference for deep neural networks,” in COMSNETS, 2022, pp. 749–
753.

[26] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li, “Coordinating
filters for faster deep neural networks,” in ICCV, 2017, pp. 658–666.

[27] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[28] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning efficient
object detection models with knowledge distillation,” in Advances in
neural information processing systems, 2017, pp. 742–751.

[29] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in ICCV, 2017, pp. 1389–1397.

[30] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
Filters for Efficient ConvNets,” in ICLR, 2017.

[31] T. Zhang, K. Zhang, S. Ye, J. Li, J. Tang, W. Wen, X. Lin, M. Fardad, and
Y. Wang, “Adam-admm: A unified, systematic framework of structured
weight pruning for dnns,” arXiv preprint arXiv:1807.11091, 2018.

[32] X. Hou, Y. Guan, T. Han, and N. Zhang, “Distredge: Speeding up
convolutional neural network inference on distributed edge devices,” in
2022 IEEE IPDPS, 2022, pp. 1097–1107.

[33] S. Ye, T. Zhang, K. Zhang, J. Li, K. Xu, Y. Yang, F. Yu, J. Tang,
M. Fardad, S. Liu, X. Chen, X. Lin, and Y. Wang, “Progressive
weight pruning of deep neural networks using admm,” arXiv preprint
arXiv:1810.07378, 2018.

[34] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “Autoslim: An
automatic dnn structured pruning framework for ultra-high compression
rates,” arXiv preprint arXiv:1907.03141, 2019.

[35] B. Salehi, J. Gu, D. Roy, and K. Chowdhury, “Flash: Federated learn-
ing for automated selection of high-band mmwave sectors,” in IEEE
INFOCOM, 2022, pp. 1719–1728.

[36] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, vol. 37,
2015, pp. 448–456.

[37] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[39] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in MBVC,
2016.

[40] N. Varsier, L.-A. Dufrène, M. Dumay, Q. Lampin, and J. Schwoerer, “A
5G new radio for balanced and mixed iot use cases: Challenges and key
enablers in fr1 band,” IEEE Communications Magazine, vol. 59, no. 4,
pp. 82–87, 2021.

[41] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei,
“5G new radio: Waveform, frame structure, multiple access, and initial
access,” IEEE Communications Magazine, vol. 55, no. 6, pp. 64–71,
2017.

[42] “FCC Releases Rules for Innovative Spectrum Sharing in 3.5 GHz
Band,” https://docs.fcc.gov/public/attachments/FCC-15-47A1.pdf, ac-
cessed: May 2022.

[43] “Requirements for Commercial Operation in the U.S. 3550-3700 MHz
Citizens Broadband Radio Service Band,” https://winnf.memberclicks.
net/assets/CBRS/WINNF-TS-0112.pdf, accessed: May 2022.

[44] N. González-Prelcic, A. Ali, V. Va, and R. W. Heath, “Millimeter-Wave
Communication with Out-of-Band Information,” IEEE Communications
Magazine, vol. 55, no. 12, pp. 140–146, 2017.

[45] B. Salehihikouei, G. Reus-Muns, D. Roy, Z. Wang, T. Jian, J. Dy,
S. Ioannidis, and K. Chowdhury, “Deep learning on multimodal sensor
data at the wireless edge for vehicular network,” IEEE Transactions on
Vehicular Technology, 2022.

[46] D. Steinmetzer, D. Wegemer, M. Schulz, J. Widmer, and M. Hollick,
“Compressive Millimeter-Wave Sector Selection in Off-the-Shelf IEEE
802.11ad Devices,” CoNEXT, 2017.

[47] A. Klautau, N. González-Prelcic, and R. W. Heath, “LIDAR Data
for Deep Learning-Based mmWave Beam-Selection,” IEEE Wireless
Communications Letters, vol. 8, no. 3, pp. 909–912, 2019.

https://docs.fcc.gov/public/attachments/FCC-15-47A1.pdf
https://winnf.memberclicks.net/assets/CBRS/WINNF-TS-0112.pdf
https://winnf.memberclicks.net/assets/CBRS/WINNF-TS-0112.pdf

	Introduction
	Related Work
	Problem Formulation
	Communication-aware Pruning
	The Communication-aware Pruning (CaP) Algorithm
	Solving CaP via ADMM
	Batch Normalization

	Experiments
	Experiment Setting for Benchmarks
	Comparison with Partitioning Methods
	A Comprehensive Understanding of CaP
	Case Study: Radar Detection
	Case Study: Multimodal Beamforming

	Conclusions
	References

