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Abstract
Rehearsal-based approaches are a mainstay of
continual learning (CL). They mitigate the catas-
trophic forgetting problem by maintaining a small
fixed-size buffer with a subset of data from past
tasks. While most rehearsal-based approaches ex-
ploit the knowledge from buffered past data, little
attention is paid to inter-task relationships and
to critical task-specific and task-invariant knowl-
edge. By appropriately leveraging inter-task rela-
tionships, we propose a novel CL method, named
DualHSIC, to boost the performance of existing
rehearsal-based methods in a simple yet effec-
tive way. DualHSIC consists of two comple-
mentary components that stem from the so-called
Hilbert Schmidt independence criterion (HSIC):
HSIC-Bottleneck for Rehearsal (HBR) lessens
the inter-task interference and HSIC Alignment
(HA) promotes task-invariant knowledge sharing.
Extensive experiments show that DualHSIC can
be seamlessly plugged into existing rehearsal-
based methods for consistent performance im-
provements, outperforming recent state-of-the-art
regularization-enhanced rehearsal methods.

1. Introduction
Continual learning (CL) aims at enabling a single model
to learn a sequence of tasks without catastrophic forget-
ting (McCloskey & Cohen, 1989) - the central problem of
CL that models are prone to performance deterioration on
previously seen tasks. A large body of work attempts to ad-
dress CL from different perspectives (Kirkpatrick et al.,
2017; Mallya & Lazebnik, 2018; Aljundi et al., 2018).
Rehearsal-based methods (Aljundi et al., 2018; Chaudhry
et al., 2019; Buzzega et al., 2020) have gained popularity
due to their simplicity, effectiveness, and generality.
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Figure 1. Comparison between DualHSIC, and two representative
SOTA CL methods, LiDER and DER++. Both DualHSIC and
LiDER are built upon DER++. DualHSIC achieves especially
better performance with smaller buffer sizes.

The core idea of rehearsal is to maintain a small fix-sized
memory buffer to save a subset of data from past tasks.
When training on the current task, the model also revisits
the buffered data to consolidate learned knowledge. Given
the limited buffer size, it is challenging to keep generally
discriminative representations for old tasks, because of over-
fitting (Verwimp et al., 2021). Existing methods mainly
focus on data augmentation (Buzzega et al., 2020; Cha
et al., 2021) and importance-based buffer example selec-
tion (Aljundi et al., 2019; Yoon et al., 2021).

Despite state-of-the-art (SOTA) performance, these ap-
proaches mostly consider how to better exploit knowledge
from the buffered past data. It is notable that the inter-
task relationship is also important yet under-investigated
in rehearsal-based work: How does learning the current
task affect the consolidation of past knowledge? To an-
swer this question, we are inspired by the Complementary
Learning Systems (CLS) (Kumaran et al., 2016; McClelland
et al., 1995) theory and CLS-based CL methods (Pham et al.,
2021; Wang et al., 2022b), which suggest that task-specific
and task-invariant knowledge are critical for CL. There-
fore, when learning the current task, we have to prevent the
current task-specific knowledge from interfering with past
knowledge, and leverage task-invariant knowledge to better
consolidate the past.

A straightforward approach is to directly combine CLS-
based methods with a rehearsal buffer. Although such an
approach has proved effective, major components such as an
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additional backbone (Pham et al., 2021), prompting mech-
anisms (Wang et al., 2022b), or re-design of the rehearsal
buffer system (Arani et al., 2022) are required. Ideally, one
would prefer a more general method that can be seamlessly
incorporated into most existing rehearsal-based methods
with minimal tweaks.

To this end, we propose a novel CL method, DualHSIC, that
improves existing rehearsal-based methods from a unique
perspective: leveraging the so-called Hilbert-Schmidt inde-
pendence criterion (HSIC) (Gretton et al., 2005) to learn bet-
ter feature representations for rehearsal. HSIC is much more
tractable and efficient than mutual information to measure
statistical independence, and has been widely adopted for
various sub-fields in machine learning (Wang et al., 2020b;
Ma et al., 2020). DualHSIC consists of two complementary
components: 1) HSIC-Bottleneck for Rehearsal (HBR) that
mitigates inter-task interference by removing uninforma-
tive task-specific knowledge introduced by learning on the
current task from the buffered data, such that inter-task inter-
ference and catastrophic forgetting are mitigated; 2) HSIC
Alignment (HA) that encourages task-invariant knowledge
sharing between current and past tasks for positive knowl-
edge transfer (Hadsell et al., 2020). These components can
be easily plugged into existing rehearsal-based methods
with consistent performance improvement. In Figure 1, we
demonstrate that DualHSIC outperforms advanced SOTA
methods under different buffer sizes, with especially larger
margins at small buffer sizes.

To further demonstrate the generality and effectiveness of
DualHSIC, we also conduct comprehensive experiments on
multiple CL benchmarks. We show that DualHSIC works
collaboratively with various existing rehearsal-based CL
methods, leading to consistent improvement upon SOTA
results. We also conduct in-depth exploratory experiments
to analyze the effectiveness of core designs of DualHSIC.

Overall, our work makes the following contributions:

• We propose DualHSIC, a general CL method that im-
proves a wide spectrum of rehearsal-based methods.
DualHSIC mitigates inter-task interference and encour-
ages task-invariant knowledge sharing between tasks
via the novel HBR and HA losses. Our code is publicly
available1.

• Comprehensive experiments demonstrate that DualH-
SIC consistently improves SOTA rehearsal-based meth-
ods by at most 7.6%, and also outperforms stronger
regularization-enhanced methods by at most 6.5%.

• To the best of our knowledge, our work is the first to
bring HSIC to CL to learn better representations in a
systematic way.

1
https://github.com/zhanzheng8585/DualHSIC

2. Related Work
Continual Learning. Existing CL works can be mainly
categorized into regularization-based, architecture-based,
and rehearsal-based approaches. Regularization-based ap-
proaches (Kirkpatrick et al., 2017; Zenke et al., 2017; Li
& Hoiem, 2017; Aljundi et al., 2018) introduce additional
terms in the loss function to penalize the model change
on important weights for the purpose of protecting earlier
tasks. Architecture-based approaches (Rusu et al., 2016;
Mallya & Lazebnik, 2018; Wang et al., 2020a; 2022c; Yan
et al., 2021) dynamically expand the model capacity or
isolate existing model weights to reduce the interference
between the new tasks and the old ones. Rehearsal-based
approaches allow access to a memory buffer with examples
from prior tasks and train the model jointly with the current
task. With its simplicity and efficacy, the idea of rehearsal
enjoys great popularity and has been adopted by many state-
of-the-art methods (Buzzega et al., 2020; Cha et al., 2021;
Pham et al., 2021; Wang et al., 2022a). In this work, we
present DualHSIC as a general surrogate loss that improves
rehearsal-based methods.

Hilbert Schmidt Independence Criterion (HSIC). As a
statistical dependency measure, HSIC (Gretton et al., 2005)
has been widely applied in various machine learning appli-
cations, such as dimensionality reduction (Niu et al., 2011),
clustering (Wu et al., 2020), feature selection (Song et al.,
2012), and class discovery (Wang et al., 2020b). HSIC cap-
tures non-linear dependencies between random variables
and has the advantage of easy empirical estimation over
mutual information (MI). Recently, Ma et al. (2020) pro-
pose the HSIC-bottleneck as an alternative for cross-entropy
loss. Wang et al. (2021) and Jian et al. (2022) further demon-
strate how HSIC-bottleneck strengthens a model’s adver-
sarial robustness. However, no prior work has studied the
application of HSIC under the context of CL. As a very
first attempt, we propose two novel complementary HSIC-
related losses that address catastrophic forgetting from a
unique perspective.

Among the latest CL works, OCM (Guo et al., 2022) and
LiDER (Bonicelli et al., 2022) are the closest to our work,
in terms of the common target to improve rehearsal-based
methods via surrogate loss terms. However, we would
still like to emphasize that our work is different and novel.
OCM proposes an MI-based loss through a complicated
contrastive learning proxy (Oord et al., 2018), while our
work introduces two different HSIC losses with a simple
empirical evaluation strategy. LiDER constrains the Lips-
chitz constant of a model to strengthen the robustness of
the decision boundary, while DualHSIC has a different mo-
tivation and methodology. Moreover, departing from both
works, we explicitly consider the inter-task relationship in
CL. We also show that DualHSIC consistently outperforms
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OCM and LiDER in practice (Table 2).

3. Preliminaries
3.1. Continual Learning Problem Setting

In supervised continual learning, a sequence of tasks D =
{D1, . . . ,DT } arrive in a streaming fashion, where each
task Dt = {(xt

i, y
t
i)}

nt
i=1 contains a separate target dataset,

i.e., Di ∩ Dj = ∅. A single model needs to adapt to them
sequentially, with only access to Dt at the t-th task. In
practice, we allow a small fix-sized rehearsal buffer M to
save data from past tasks. At test time, we mainly focus
on one of the most challenging class-incremental (Class-IL)
setting, where no task identity is available for the coming
test examples.

In general, given a prediction model hθ parameterized by θ,
a large body of continual learning work seeks to optimize
for the following loss at the t-th task:

LCL(θ) =
∑

x,y∈Dt

ℓ(hθ(x), y) +
∑

xM ,yM∈M

ℓM(hθ(x
M ), yM ),

(1)

where ℓ and ℓM are losses for the current data and buffered
data, respectively. For example, Chaudhry et al. (2019)
applies cross-entropy as both losses, while many recent
works present different losses or add additional auxiliary
loss terms (Buzzega et al., 2020; Cha et al., 2021). Although
LCL can take many forms depending on the actual method,
our method DualHSIC presents a model-agnostic loss that
can be plugged into most rehearsal-based CL methods to
improve the overall performance.

3.2. Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt independence criterion (HSIC) is a
statistical measure for identifying dependencies between
two random variables, which was first introduced by Gretton
et al. (2005). HSIC calculates the Hilbert-Schmidt norm
of the cross-covariance operator of the distributions in the
Reproducing Kernel Hilbert Space (RKHS). Similar to the
widely used Mutual Information (Shannon, 1948), HSIC is
able to detect non-linear dependencies with the advantage
of easy empirical estimation over MI.

Given two random variables X and Y , the HSIC between
them is formally defined as:

HSIC(X,Y ) = EXYX′Y ′ [kX (X,X ′) kY ′ (Y, Y ′)]

+ EXX′ [kX (X,X ′)]EY Y ′ [kY (Y, Y ′)]

− 2EXY [EX′ [kX (X,X ′)]EY ′ [kY (Y, Y ′)]] ,

(2)

where X ′, Y ′ are independent copies of X , Y , respectively,
and kX , kY are corresponding kernel functions.
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Figure 2. Overview of DualHSIC. HBR is calculated on the
buffered data in a multi-layer fashion. However, only a sub-
component of HBR at the j-th intermediate layer is illustrated
in the figure for visual clarity. HA is calculated between the latent
representations of buffered and current data. Both inputs share
the same feature encoder and an MLP projection head is used to
create an alternative view. Note that the actual HA is symmetric,
exchanging two input branches in the figure provides the second
half of the loss.

HSIC can be easily approximated empirically without know-
ing the analytical form of distribution PXY . Given n i.i.d.
examples {(xi, yi)}ni=1 sampled from PXY , the empirical
estimation of HSIC is:

HSICe(X,Y ) = (n− 1)−2 tr (KXHKY H) , (3)

where KX and KY are kernel matrices with KXij =
kX(xi,xj) and KYij = kY (yi, yj), respectively, tr(·) is
the trace operator, and H = I − 1

n11
⊤ is a centering ma-

trix. In our experiments, we evaluate HSIC terms via this
empirical estimation.

4. DualHSIC
In this section, we will present DualHSIC, a general con-
tinual learning objective that is orthogonal to the existing
rehearsal-based framework. As shown in Figure 2, DualH-
SIC consists of two complementary losses: HSIC-Bottleneck
for Rehearsal, which mitigates inter-task interference, and
HSIC Alignment which encourages the sharing of task-
invariant knowledge between tasks.

4.1. HSIC Bottleneck for Rehearsal

During the continual learning process, compared with abun-
dant data from the current task, we only have very lim-
ited buffered data from past tasks. This data-imbalance
issue (Hadsell et al., 2020; Mai et al., 2021) makes the
model over-focus on task-specific knowledge of the current
task, leading to performance deterioration on the past tasks.
To address the problem, we propose HSIC-Bottleneck for
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Rehearsal (HBR), a general loss to mitigate inter-task in-
terference and retrain good feature representations for data
saved in the rehearsal buffer.

We denote the model, a multi-layer feedforward neural net-
work with L intermediate layers, used in the CL process by
hθ : Rdx → RC , where dx is the input dimension and C is
the total number of classes of interest during CL. We also
decompose hθ = gθg ◦ fθf into the final classification layer
gθg and the feature encoder fθf for notation convenience.
We use XM to denote the random variable that represents
data saved in the rehearsal buffer M, we further denote by
ZM
j ∈ Rdzj its corresponding output of the j-th intermedi-

ate layer. HSIC-Bottleneck for Rehearsal (HBR) is defined
as a penalty loss on the buffered data:

LHBR(θf ) = λx

∑L
j=1 HSIC(XM , ZM

j )− λy

∑L
j=1 HSIC(Y

M , ZM
j ),

(4)
where λx and λy are balancing coefficients.

Mitigating Inter-Task Interference. Intuitively, minimiz-
ing the HSIC between XM and ZM

j aims at reducing the
noisy information contained within the latent representation
ZM
j w.r.t. the input XM . When learning the current task t,

the model undoubtedly extracts useful knowledge from the
current data. However, such task-specific knowledge may
be uninformative or noisy for past tasks (Ebrahimi et al.,
2020; Pham et al., 2021; Wang et al., 2022b). Therefore,
by only applying the bottleneck loss to the buffered
data, we implicitly mitigate the interference from learn-
ing task-specific knowledge for the current task to past tasks.

Maintaining Discriminative Knowledge. HBR also
tries to maximize the HSIC between Y M and ZM

j , which
naturally retains the discriminative information useful for
classification. Although it serves a similar purpose as the
cross-entropy loss for classification, Wang et al. (2021)
demonstrate the necessity of this term in the bottleneck loss
empirically; we also verify this observation in our ablation
study (Section 5.4).

Asynchronous Consolidation. Note that we only apply
HBR to the buffered data, instead of both buffered and cur-
rent data. Empirically, we observe that adding the term
to both data does not lead to performance improvement
(Appendix C.5); similar results have also been observed
by Bonicelli et al. (2022). Intuitively, we already have abun-
dant data for the current task compared to the buffered data,
so the learning of the current task is much less prone to inter-
task interference. On the other hand, our proposed scheme
naturally consolidates knowledge in an asynchronous way to
address the stability-plasticity dilemma for continual learn-
ers (Abraham & Robins, 2005; Mermillod et al., 2013): the
model first learns the current task without HBR for maxi-

Algorithm 1 DualHSIC for Continual Learning
Input: Model hθ with L-layer feature encoder fθf and clas-
sifier gθg , projection head pω, number of tasks T , training
epochs of the t-th task Kt, mini-batch size B.
Initialize: θ (θf and θg), pω
for t = 1, . . . , T do

for e = 1, . . . ,Kt do
Draw a mini-batch {(xt

i, y
t
i)}Bi=1 from current task

Draw a mini-batch {(xM
i , yMi )}Bi=1 from buffer

Generate latent representations for buffered data at
every intermediate layer {{zMi,j}Bi=1}Lj=1

Generate latent representation for current data at the
last intermediate layer {zti,L}Bi=1

/* HSIC Bottleneck for Rehearsal */

Compute LHBR(θf ) in Eq. (4) via mini-batched em-
pirical estimation (Eq. (3), same below)

/* HSIC Alignment */

Generate projected views of the last layer represen-
tations {pω(zti,L)}Li=1 and {pω(zMi,L)}Li=1

Compute LHA(θf , ω) in Eq. (5)
/* Original Rehearsal Loss */

Compute LCL(θ) from the base rehearsal method
Compute Ltotal in Eq. (6).
Update θ = {θf , θg} and ω via back-propagation

end
end

mum plasticity, then rehearse the learned task in future tasks
with HBR to maintain stability.

Alternative Perspective via Robustness. Although not
used in the context of CL, HSIC-bottleneck has been proved
by Wang et al. (2021) both empirically and theoretically to
improve the adversarial robustness of the model. Interest-
ingly, Bonicelli et al. (2022) also demonstrate that a more
adversarially robust model on the buffered data prevents
the decision boundary from eroding, thus mitigating catas-
trophic forgetting. In this respect, HBR provides another
bridge that links adversarial robustness with catastrophic
forgetting.

4.2. HSIC Alignment Loss

According to the complementary learning systems (CLS)
theory (McClelland et al., 1995; Kumaran et al., 2016),
learning task-invariant knowledge that can be shared be-
tween tasks is also critical in CL. To this end, we propose
a novel HSIC Alignment (HA) loss to better capture task-
invariant knowledge.

Recall that we denote by XM the random variable for the
buffered data, and ZM

L the latent representation from the
last intermediate layer. We further denote by Xt the random
variable for the data from the current task t, as well as the
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corresponding latent representation Zt
L. We define the HSIC

Alignment (HA) loss as:

LHA(θf , ω) = − 1
2

(
HSIC(ZM

L , pω(Z
t
L)) + HSIC(pω(Z

M
L ), Zt

L)
)
,

(5)
where pω is an multi-layer perceptron (MLP) projection
head (Grill et al., 2020; Chen & He, 2021) for producing
multiple views of the latent representation.

Strengthening Task-Invariant Knowledge. HA aims at
maximizing the HSIC between the latent representations
of examples from different tasks such that task-invariant
knowledge can be better shared. Note that HA actually
acts as a complementary learning objective to HBR, as it
encourages knowledge transfer between tasks in addition to
less forgetting (Hadsell et al., 2020).

Design Choices. The design of the HA loss is inspired
by the Siamese representation learning paradigm (Chen &
He, 2021). In practice, we have empirically verified the
effectiveness of the symmetrized loss and the necessity of
adding the projection head. Interestingly, HA works quite
well without the stop-gradient (Chen & He, 2021) operation.
We suspect that this phenomenon may due to the fact that
the intrinsic difference between examples from different
tasks ensures latent representations do not collapse. We
leave further theoretical explorations in our future work.

4.3. Overall Objective

At every task, we incorporate both the HBR and HA losses
into the existing rehearsal-based learning framework. There-
fore, the overall objective is:

Ltotal = LCL(θ) + LHBR(θf ) + λHALHA(θf , ω),

=
∑

x,y∈Dt

ℓ(hθ(x), y) +
∑

xM ,yM∈M

ℓM(hθ(x
M ), yM )+

λx

L∑
j=1

HSIC(XM , ZM
j )− λy

L∑
j=1

HSIC(Y M , ZM
j )︸ ︷︷ ︸

HSIC-Bottleneck for Rehearsal

−

λHA
1

2

(
HSIC(ZM

L , pω(Z
t
L)) + HSIC(pω(Z

M
L ), Zt

L)
)

︸ ︷︷ ︸
HSIC Alignment

,

(6)

where λHA is a balancing coefficient. Note that our surro-
gate loss terms are general enough to be combined with
and further improve almost any existing rehearsal methods.
The overall algorithm is described in Alg. 1. In practice,
we evaluate HSIC empirically via (3) in mini-batches, fol-
lowing (Wang et al., 2021). Given mini-batch size B, the
maximum intermediate dimension dZ = maxj dZj

, the
computation complexity of evaluating the emiprical HSIC is
O(B2dZ) (Song et al., 2012). Thus, the computational com-
plexity overhead introduced by DualHSIC is O(LB2dZ).

5. Experiments
To evaluate the efficacy of the proposed DualHSIC, we
conduct comprehensive experiments on representative
CL benchmarks, closely following the challenging class-
incremental learning setting in prior works (Lopez-Paz &
Ranzato, 2017; Van de Ven & Tolias, 2019; Wang et al.,
2022c). We incorporate DualHSIC with multiple SOTA
rehearsal-based CL methods to demonstrate performance
improvement, while also comparing DualHSIC against other
SOTA CL methods. We also performed an ablation study
and exploratory experiments to further showcase the effec-
tiveness of individual components.

5.1. Experiment Setting

Evaluation Benchmarks. We evaluate our DualHSIC on
three representative CL benchmarks, following mainstream
evaluation paradigms (Zenke et al., 2017; Buzzega et al.,
2020; Bonicelli et al., 2022).
- Split CIFAR-10 originates from the well-known CIFAR-
10 (Krizhevsky et al., 2009) dataset. It is split into 5 disjoint
tasks with 2 classes per task.
- Split CIFAR-100 is also a split version of CIFAR-
100 (Krizhevsky et al., 2009), which contains 10 disjoint
tasks with 10 classes per task.
- Split miniImageNet is subsampled from ImageNet (Deng
et al., 2009) with 100 classes. It is split into 20 disjoint tasks
with 5 classes per task. Dataset licensing information can
be found in Appendix A.

Comparing Methods. We compare DualHSIC of multiple
SOTA CL methods of different kinds.
- Rehearsal-Based. DualHSIC is a general framework that
can be combined with almost any mainstream rehearsal-
based methods. Therefore, we incorporate DualHSIC
into multiple SOTA rehearsal-based methods, including
ER (Chaudhry et al., 2019), DER++ (Buzzega et al., 2020),
X-DER-RPC (Boschini et al., 2022), and ER-ACE (Caccia
et al., 2021), to demonstrate its general effectiveness.
- Regularization-Based. Note that DualHSIC can also
be regarded as a novel regularizer in addition to the origi-
nal rehearsal-based loss. Therefore, We also compare our
method with existing regularization-based techniques based
on ER-ACE and DER++, including sSGD (Mirzadeh et al.,
2020), oEWC (Schwarz et al., 2018), oLAP (Ritter et al.,
2018), and more recent SOTA methods, OCM (Guo et al.,
2022) and LiDER (Bonicelli et al., 2022).
- Reference Baselines. For completeness, we also include
the naive baseline, Sequential, that trains a model sequen-
tially on tasks without any buffer, and the possible Upper
bound, that trains the model on the union of all tasks in an
i.i.d. fashion, for reference.

Evaluation Metrics. We report two major metrics that
are widely used in previous works (Chaudhry et al., 2018;
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Table 1. Performance (in average accuracy) comparison between DualHSIC with state-of-the-art rehearsal-based methods on benchmark
datasets with different buffer sizes and optional pre-training. All results are averaged through three independent runs.

Method Split CIFAR-10 Split CIFAR-100 Split miniImageNet

Pre-training ✗ ✗ Tiny ImageNet ✗

Upper bound 92.38 73.29 75.20 53.55
Sequential 19.67 9.29 9.52 4.51

Buffer size 100 200 500 200 500 2000 200 500 2000 1000 2000 5000

ER 36.39 44.79 57.74 14.35 19.66 36.76 18.09 28.25 43.18 8.37 16.49 24.17
+ DualHSIC 43.70 49.37 61.65 21.57 26.65 40.26 25.35 33.82 46.57 12.71 19.57 26.89
X-DER-RPC 59.29 65.19 68.10 35.34 44.62 54.44 51.40 57.45 62.46 25.24 26.38 29.91
+ DualHSIC 66.76 71.05 73.53 40.04 46.83 54.71 52.67 57.88 62.70 27.21 28.15 31.09
ER-ACE 53.90 63.41 70.53 26.28 36.48 48.41 41.85 48.19 57.34 17.95 22.60 27.92
+ DualHSIC 60.52 68.08 73.78 29.08 38.94 50.55 45.19 50.36 57.50 22.33 25.41 30.12
DER++ 57.65 64.88 72.70 25.11 37.13 52.08 26.50 43.65 58.05 18.02 23.44 30.43
+ DualHSIC 64.98 70.28 75.94 31.46 41.86 53.53 34.10 50.64 59.02 24.78 29.37 34.98

Table 2. Performance (in average accuracy) comparison between DualHSIC and regularization-enhanced rehearsal methods on various
benchmark datasets. ER-ACE and DER++ are representative rehearsal-based methods that all comparing methods build upon. All results
are averaged through three independent runs.

Method Split CIFAR-10 Split CIFAR-100 Split miniImageNet

Buffer size 100 200 500 200 500 2000 1000 2000 5000

ER-ACE 53.90 63.41 70.53 26.28 36.48 48.41 17.95 22.60 27.92
+ sSGD 56.26 64.73 71.45 28.07 39.59 49.70 18.11 22.43 24.12
+ oEwC 52.36 61.09 68.70 24.93 35.06 45.59 19.04 24.32 29.46
+ oLAP 52.76 63.19 70.32 26.42 36.58 47.66 18.34 23.19 28.77
+ OCM 57.18 64.65 70.86 28.18 37.74 49.03 20.32 24.32 28.57
+ LiDER 56.08 65.32 71.75 27.94 38.43 50.32 19.69 24.13 30.00
+ DualHSIC 60.52 68.08 73.78 29.08 38.94 50.55 22.33 25.41 30.12

DER++ 57.65 64.88 72.70 25.11 37.13 52.08 18.02 23.44 30.43
+ sSGD 55.81 64.44 72.05 24.76 38.48 50.74 16.31 19.29 24.24
+ oEwC 55.78 63.02 71.64 24.51 35.22 51.53 18.87 24.53 31.91
+ oLAP 54.86 62.54 71.38 23.26 34.48 50.80 18.91 25.02 32.78
+ OCM 59.25 65.81 73.53 27.46 38.94 52.25 20.93 24.75 31.16
+ LiDER 58.43 66.02 73.39 27.32 39.25 53.27 21.58 28.33 35.04
+ DualHSIC 64.98 70.28 75.94 31.46 41.86 53.53 24.78 29.37 34.98

Lopez-Paz & Ranzato, 2017; Mai et al., 2021): Average
accuracy (higher is better) and Forgetting (lower is better) is
used to evaluate the performance of the final model trained
sequentially on all tasks. The formal definition of both met-
rics are shown in Appendix B. Note that we include average
accuracy as our main result, while keep the forgetting results
and error bars in Appendix C.3 and C.2 due to space limit.

Experimental Details. We follow the standard settings in
prior CL work (Buzzega et al., 2020; Bonicelli et al., 2022)
for a fair comparison. For hyperparameters of the base re-
hearsal methods, we refer (Buzzega et al., 2020) for the best
configurations. All methods use the same backbone model,
training epochs and batch sizes for fair comparison. The per-
task training epochs are set as 50 for Split CIFAR-10/100,
and 80 for Split miniImageNet. The batch sizes are set as 32,
64, and 128 for Split CIFAR-10, Split CIFAR-100, and Split
miniImageNet, respectively. We adopt ResNet-18 (He et al.,

2016) without any pre-training for Split CIFAR-10 and Split
CIFAR-100. Additionally, we experiment on Split CIFAR-
100 using ResNet-18 pre-trained on Tiny ImageNet as re-
ported in (Bonicelli et al., 2022). For Split miniImageNet,
EfficientNet-B2 (Tan & Le, 2019) without pre-training is
used. For the projection head, we use a 128-512-128 MLP
and a 352-1408-352 MLP for ResNet-18 and EfficientNet-
B2, respectively. To implement the empirical HSIC, we
adopt the commonly used Gaussian kernel with σ = 5,
following the recommendations by Wang et al. (2021). Ad-
ditional details about the selection of balancing coefficients
are reported in Appendix C.1.

For the comparing methods, we either directly take existing
results reported in Bonicelli et al. (2022), or reproduce the
experiment results using the suggested hyperparameters
from their original papers.
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Table 3. Ablation study on Split CIFAR-100 with 500 buffer size,
LCL is based on DER++. H(·; ·) represents HSIC(·; ·). “Proj.”
and “Sym.” are abbreviations for using projection head pω and
using symmetric loss, respectively.

LCL
LHBR LHA Class-IL Acc (↑)

H(X;Z) H(Y ;Z) Proj. Sym.

✓ ✗ ✗ ✗ ✗ 37.13
✓ ✓ ✗ ✗ ✗ 39.60
✓ ✓ ✓ ✗ ✗ 40.79
✓ ✓ ✓ ✓ ✗ 41.68
✓ ✓ ✓ ✓ ✓ 41.86

Computing Resources. All experiments are conducted on
a single Tesla V100 GPU with 32GB memory.

5.2. Comparison with Rehearsal Methods

Table 1 presents our evaluation results comparing DualHSIC
with multiple SOTA rehearsal-based models. We can see
that DualHSIC can consistently improve the performance of
all base methods in almost all evaluated scenarios, in terms
of both average accuracy and forgetting (Appendix C.3). In
particular, the maximum performance gain of DualHISC
is 7.6% across all datasets and buffer sizes. Interestingly,
we observe the largest performance gap when buffer size is
small in Table 1, while similar trend is revealed in Figure 1
as well. This observation actually confirms the effective-
ness of DualHSIC under more challenging scenarios. As
suggested by Prabhu et al. (2020), when buffer size is large,
the data imbalance issue between buffered and current data
is naturally mitigated. Moreover, we observe that the effec-
tiveness of DualHSIC is orthogonal to pre-training, showing
the potential that DualHSIC can be useful in real-world
scenarios that often involves learning from a pre-trained
model (Wang et al., 2022c).

5.3. Comparison with Regularization-Enhanced
Rehearsal Methods

To further demonstrate the effectiveness of DualHSIC,
we compare DualHSIC against regularization-enhanced re-
hearsal methods by combining existing regularization tech-
niques and replay strategies including ER-ACE and DER++.
We show the experiment results in Table 2. DualHSIC out-
performs almost all regularization techniques on all bench-
marks with various buffer sizes, by at most 6.5% margin.
Even when DualHSIC is outperformed, its gap with the top
performer is minimal (< 0.6%). Similarly, we observe the
clear advantage of DualHSIC at the small buffer regime.
Note that sSGD, oEwC and oLAP do not specifically con-
sider buffered data, while OCM and LiDER do not explic-
itly consider the inter-task relationship as DualHSIC does,
which may account for the larger performance gap when
buffer size is small.

A
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Number of Latent Representations

HBR

HA

Figure 3. Effectiveness of HBR and HA w.r.t. number of latent rep-
resentations included. HBR gets increasingly better performance
with more latent representations, while HA gets the best perfor-
mance with a single latent representation.

5.4. Effectiveness of Core Designs

Ablation Study. We perform a comprehensive ablation
study by evaluating the contribution of each component in
DualHSIC on Split CIFAR-100, with buffer size equal to
500, and the results are shown in Table 3. In summary,
all components of DualHSIC contribute to the final perfor-
mance improvement. Firstly, introducing the term H(X;Z)
alone can improve the accuracy by 2.5%. The rationale
behind this is that minimizing the HSIC between X and
Z can help reduce the noisy information contained within
the latent representation w.r.t. the input, thus mitigating the
catastrophic forgetting problem. In the third row, we see that
we further improve the accuracy by 1.2% by incorporating
H(Y ;Z) into the loss, which helps preserve discriminative
information useful for classification. We thus see the col-
laborative performance of HBR as a whole; a similar obser-
vation was made by Wang et al. (2021). The forth and fifth
row in Table 3 show the necessity of the projection head pω
and the symmetric loss term. We empirically observe that
both further improve the final performance, which supports
that DualHSIC helps in learning task-invariant knowledge
better.

Multi-Layered vs. Single-Layered Loss. In our final for-
mulation of DualHSIC, we use multi-layered loss for HBR
and single-layered loss for HA. To validate this specific
design choice, we present how an increasing number of
latent representations obtained from multiple layers affects
the final performance, on both HBR and HA in Figure 3.
Experiment details are included in Appendix C.4. Interest-
ingly, HBR performs better with more latent representations
from multiple layers, while HA does not gain benefits from
adding more representations. One possible reason may be
that mitigating task-interference is essentially a harder task
than encouraging sharing of task-invariant features, consid-
ering the data imbalance issue between buffered and current
data. Therefore adding multiple levels of intermediate su-
pervision strengthens the performance of HBR. On the other
hand, note that the multi-layered version of HA requires in-
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Figure 4. Comparison of tSNE visualization of the last latent representation between DER++ vs. DER++ with DualHSIC. We show
the progress of tSNE embeddings starting from task 2, since task 1 can be regarded as trivial supervised learning with no catastrophic
forgetting issue. Classes are split into 5 tasks based on their label ID, i.e., 2 consecutive classes are assigned to the same task. DualHSIC
improves DER++ with more separable embeddings and less inter-class confusion at later tasks.

dependent projection heads at each intermediate layer, due
to the dimension difference. When performances are close,
we choose the single-layered with minimal overhead for
HA.

Visualization of Latent Representation. We compare t-
SNE (Van der Maaten & Hinton, 2008) visualization of the
last latent representation between DER++ with and without
DualHSIC during CL on Split CIFAR-10 with 200 buffer
size. The t-SNE visualization at the end of task 2 to 5 is
shown in Figure 4, where different colors represent different
class labels. We observe that the latent representations from
earlier tasks are better separated in the embedding space
when trained with DualHSIC additionally. For example, in
the upper row (DER++), class 2 and 3 from the second task
are getting scattered and largely overlapped with classes
from other tasks at the 4-th and 5-th tasks. In the lower
row (DER++ with DualHSIC), we see that class separation
is better maintained throughout the CL learning process,
thanks to the synergy between HBR and HA.

6. Conclusion
In this paper, we propose DualHSIC, a general method for
continual learning that can mitigate inter-task interference
and extract task-invariant knowledge at the same time. It
has two key components based on the so-called Hilbert-
Schmidt independence criterion (HSIC): HSIC-Bottleneck
for Rehearsal (HBR) and HSIC Alignment (HA). We con-
duct comprehensive experiments and an ablation study to
show that DualHSIC can be seamlessly plugged into a wide
range of SOTA rehearsal-based methods and consistently
improve the performance under different settings. More-
over, we recommend DualHSIC as a starting point for future

research on the effectiveness of HSIC in CL.

Potential Negative Societal Impacts
DualHSIC is a novel and effective CL method to enhance
various rehearsal-based methods and has great practical po-
tential. However, we should be cautious of the potential
negative societal impacts it might lead to. For example, as
DualHSIC can be integrated into almost any rehearsal-based
frameworks, we should always double check and mitigate
the fairness and bias (Mehrabi et al., 2021) issues that ex-
isted in the base model before we further deploy DualHSIC,
in case such issues propagate. Moreover, when applying
DualHSIC to privacy-sensitive (Al-Rubaie & Chang, 2019)
applications, we need to ensure the buffered data are well-
anonymized to prevent a privacy breach. In summary, we
would recommend to analyze and prepare possible solu-
tions to potential negative societal impacts in detail, before
deploying DualHSIC in real-world applications.

Limitations
Although DualHSIC is a pioneering work that first intro-
duces HSIC into CL for reducing inter-task interference and
learning better task-invariant knowledge, we would still like
to discuss the current limitations of DualHSIC. First, Du-
alHSIC aims at improving widely-adopted rehearsal-based
methods. When rehearsal buffer is not allowed, the formula-
tion of DualHSIC potentially needs to be revised to work.
Second, we motivate DualHSIC intuitively and demonstrate
the effectiveness of DualHSIC empirically by comprehen-
sive experiments. However, theoretical foundation is still
under exploration to strictly link HSIC with catastrophic

8
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forgetting. We would like to treat current limitations of our
work as interesting research directions and topics for our
future work.
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A. Dataset Licensing Information
• CIFAR-10 and CIFAR-100 are licensed under the MIT license.

• miniImageNet is licensed under the CC0: Public Domain license.

B. Evaluation Metrics
We define the average accuracy and forgetting following (Lopez-Paz & Ranzato, 2017). Let St,τ be the classification
accuracy on the τ -th task after training on the t-th task. When the model has been trained sequentially on the first t tasks,
the average accuracy (At) and forgetting (Ft) can be computed as follows:

At =
1

t

t∑
τ=1

St,τ

Ft =
1

t− 1

t−1∑
τ=1

max
τ ′∈{1,··· ,t−1}

(Sτ ′,τ − St,τ )

C. Additional Experiment Details and Results
C.1. Balancing Coefficients

As suggested by (Wang et al., 2021), the balancing coefficients of HSIC-related terms should roughly follow the rule-of-
thumb that the balanced losses should be the same scale as the original loss. We follow the recommendation as starting points
for searching the optimal λx, λy and λHA on the validation set. Following the standard practice (Zenke et al., 2017; Buzzega
et al., 2020; Yoon et al., 2020; Wang et al., 2022b), we create the validation set in an offline fashion before continual learning
starts. The data points in the validation set are not used for testing, but are used for training the method after we select the
best-performing hyper-parameters. Specifically, we subsample the training set by a ratio of 20% in a stratified way for every
task before the continual learning process starts. The subsampled data are put aside as a validation set. Then we conduct
hyper-parameter tuning on the remaining 80% of the training data, and validate the performance of DualHSIC with different
sets of hyper-parameters using the validation set. The tuning process is exactly the same as the usual class-incremental
setting, with the training set and test set replaced by our 80% training set and the validation set, respectively. Finally, after
we get the best-performing hyper-parameters on the validation set, we train the method with the best hyper-parameters on
the full training set (without further splitting into 80% training and 20% validation) and get the final test performance as we
reported in our paper. The final sets of balancing coefficients for different datasets are as follows:

Table 4. Optimal balancing coefficients.

Dataset λx λy λHA

Split CIFAR-10 0.001 0.05 -0.75
Split CIFAR-100 0.001 0.05 -0.75

Split miniImageNet 0.001 0.1 -0.75

C.2. Error Bars

We report the corresponding error bars of Table 1 in the main text in Table 5.

C.3. Forgetting

We report the corresponding forgetting metric of Table 1 in the main text in Table 6.

C.4. Details of Multi-Layer vs. Single-Layered Loss

We design the experiment based on our final model, i.e., HBR is calculated using every latent representation, and HA only
uses the final latent representation. To verify the design choice, we conduct experiments using DER++ with DualHSIC and
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Table 5. Error bars of Table 1. ‘-’ means the result is taken from existing work.
Method Split CIFAR-10 Split CIFAR-100 Split miniImageNet

Pre-training ✗ ✗ Tiny ImageNet ✗

Upper bound 92.38 73.29 75.20 53.55
Sequential 19.67 9.29 9.52 4.51

Buffer size 100 200 500 200 500 2000 200 500 2000 1000 2000 5000

ER 1.23 1.64 0.97 0.64 1.56 0.94 1.33 0.69 2.00 1.11 0.93 1.46
+ DualHSIC 0.69 1.51 0.33 1.02 0.63 0.78 0.55 0.87 1.44 0.05 0.58 0.83
X-DER-RPC 1.86 0.32 1.39 2.26 - - 2.17 - - 1.96 - -
+ DualHSIC 1.07 0.67 0.89 0.46 1.06 0.41 1.81 1.04 0.57 0.42 1.30 1.58
ER-ACE 0.88 0.79 0.99 1.12 - - 0.83 - - 0.43 - -
+ DualHSIC 1.04 1.22 1.17 1.08 0.35 1.57 0.21 0.43 1.00 1.49 0.64 0.72
DER++ 1.90 0.91 0.53 1.32 - - 0.96 - - 1.42 - -
+ DualHSIC 0.46 1.64 0.06 0.53 0.66 1.42 0.85 0.81 1.40 1.33 0.87 1.29

Table 6. Performance (in forgetting, lower is better) comparison between DualHSIC with state-of-the-art rehearsal-based methods on
benchmark datasets with different buffer sizes and optional pre-training. All results are averaged through three independent runs.

Method Split CIFAR-10 Split CIFAR-100 Split miniImageNet

Pre-training ✗ ✗ Tiny ImageNet ✗

Upper bound 92.38 73.29 75.20 53.55
Sequential 19.67 9.29 9.52 4.51

Buffer size 100 200 500 200 500 2000 200 500 2000 1000 2000 5000

ER 55.90 44.46 38.15 70.17 63.92 46.56 70.33 58.50 30.02 63.55 54.14 41.32
+ DualHSIC 47.18 39.53 33.91 64.61 56.23 39.05 63.53 54.20 28.83 51.03 44.58 37.97
X-DER-RPC 30.16 23.16 17.48 41.58 31.84 17.01 22.68 16.86 12.07 49.93 38.33 28.29
+ DualHSIC 26.38 21.56 17.08 35.82 27.59 12.02 15.33 11.93 11.10 33.51 25.94 21.60
ER-ACE 22.76 18.30 14.96 50.63 38.21 27.90 39.42 31.84 25.48 29.82 23.74 19.72
+ DualHSIC 18.53 16.30 12.05 43.91 34.52 28.02 32.70 27.36 26.08 27.87 24.37 19.56
DER++ 40.25 30.06 21.85 62.92 49.80 31.10 71.26 48.72 29.65 63.40 46.69 37.11
+ DualHSIC 32.52 24.57 17.73 54.96 45.81 27.52 65.94 46.73 26.40 48.16 34.44 25.56

vary the number of latent representations added to both terms. We use ResNet18 as the backbone on Split CIFAR-100 with
500 buffer size. Following (Wang et al., 2021), we treat a ResNet basic block as a whole for generating latent representations.
Therefore, we can get 6latent representations in total. Specifically, for HBR, we increase the number of latent representations
in a forward fashion, i.e., starting from only adding the very first representation to adding all representations. For HA, we
increase the number of latent representations in a backward fashion, i.e., starting from only adding the very last representation
to adding all representations.

C.5. Add HBR to Current Data

We conduct an exploratory study to validate our asynchronous consolidation strategy of HBR discussed in Section 4.1.
Specifically, we compare (1) adding HBR only to the buffer, (2) adding HBR to only current data, (3) adding HBR to both
buffer and current data, using DER++ with DualHSIC on Split CIFAR-100 with 500 bufer size. We clearly observe from
Table 7 that only adding HBR to the buffered data yields the best performance. On the contrary, adding HBR to current data
hinders the learning of the current task, possibly due to the fact that HBR not only removes noisy information, but also
mistakenly removes useful task-specific information for the current task.

C.6. Quantitative Measure for tSNE Study

To further confirm this in the projection space, we compare the Fisher Discriminant Ratio (FDR) (Fisher, 1936),
trace(Sw

−1Sb), as a quantitative measure for class separation, where Sw and Sb measures within class and between
class separation, respectively. Therefore, larger FDR means better class separation. We compare the corresponding FDR of
the tSNE embeddings showed in Figure 4 as follows:
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Table 7. Exploration of adding HBR to current or buffered data.

Buffer Current Average Acc. Forgetting

✗ ✗ 37.13 48.72
✓ ✗ 41.86 36.96
✗ ✓ 36.64 45.55
✓ ✓ 38.78 43.68

Table 8. Quantitative measure of class separation with fisher discriminant ratio

Method \Task ID 2 3 4 5

DER++ 3.662 3.606 3.466 3.040
DER++ w/ HSIC 4.722 4.555 5.067 6.149

C.7. Additional Experiments on the 5-Datasets Benchmark

In this section, we present the non-aggregated performance and average forgetting on 5-Datasets (Ebrahimi et al., 2020),
with buffer size 500 (the first table) and buffer size 1000 (the second table):

Table 9. DualHSIC on 5-Datasets with buffer size 500 (upper) and buffer size 1000 (lower)

Method \Task CIFAR10 notMNIST MNIST SVHN FashionMNIST Avg Acc Forgetting

DER++ 61.32 68.79 86.08 90.14 91.52 79.57 16.79
DER++ w/ HSIC 69.73 73.32 87.55 91.80 90.67 82.61 12.28

Method \Task CIFAR10 notMNIST MNIST SVHN FashionMNIST Avg Acc Forgetting

DER++ 73.05 74.82 88.57 91.18 90.88 83.70 12.85
DER++ w/ HSIC 76.97 77.91 91.60 92.75 90.22 85.89 8.70

From the non-aggregated results, we clearly observe that DualHSIC effectively mitigates performance degradation for each
learned task, which leads to a smaller forgetting (task interference) metric (Note that the final task does not count towards the
forgetting metric). Moreover, by comparing results in the two tables, we observe that larger buffer size mitigates forgetting
(task interferences).
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