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Abstract—Significant advances in edge computing capabilities enable learning to occur at geographically diverse locations. In general,
the training data needed in those learning tasks are not only heterogeneous but also not fully generated locally. In this paper, we
propose an experimental design network paradigm, wherein learner nodes train possibly different Bayesian linear regression models
via consuming data streams generated by data source nodes over a network. We formulate this problem as a social welfare
optimization problem in which the global objective is defined as the sum of experimental design objectives of individual learners, and
the decision variables are the data transmission strategies subject to network constraints. We first show that, assuming Poisson data
streams in steady state, the global objective is a continuous DR-submodular function. We then propose a Frank-Wolfe type algorithm
that outputs a solution within a 1− 1/e factor from the optimal. Our algorithm contains a novel gradient estimation component which is
carefully designed based on Poisson tail bounds and sampling. Finally, we complement our theoretical findings through extensive
experiments. Our numerical evaluation shows that the proposed algorithm outperforms several baseline algorithms both in maximizing
the global objective and in the quality of the trained models.

Index Terms—Experimental Design, DR-submodularity, Bayesian linear regression.
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1 INTRODUCTION

W E study a network in which heterogeneous learners
dispersed at different locations perform local learn-

ing tasks by fetching relevant yet remote data. Concretely,
data sources generate data streams containing both fea-
tures and labels/responses, which are transmitted over the
network (potentially through several intermediate router
nodes) towards learner nodes. Generated data samples are
used by learners to train models locally. We are interested
in the design of rate allocation strategies that maximize
the model training quality of learner nodes, subject to
network constraints. This problem is relevant in practice.
For example, in a mobile edge computing network [2], [3],
data are generated by end devices such as mobile phones
(data sources) and sent to edge servers (learners) for model
training, a relatively intensive computation. In a smart city
[4], [5], we can collect various types of data such as image,
temperature, humidity, traffic, and seismic measurements,
from different sensors. These data could be used to forecast
transportation traffic, the spread of disease, pollution levels,
the weather, and so on, while training for each task could
happen at different public service entities.

We quantify the impact that data samples have on
learner model training accuracy by leveraging objectives
motivated by experimental design [6], a classic problem in
statistics and machine learning. This problem arises in
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many machine learning and data mining settings, including
recommender systems [7], active learning [8], and data
preparation [9], to name a few. In standard experimental
design, a learner decides on which experiments to conduct
so that, under budget constraints, an objective modeling
prediction accuracy is maximized. Learner objectives are
usually scalarizations of the estimation error covariance.

In this paper, we propose experimental design networks,
a novel optimization framework that extends classic ex-
perimental problems to maximize the sum of experimen-
tal design objectives across networked learners. Assuming
Poisson data streams and Bayesian linear regression as the
learning task, we define the utility of a learner as the
expectation of its so-called D-optimal design objective [6],
namely, the log-determinant of the learner’s estimation er-
ror covariance matrix. Our goal is to determine the data
rate allocation of each network edge that maximizes the
aggregate utility across learners. Extending experimental
design for networked learners is non-trivial. Literature on
experimental design for machine learning considers budgets
imposed on the number of data samples used to train the
model [10]–[14]. Instead, we consider far more complex
constraints on the data transmission rates across the net-
work, as determined by network link capacities, the network
topology, and data generation rates at sources.

To the best of our knowledge, we are the first to study
such a networked learning problem, wherein learning tasks
at heterogeneous learners are coupled via data transmission
constraints over an arbitrary network topology. Our detailed
contributions are as follows:

• We are the first to introduce and formalize the exper-
imental design network problem, which enables the
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study of multi-hop data transmission strategies for
distributed learning over arbitrary network topologies.

• We prove that, assuming Poisson data streams in steady
state, Bayesian linear regression as the learning task,
and D-optimal design objectives at the learners, our
framework leads to the maximization of continuous
DR-submodular objective subject to a lower-bounded
convex constraint set.

• Though the objective is not concave, we propose a
polynomial-time algorithm based on a variant of the
Frank-Wolfe algorithm [15]. To do so, we introduce and
analyze a novel gradient estimation procedure, tailored
to Poisson data streams. We show that the proposed
algorithm, coupled with our novel gradient estimation,
is guaranteed to produce a solution within a 1 − 1/e
approximation factor from the optimal.

• We conduct extensive evaluations over different net-
work topologies, showing that our proposed algorithm
outperforms several baselines both in maximizing the
objective function and in the quality of trained target
models.

The rest of this paper is organized as follows. In Sections
2 and 3, we review related work and provide technical
preliminaries. Section 4 introduces our framework of exper-
imental design networks. Section 5 describes our proposed
algorithm. We discuss extensions in Section 6 and present
numerical experiments in Section 7. We conclude in Sec-
tion 8.

2 RELATED WORK

Distributed Computing/Learning in Networks. Distribu-
tion of computation tasks has been studied in hierarchical
edge cloud networks [16], multi-cell mobile networks [17],
and joint with data caching in arbitrary networks [18].
There is a rich literature on distributing machine learning
computations over networks, including exchanging gradi-
ents in federated learning [19]–[21], states in reinforcement
learning [22], and data vs. model offloading [23] among
collaborating neighbor nodes. We depart from the afore-
mentioned works in (a) considering multiple learners with
distinct learning tasks, (b) introducing experimental design
objectives, quite different from objectives considered above,
(c) studying a multi-hop network, and (d) focusing on the
optimization of streaming data movements, as opposed to
gradients or intermediate result computations.
Experimental Design. The experimental design problem is
classic and well-studied [6], [24]. Several works study the
D-optimality objective [10]–[13], [25] for a single learner
subject to budget constraints on the cost for conducting the
experiments. Departing from previous work, we study a
problem involving multiple learners subject to more com-
plex constraints, induced by the network. Our problem
also falls in the continuous DR-submodular setting, depart-
ing from the discrete setting in prior work. In fact, our
work is the first to show that such an optimization, with
Poisson data streams, can be solved via continuous DR-
submodularity techniques.
DR-submodular Optimization. Submodularity is tradition-
ally studied in the context of set functions [26], [27], but was

recently extended to functions over the integer lattice [28]
and the continuous domain [15]. Despite the non-convexity
and the general NP-hardness of the problem, when the con-
straint set is down-closed and convex, maximizing mono-
tone continuous DR-submodular functions can be done in
polynomial time via a variant of the Frank-Wolfe algorithm.
This yields a solution within 1 − 1/e from the optimal [15],
[27], outperforming the projected gradient ascent method,
which provides 1/2 approximation guarantee over arbitrary
convex constraints [29].

The continuous greedy algorithm [27] maximizes a sub-
modular set function subject to matroid constraints: this
first applies the aforementioned Frank-Wolfe variant to
the so-called multilinear relaxation of the discrete submod-
ular function, and subsequently uses rounding [30], [31].
The multilinear relaxation of a submodular function is in
fact a canonical example of a continuous DR-submodular
function, whose optimization comes with the aforemen-
tioned guarantees. Our objective function results from a
new continuous relaxation, which we introduce in this paper
for the first time. In particular, we show that assuming a
Poisson distribution on inputs on the (integer lattice) DR-
submodular function of D-optimal design yields a continu-
ous DR-submodular function. This “Poisson” relaxation is
directly motivated by our networking problem, is distinct
from the multilinear relaxation [27], [29], [32], and requires a
novel gradient estimation procedure. Our constraint set also
requires special treatment as it is not down-closed, as re-
quired by the aforementioned Frank-Wolfe variant [15], [27];
nevertheless, we attain a 1− 1/e approximation, improving
upon the 1/2 factor of projected gradient ascent [29].
Submodularity in Networking and Learning. Submodu-
lar functions are widely encountered in studies of both
networking and machine learning. Submodular objectives
appear in studies of network caching [33], [34], routing [35],
rate allocation [36], sensor network design [37], as well as
placement of virtual network functions [38]. Submodular
utilities are used for data collection in sensor networks [39]
and also the design of incentive mechanisms for mobile
phone sensing [40]. Many machine learning problems are
submodular, including structure learning, clustering, feature
selection, and active learning (see e.g., [41]). Our proposed
experimental design network paradigm expands this list in
a novel way.

3 TECHNICAL PRELIMINARY

We begin with a technical preliminary on linear regression,
experimental design, and DR-submodularity. The contents
of this section are classic; for additional details, we refer the
interested reader to, e.g., [42], [43] for linear regression, [6]
for experimental design, and [15] for submodularity.

3.1 Bayesian Linear Regression
In the standard linear regression setting, a learner observes
n samples (xi, yi), i = 1, . . . , n, where xi ∈ Rd and yi ∈ R
are the feature vector and label of sample i, respectively.
Labels are assumed to be linearly related to the features; in
particular, there exists a model parameter vector β ∈ Rd

such that

yi = x⊤
i β + ϵi, for all i ∈ {1, . . . , n}, (1)
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and ϵi are i.i.d. zero mean normal noise variables with
variance σ2 ∈ R+ (i.e., ϵi ∼ N(0, σ2)).

The learner’s goal is to estimate the model parameter
β from samples {(xi, yi)}ni=1. In Bayesian linear regression,
it is additionally assumed that β is sampled from a prior
normal distribution with mean β0 ∈ Rd and covariance
Σ0 ∈ Rd×d (i.e., β ∼ N(β0,Σ0)). Under this prior, given
dataset {(xi, yi)}ni=1, maximum a posteriori (MAP) estima-
tion of β amounts to [43]:

β̂MAP = (X⊤X + σ2Σ−1
0 )−1(X⊤y + σ2Σ−1

0 β0), (2)

where X = [x⊤
i ]

n
i=1 ∈ Rn×d is the matrix of features, y ∈

Rn is the vector of labels, σ2 is the noise variance, and β0,
Σ0 are the mean and covariance of the prior, respectively.
We note that, in practice, the inherent noise variance σ2 is
often not known, and is typically treated as a regularization
parameter and determined via cross-validation.

The quality of this estimator can be characterized by the
covariance of the estimation error difference β̂MAP − β (see,
e.g., Eq. (10.55) in [43]):

cov(β̂MAP − β) =
( 1

σ2
XTX +Σ−1

0

)−1 ∈ Rd×d. (3)

The covariance summarizes estimator quality in all direc-
tions in Rd: given an unseen sample (x, y) ∈ Rd × R, also
obeying (1), the expected prediction error (EPE) is given by

E
[
(y − x⊤β̂MAP)

2
]
= σ2 + x⊤cov(β̂MAP − β)x. (4)

Hence, the eigenvalues of Eq. (3) capture the overall vari-
ability of the expected prediction error in different direc-
tions.

3.2 Experimental Design
In experimental design, a learner with prior N(β0,Σ0) on
parameters β determines which experiments to conduct
to learn the most accurate linear model. Formally, given
p possible experiment settings, each described by feature
vectors xi ∈ Rd, i = 1, . . . , p, the learner selects a total
of n experiments to conduct with these feature vectors,
possibly with repetitions,1 collects associated labels, and
then performs linear regression on these sample pairs. In
classic experimental design (see, e.g., [6]), the selection is
formulated as an optimization problem minimizing a scalar-
ization of the covariance, given by Eq. (3). For example, in D-
optimal design, the vector n = [ni]

p
i=1 ∈ Np of the number

of times each experiment is to be performed is determined
by minimizing

log det[cov(β̂MAP − β)]
(3)
= log det

[( p∑
i=1

ni

σ2
xix

⊤
i +Σ−1

0

)−1]
or, equivalently, by solving the maximization problem:

Max.: G(n;σ,Σ0) ≡ log det
(∑p

i=1
ni

σ2xix
⊤
i +Σ−1

0

)
, (5a)

s.t.:
∑p

i=1 ni = n. (5b)

This equivalence follows from the fact that det(A−1) =
(det(A))−1 and, thus, log det(A−1) = − log det(A).

1. Note that, due to the presence of noise in labels, repeating the same
experiment makes intuitive sense; formally, repetition of an experiment
with features xi reduces the EPE (4) in this direction.

Interpreting the D-Optimality Objective. In summary,
Problem (5) selects n ∈ Np in a way so that the
log det[cov(β̂MAP − β)] is as small as possible. In effect
this amounts to selecting the experiments that minimize
the product of the eigenvalues of the covariance of the MAP
estimator, given by Eq. (3).2 As discussed in Sec. 3.1, the
covariance characterizes the quality of the linear estimator,
as it summarizes the expected prediction error in all possible
directions. Therefore, selecting experiments this way leads
to the most accurate MAP linear estimate.

There are however alternative interpretations of this
objective. Prob. (5) also maximizes the mutual information
between the labels y (to be collected) and β̂MAP [10]: in this
interpretation too, the selection aims to pick experiments
in a way that minimizes the variability of the resulting
estimator β̂MAP. Finally, the objective itself can be interpreted
as a form of coverage in the space Rd: it aims to select
experiments X that span directions not already covered by
Σ−1

0 : these are precisely the directions at which the prior is
most uncertain.

3.3 DR-Submodularity
We introduce here diminishing-returns submodularity:

Definition 1 (DR-Submodularity [15], [28]). A function f :
Np → R is called diminishing-returns (DR) submodular iff
for all x,y ∈ Np such that x ≤ y and all k ∈ N,

f(x+kej)−f(x)≥f(y+kej)−f(y), for all j = 1, . . . , p, (6)

where ej is the j-th standard basis vector.
Moreover, if (6) holds for a real valued function f : Rp

+ → R
for all x,y ∈ Rp such that x ≤ y and all k ∈ R+, the function
is called continuous DR-submodular.

The above definition generalizes the submodularity of
set functions (whose domain is {0, 1}p) to functions over in-
teger lattice (in the case of DR-submodularity), and continu-
ous functions (in the case of continuous DR-submodularity).
Particularly for continuous functions, if f is differentiable,
continuous DR-submodularity is equivalent to ∇f being
antitone. Moreover, if f is twice-differentialble, f is contin-
uous DR-submodular if all entries of its Hessian ∇2f are
non-positive. DR-submodularity is directly pertinent to D-
optimal design:

Lemma 1 (Horel et al. [10]). Function G : Np → R+ in (5a) is
(a) monotone-increasing and (b) DR-submodular.

For completeness, we provide a proof in Appendix A.
Problem (5) is a classic NP-hard problem [10]. An immediate
consequence of this lemma is that polynomial-time approx-
imation algorithms exist to solve Prob. (5) with a 1 − 1/e
guarantee (see, e.g., [10], [32]), although Prob. (5) is a classic
NP-hard problem [10].

4 PROBLEM FORMULATION

We consider a network that aims to facilitate a distributed
learning task. The network comprises (a) data source nodes

2. Other commonly encountered scalarizations [6] behave similarly.
E.g., E-optimality minimizes the maximum eigenvalue, while A-
optimality minimizes the sum of the eigenvalues.
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Fig. 1. An example of a experimental design network. Red nodes are
sources and blue nodes are learners. Sources are generated streams
of labeled data from diverse sensors, e.g., camera, radar, microphone,
etc., with rate λ. Learners train their own models consuming these data.
Each link e has its link capacity µe. The experimental design network is
to allocate the data traffic for learning model better.

(e.g., sensors, test sites, experimental facilities, etc.) that gen-
erate streams of data, (b) learner nodes, that consume data
with the purpose of training models, and (c) intermediate
nodes (e.g., routers), that facilitate the communication of
data from sources to learners. The data that learners wish to
consume is determined by experimental design objectives,
akin to the ones described in Sec. 3.2. Our goal is to design
network communications in an optimal fashion, that maxi-
mizes learner social welfare (i.e., the sum of utilities across
learners). We describe each of the above system components
in more detail below.

4.1 Network Model.
We model the above system as a general multi-hop network,
shown in Fig. 1, with a topology represented by a directed
acyclic graph (DAG) G(V, E), where V is the set of nodes and
E ⊂ V × V is the set of links. Each link e = (u, v) ∈ E can
transmit data at a maximum rate (i.e., link capacity) µe ≥ 0.
Sources S ⊂ V of the DAG (i.e., nodes with no incoming
edges) generate data streams, while learners L ⊂ V reside at
DAG sinks (nodes with no outgoing edges). We assume this
for simplicity; we discuss how to remove this assumption,
and how to generalize our analysis beyond DAGs, in Sec. 6.
Data Sources. Each data source s ∈ S generates a stream
of labeled data. In particular, we assume that there exists a
finite set X ⊂ Rd of experiments every source can conduct.
Once experiment with features x ∈ X is conducted, the
source can label it with a label y ∈ R of type t out of a
set of possible types T . Intuitively, features x correspond
to parameters set in an experiment (e.g., pixel values in
an image, etc.), label types t ∈ T correspond to possible
measurements (e.g., temperature, radiation level, etc.), and
labels y correspond to the actual measurement value col-
lected (e.g., 23◦C).

We assume that every source generates labeled pairs
(x, y) ∈ Rd × R of type t according to a Poisson process
of rate λs

x,t ≥ 0. Moreover, we assume that generated data
follows a linear model (1); that is, for every type t ∈ T ,
there exists a βt ∈ Rd s.t. y = x⊤βt + ϵt where ϵt ∈ R
are i.i.d. zero mean normal noise variables with variance
σ2
t > 0, independent across experiments and sources s ∈ S .

We assume X is finite both for simplicity, but also
to highlight the connection of our networked setting to

the classic experimental design problem presented in Sec-
tion 3.2. This case is also of practical interest, as it
holds when, e.g., features are categorical or one-hot en-
coded/binarized, or when continuous features are quan-
tized. Nevertheless, our analysis also applies to (even un-
countably) infinite X : we extend our model to a setting in
Sec. 6.
Learners. Each learner ℓ ∈ L wishes to learn a model βtℓ for
some type tℓ ∈ T . We assume that each learner has a prior
N(βℓ,Σℓ) on βtℓ . The learner wishes to use the network
to receive data pairs (x, y) of type tℓ, and subsequently
estimate βtℓ through the MAP estimator (2). Note that two
learners ℓ, ℓ′ may be interested to learn the same model (if
tℓ = tℓ

′
).

Network Constraints. The different data pairs (x, y) ∈
Rd × R generated by sources are transmitted over edges
in the network along with their types t ∈ T and eventually
delivered to learners. Our network design aims at allocating
network capacity to different flows to meet learner needs.3

For each edge e ∈ E , we denote the rate with which data
pairs of type t ∈ T with features x ∈ X are transmitted as
λe
x,t ≥ 0. We also denote by

λv,in
x,t ≡

{
λv
x,t, if v ∈ S,∑
(u,v)∈E λ

(u,v)
x,t , o.w.

(7)

the corresponding incoming traffic to node v ∈ V , and

λv,out
x,t =

∑
(v,u)∈E

λ
(v,u)
x,t (8)

the corresponding outgoing traffic from v ∈ V . Specifically
for learners, we denote by

λℓ
x ≡ λℓ,in

x,tℓ
, and λℓ = [λℓ

x]x∈X ∈ R|X |
+ , for all ℓ ∈ L, (9)

the incoming traffic with different features x ∈ X of type tℓ

at ℓ ∈ L. To satisfy capacity constraints, we must have∑
x∈X ,t∈T

λe
x,t ≤ µe, for all e ∈ E , (10)

while flow bounds imply that

λv,out
x,t ≤ λv,in

x,t , for all x ∈ X , t ∈ T , v ∈ V \ L, (11)

as data pairs can be dropped. We denote by

λ =
[
[λe

x,t]x∈X ,t∈T ,e∈E ; [λ
ℓ
x]x∈X ,ℓ∈L

]
(12)

the vector comprising edge and learner rates. Let

D =
{
λ ∈ R|X ||T ||E|

+ × R|X ||L|
+ that satisfy (9)–(11)

}
, (13)

be the feasible set of edge rates and learner rates. We make
following assumption on the network substrate:

Assumption 1. For λ ∈ D, the system is stable and, in steady
state, pairs (x, y) ∈ Rd × R of type tℓ arrive at learner ℓ ∈ L
according to |X | independent Poisson processes with rate λℓ

x.

This is satisfied, if, e.g., the network is a Kelly net-
work [44] of M/M/1 queues, M/M/c queues, etc., under
FIFO, Last-In First-Out (LIFO), and processor sharing ser-
vice disciplines, or other queues for which Burke’s theorem
holds [43].

3. We assume hop-by-hop routing; see Sec. 6 for an extension to
source routing.
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TABLE 1
Notation Summary

G(V, E) Network graph with nodes V and edges E
µe Link capacity of link e
(x, y) Labeled pairs with features x and label y
s, S Data source index and set of all data sources
ℓ, L Learner index and set of all learner nodes
t, T Label type index and set of all types
λe
x,t Rate of data pairs of type t with features x over edge e

λs
x,t

Rate of data pairs of type t with features x generated
by source s

λℓ
x

Rate of data pairs of type tℓ with features x received
by learner ℓ

nℓ
x

The cumulative number of times that a pair (x, y)
of type tℓ collected by learner ℓ

Uℓ Utility of learner ℓ

4.2 Networked Learning Problem
We consider a data acquisition time period T , at the end of
which each learner ℓ ∈ L estimates βtℓ based on the data it
has received during this period via MAP estimation. Under
Assumption 1, the arrivals of pertinent data pairs at learner
ℓ form a Poisson process with rate λℓ

x. Let nℓ
x ∈ N be the

cumulative number of times that a pair (x, y) of type tℓ was
collected by learner ℓ during this period, and nℓ = [nℓ

x]x∈X
the vector of arrivals across all experiments. Then,

Pr[nℓ = n] =
∏
x∈X

(λℓ
xT )

nxe−λℓ
xT

nx!
, (14)

for all n = [nx]x∈X ∈ N|X | and ℓ ∈ L. Motivated by
standard experimental design (see Sec. 3.2), we define the
utility at learner ℓ ∈ L as the following expectation:

U ℓ(λℓ) = Eλℓ

[
Gℓ(nℓ)

]
=

∑
n∈N|X|

Gℓ(n) ·Pr[nℓ = n], (15)

where Gℓ(nℓ) ≡ G(nℓ;σtℓ ,Σℓ) and G is given by (5a). We
wish to solve the following problem:

Maximize: U(λ) =
∑
ℓ∈L

(U ℓ(λℓ)− U ℓ(0)), (16a)

s.t. λ ∈ D, (16b)

where U ℓ(0) is lower bound for U ℓ(λℓ), added to ensure
the non-negativity of the objective. 4 Indexing flows by both
type t and features x implies that, to implement a solution
λ ∈ D, routing decisions at intermediate nodes should
be based on both quantities. Problem (16) is non-convex
in general.5 Nevertheless, we construct a polynomial time
approximation algorithm in the next section.

5 MAIN RESULTS

Our main contribution is to show that there exists
a polynomial-time randomized algorithm that solves

4. Non-negativity is needed to state guarantees in terms of an ap-
proximation ratio (c.f. Thm. 2).

5. It is easy to construct instances of objective (16) that are non-
concave. For example, when |L| = 1, d = 1, X = {0.1618, 0.3116},
σ = 0.0422, and Σℓ = 0.2962, the Hessian matrix is not negative semi-
definite.

Algorithm 1: Frank-Wolfe Variant

Input: U : D → R+, D, stepsize δ ∈ (0, 1].
1 λ0 = 0, τ = 0, k = 0
2 while τ < 1 do

3 find vk s.t. vk = argmaxv∈D⟨v, ∇̂U(λk)⟩
4 γk = min{δ, 1− τ}
5 λk+1 = λk + γkv

k, τ = τ + γk, k = k + 1

6 return λK

Prob. (16) within a 1 − 1/e approximation ratio. We do so
by establishing that the objective function in Eq. (16a) is
continuous DR- submodular (see Definition 1).

5.1 Continuous DR-submodularity
Our first main result establishes the continuous DR-
submodularity of the objective (16a):

Theorem 1. The objective function U(λ) given by (16a) is
monotone increasing and continuous DR-submodular in λ ∈
R|X |×|L|
+ . Moreover,

∂U

∂λℓ
x

= T
∞∑

n=0

∆ℓ
x(λ

ℓ, n)Pr[nℓ
x = n], (17)

where nℓ is distributed as in Eq. (14) and ∆ℓ
x(λ

ℓ, n) is:

E
[
Gℓ(nℓ)|nℓ

x = n+ 1
]
− E

[
Gℓ(nℓ)|nℓ

x = n
]
> 0.

The proof can be found in Section 5.3; we establish the
positivity of the gradient and non-positivity of the Hessian
of U . We note that Theorem 1 identifies a new type of
continuous relaxation to DR-submodular functions, via Poisson
sampling; this is in contrast to the multilinear relaxation
[27], [29], [32], which is ubiquitous in the literature and
relies on Bernoulli sampling. Finally, though our objective
is monotone and continuous DR-submodular, the constraint
set D is not down-closed. Hence, the analysis by Bian
et al. [15] does not directly apply, while using projected
gradient ascent [29] would only yield a 1/2 approximation
guarantee.

5.2 Algorithm and Theoretical Guarantee
Our algorithm is summarized in Algorithm 1. We follow the
Frank-Wolfe variant for monotone DR-submodular function
maximization by Bian et al. [15], deviating both in the nature
of the constraint set D, but also, most importantly, in the
way we estimate the gradients of objective U .
Frank-Wolfe Variant. In the proposed Frank-Wolfe vari-
ant, variables λk and vk denote the solution and update
direction at the k-th iteration, respectively. Starting from
λ0 = 0 ∈ D, the algorithm iterates as follows:

vk = argmax
v∈D

⟨v, ∇̂U(λk)⟩, (18a)

λk+1 = λk + γkv
k, (18b)

where γk ∈ (0, 1] is the stepsize with which we move along
direction vk, and ∇̂U(·) is an estimator of the gradient ∇U
w.r.t. [λℓ

x]x∈X ,ℓ∈L. The step size is set to δ > 0 for all but the
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last step, where it is selected so that the total sum of step
sizes equals 1.

We note that we face two challenges preventing us from
computing the gradient of ∇U directly via. Eq. (17): (a)
the gradient computation involves an infinite summation
over n ∈ N, and (b) conditional expectations in ∆ℓ

x(λ
ℓ, n)

require further computing exponential sums in |X |. Us-
ing (17) directly in Algorithm 1 would thus not yield a
polynomial-time algorithm. To that end, we replace the
gradient ∇U(λk) used in the standard Frank-Wolfe method
by an estimator, which we describe next.
Gradient Estimator. Our estimator addresses challenge (a)
above by truncating the infinite sum, and (b) via sampling.
In particular, for n′ ≥ λℓ

xT , we estimate partial derivatives
via the partial summation:

∂̂U

∂λℓ
x

≡ T
n′∑

n=0

̂∆ℓ
x(λ

ℓ, n)Pr[nℓ
x = n]. (19)

where estimate ̂∆ℓ
x(λ

ℓ, n) is constructed via sampling as
follows. At each iteration, we generate N samples nℓ,j ,
j = 1, . . . , N of the random vector nℓ according to the Pois-
son distribution in Eq. (14), parameterized by the current
solution vector λℓ. We then compute the empirical average:

̂∆ℓ
x(λ

ℓ, n) =
1

N

N∑
j=1

(
Gℓ

(
nℓ,j |nℓ,j

x =n+1

)
−Gℓ

(
nℓ,j |nℓ,j

x =n

))
,

(20)
where nℓ,j |nℓ,j

x =n is equal to vector nℓ,j with nℓ,j
x set to n.

Theoretical Guarantee. Extending the analysis of [15], and
using Theorem 1, we show that the Frank-Wolfe variant
combined with gradients estimated “well enough” yields
a solution within a constant approximation factor from the
optimal:

Theorem 2. Let

λMAX ≡ max
λ∈D

∑
ℓ∈L

||λℓ||1, and (21)

GMAX ≡ max
ℓ∈L,x∈X

(Gℓ(ex)−Gℓ(0)), (22)

where ex is the canonical basis. Then, for any 0 < ϵ0, ϵ1 < 1 and
ϵ2 > 0, there exists a δ > 0 such that Algorithm 1 terminates in
at most

K = O
(
(|X ||L|T 2λ2

MAX + 2λMAX)GMAX/ϵ2
)

iterations, and uses n′ = O(λMAXT + ln 1
ϵ1
) terms and N =

O(T 2n′K2 ln |X ||L|K
ϵ0

) samples in estimator (19), so that with
probability 1− ϵ0, the output solution λK ∈ D satisfies:

U(λK) ≥ (1− eϵ1−1)max
λ∈D

U(λ)− ϵ2. (23)

The proof can be found in Section 5.4. Theorem 2 implies
that, through an appropriate (but polynomial) selection of
the total number of iterations K , the number of terms n′

and samples N , we can obtain a solution λ that is within
1 − e−1 ≈ 0.63 from the optimal. The proof crucially
relies on (and exploits) the continuous DR-submodularity of
objective U , in combination with an analysis of the quality
of our gradient estimator, given by Eq. (19).

5.3 Proof of Theorem 1

By the law of total expectation, we have:

U ℓ(λℓ) =
∞∑

n=0

E
[
Gℓ(nℓ)|nℓ

x = n
]
· (λ

ℓ
xT )

te−λℓ
xT

t!
.

Notably, ∂U
∂λℓ

x
= ∂Uℓ(λℓ)

∂λℓ
x

, for which the following is true:

∂U ℓ(λℓ)

∂λℓ
x

=
∞∑

n=0

E
[
Gℓ(nℓ)|nℓ

x = n
]
· ( n

λℓ
x

− T )
(λℓ

xT )
ne−λℓ

xT

n!

=
∞∑

n=0

∆ℓ
x(λ

ℓ, n) · T · Pr[nℓ
x = n] ≥ 0,

where the last inequality is true because G is monotone-
increasing (Lemma 1).

Next, we compute the second partial derivatives
∂2U

∂λℓ
x∂λ

ℓ′
x′

. It is easy to see that for ℓ ̸= ℓ′, we have

∂2U

∂λℓ
x∂λ

ℓ′
x′

= 0.

For ℓ = ℓ′ and x = x′, it holds that ∂2U
∂(λℓ

x)
2 = ∂2Uℓ(λℓ)

∂(λℓ
x)

2 ,
where

∂2U ℓ(λℓ)

∂(λℓ
x)

2
= ∆ℓ

x(λ
ℓ, 0) · T 2e−λℓ

xT +
∞∑

n=1

∆ℓ
x(λ

ℓ, n)(
(λℓ

x)
n−1Tn+1

(n−1)! − (λℓ
x)

nTn+2

n!

)
e−λℓ

xT

=
∞∑

n=0

(∆ℓ
x(λ

ℓ, n+ 1)−∆ℓ
x(λ

ℓ, n)) · Pr[nℓ
x = n]T 2 ≤ 0,

(24)

and the last equality follows from the DR-submodularity of
G (Lemma 1).

For ℓ = ℓ′ and x ̸= x′, it holds that ∂2U
∂λℓ

x∂λ
ℓ
x′

= ∂2Uℓ(λℓ)

∂λℓ
x∂λ

ℓ
x′

,

∂2U ℓ(λℓ)

∂λℓ
x∂λ

ℓ
x′

=
∞∑

n=0

∞∑
k=0

((
E
[
Gℓ(nℓ)|nℓ

x = n+ 1, nℓ
x′ = k + 1

]
− E

[
Gℓ(nℓ)|nℓ

x = n, nℓ
x′ = k + 1

])
−

(
E[Gℓ(nℓ)|

nℓ
x = n+ 1, nℓ

x′ = k]− E
[
Gℓ(nℓ)|nℓ

x = n, nℓ
x′ = k

]))
· Pr[nℓ

x = n]Pr[nℓ
x′ = k]T 2 ≤ 0, (25)

where the last inequality follows from the DR-
submodularity of G (Lemma 1).

5.4 Proof of Theorem 2

Our proof relies on a series of key lemmas; we state
them below. Full proofs of all lemmas can be found in the
appendix. We begin by associating the approximation guar-
antee of Algorithm 1 to the quality of gradient estimation
∇̂U(·):

Lemma 2. Suppose we can construct an estimator ∇̂U(λk) of
the gradient ∇U(λk) at each iteration k such that

⟨vk,∇U(λk)⟩ ≥ a ·max
v∈D

⟨v,∇U(λk)⟩ − b, (26)
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where vk is the update direction determined by (18a), a ∈ (0, 1]
and b are positive constants. Then, the output solution λK of
Algorithm 1 satisfies λK ∈ D, and

U(λK) ≥ (1− e−a)max
λ∈D

U(λ)− L

2
λ2
MAXδ − b, (27)

where L = 2|X ||L|T 2GMAX is the Lipschitz constant of ∇U ,
and λMAX and GMAX given by (21) and (22).

The proof, found in Appendix B, relies on the continuous
DR-submodularity of U , and follows [15]; we deviate from
their proof to handle the additional issue that D is not
downward closed (an assumption in [15]).

Next, we turn our attention to characterizing the quality
of our gradient estimator. To that end, use the following
subexponential tail bound:

Lemma 3 (Theorem 1 in [45]). Let nℓ
x ∼ Poisson(λℓ

xT ), for
λℓ
x, T > 0. Then, for any z > λℓ

xT , we have

Pr[nℓ
x ≥ z] ≤ e

− (z−λℓ
xT )2

2λℓ
xT

h(
z−λℓ

xT

λℓ
xT

)
, (28)

where h : [−1,∞) → R is the function defined by h(u) =

2 (1+u) ln (1+u)−u
u2 .

The expression for h(u) implies that the Poisson tail
decays slightly faster than a standard exponential random
variable (by a logarithmic factor). This lemma allows us to
characterize the effect of truncating Eq. (17) in estimation
quality. In particular, for n′ ≥ λℓ

xT , let:

HEADℓ
x(n

′) ≡ T
n′∑

n=0

∆ℓ
x(λ

ℓ, t)Pr[nℓ
x = n]. (29)

Then, this is guaranteed to be within a constant factor from
the true partial derivative:

Lemma 4. For h(u) = 2 (1+u) ln (1+u)−u
u2 and n′ ≥ λℓ

xT , we
have:

∂U

∂λℓ
x

≥ HEADℓ
x(n

′)

≥ (1− e
− (n′−λℓ

xT+1)2

2λℓ
xT

h(
n′−λℓ

xT+1

λℓ
xT

)
)
∂U

∂λℓ
x

.

(30)

The proof can be found in Appendix C.
Next, by estimating ∆ℓ

x(λ
ℓ, n) via sampling (see (20)),

we construct our final estimator given by (19). Putting
together Lemma 4 and along with a Chernoff bound [46],
to attain a guarantee on sampling, we can bound the quality
of our gradient estimator:

Lemma 5. At each iteration k, with probability greater than 1−
2|X ||L| · e−δ2N/2T 2(n′+1),

⟨vk,∇U(λk)⟩ ≥ a ·max
v∈D

⟨v,∇U(λk)⟩ − b, (31)

where

a = 1− max
k=1,...,K

Pk
MAX, and (32)

b = 2λMAXδ ·GMAX, (33)

for Pk
MAX = maxl∈L,x∈X P[nℓ,k

x ≥ n′ + 1] (nℓ,k
x is a Poisson

r.v. with parameter λℓ,k
x T ), and with λMAX and GMAX given by

Eq. (21) and (22).

The proof is in Appendix D.
Theorem 2 follows by combining Lemmas 2 and 5. In

particular, by Lemma 5 and a union bound, we have that
(31) is satisfied for all iterations with probability greater
than 1 − 2|X ||L|K · e−δ2N/2T 2(n′+1). This, combined with
Lemma 2, implies that

U(λK) ≥(1− ePMAX−1) ·max
λ∈D

U(λ)

− (|X ||L|T 2λ2
MAX + 2λMAX)GMAXδ,

is satisfied with the same probability. This implies that for
any 0 < ϵ0, ϵ1 < 1 and ϵ2 > 0,

U(λK) ≥ (1− eϵ1−1) ·OPT− ϵ2,

with probability 1 − ϵ0. From Eq. (28), the probability is an
increasing function w.r.t. λℓ

x, and λMAX is an upper bound
for λℓ

x. Letting

u =
n′ − λMAXT

λMAXT
,

we have

PMAX < e
− (n′−λMAXT )2

2λMAXT h(
n′−λMAXT

λMAXT )

= e−λMAXT ((1+u) ln(1+u)−u) ≤ Ω(e−λMAXTu) = ϵ1,

where the last inequality holds because (1 + u) ln(1 + u) −
u > u when u is large enough, e.g., u ≥ 4. Thus, n′ =
O(λMAXT + ln 1

ϵ1
).

We determine K and N by setting

(|X ||L|T 2λ2
MAX + 2λMAX)GMAX/K = ϵ2

and
2|X ||L|K · e−N/2T 2(n′+1)K2

= ϵ0.

Therefore, K = O((|X ||L|T 2λ2
MAX + 2λMAX)GMAX/ϵ2),

and N = O(T 2n′K2 ln |X ||L|K
ϵ0

).

6 EXTENSIONS

Our model extends in many ways (e.g., to multiple types
per learner). We discuss three non-trivial extensions below.
Heterogeneous Noisy Sources. Our model and analysis
directly generalizes to a heterogeneous (or heteroskedastic)
noise setting, in which the noise level varies across sources.
Formally, labels of type t at source s are generated via
y = x⊤βt + ϵt,s, where ϵt,s are zero-mean normal noise
variables with variance σ2

t,s. In this case, the estimator
in (2) needs to be replaced by Generalized Least Squares
[47], whereby every pair ( x

σt
, y
σt
) ∈ Rd × R of type t

generated by s is replaced by ( x
σt,s

, y
σt,s

) ∈ Rd × R prior
to applying Eq. (2). This, in turn, changes the D-optimality
criterion objective, so that σ2

t is replaced by σ2
t,s for vectors

x ∈ X coming from source s. In other words, data coming
from noisy sources are valued less by the learner. This
rescaling preserves the monotonicity and continuous DR-
submodularity of our overall objective, and our guarantees
hold, mutatis mutandis.
Uncountable X . We assumed in our analysis that data
features are generated from a finite set X , and that trans-
mission rates per edge are parametrized by both the type
t ∈ T and the features x of the data pair transmitted.
This a priori prevents us from considering an infinite set
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of experiments X : this would lead to an infinite set of
constraints in Problem (16). In practice, it would also make
routing intractable, as routing decisions depend on both t
and x.

We can however extend our analysis to a setting where
experiments X are infinite, or even uncountable. To do so,
we can consider rates per edge e of the form λe

s,t, i.e.,
parameterized by type t and source s rather than features
x. In practice, this would mean that packets would be
routed based on the source and type, not inspecting the
features of the internal pairs, while constraints would be
finite (depending on |S|, not |X |). Data generation at source
s can then be modelled via a compound Poisson process
with rate λs,t, at the epochs of which the features x are
sampled independently from some probability distribution
νs,t over Rd. The objective then would be written as an
expectation over not only arrivals at a learner from source
s (which will again be Poisson) but also the distribution
νs,tℓ of features. Sampling from the latter would need to
be used when estimating ∇U ; as long as Chernoff-type
bounds can be used to characterize the estimation quality
of such sampling (which would be the case if, e.g., νs,t
are Gaussian), our analysis would still hold, taking also the
number of sampled features into account.
No-Label Setting. The labeled setting is interesting, as sen-
sors can very well be collecting covariates as well as a target
variable (e.g., temperature) that is to be regressed from these
covariates. Nevertheless, we would like to point out that our
entire setting (model, objective, and algorithms) can also be
used in the label-less setting directly, without any modifications.
In particular, observe that the optimization problem we are
solving (Eq. (16)), only uses the feature vectors x, both in
terms of the objective, how variables are described, as well
as the constraints. Labels y are only pertinent in mapping
sources to learners (i.e., a learner interested in a type would
only get data pertaining to that type). The actual labels
themselves are not used anywhere other than during training:
they appear neither in the optimization nor in the resulting
solution (i.e., the routing and scheduling scheme.) In prac-
tice, this means that the algorithms we proposed can be used
in a label-less setting, where sensors do not collect labels. In
this setting, learners obtain unlabeled data (fully described
by features x) and then label them in place, either manually
or otherwise. I.e., the training still happens at labelled data,
where the labeling happens at a later time (after the data
has been delivered). Our optimization would be exactly the
same, determining how samples should be routed.
Arbitrary (Non-DAG) Topology. For notational conve-
nience, we assumed that graph G was a DAG, with sources
and sinks corresponding to sets S and L respectively. Our
analysis further extends to more general (i.e., non-DAG)
graphs, provided that extra care is taken for flow constraints
to prevent cycles. This can be accomplished, e.g., via source
routing. Given an arbitrary graph, and arbitrary locations
for data sources and learners, we can extend our setting as
follows: (a) flows from a source s to a learner ℓ could follow
source-path routing, over one or more directed paths linking
the two, and (b) flows could be indexed by (and remain
constant along) a path, in addition to x and t, while also
ensuring that (c) aggregate flow across all paths that pass
through an edge does not violate capacity constraints. Such

a formulation still yields a linear set of constraints, and our
analysis still holds. In fact, in this case, the corresponding
set D is downward closed, so the proof of the corresponding
Theorem 2 follows more directly from [15].

7 NUMERICAL EVALUATION

In this section, we provide a comprehensive evaluation of
the Frank-Wolfe variant algorithm to understand how rate
allocation affects model learning quality.

7.1 Experimental Setting

To evaluate the proposed algorithm, we experiment 6 with
three distinct settings (Setting1, Setting2, and Setting3). In
all three settings, we consider a finite feature vector set
X that includes randomly generated feature vectors with
d = 100, and a set T that of different Bayesian linear
regression models with βt, t ∈ T . Labels of each type
are generated with Gaussian noise, whose variance σt is
uniformly at random (u.a.r.) chosen from 0.5 to 1. For each
network, we u.a.r. select |L| learners and |S| data sources,
and remove incoming edges of sources and outgoing edges
of learners. Each learner has a target model βtℓ , tℓ ∈ T with
a diagonal prior Σtℓ generated as follows. First, we separate
features into two classes: well-known and poorly-known.
Then, we set the corresponding prior covariance (i.e., the
diagonal elements in Σtℓ ) to low (uniformly from 0 to 0.01)
and high (uniformly from 100 to 200) values, for well-known
and poorly-known features, respectively. The link capacity
µe, e = (u, v) ∈ E is selected u.a.r. from 20 to 50.

In Setting1, we set |S| and |L| as shown in Table 2.
Moreover, each source s generates data (x, y) of type t label
with rate λs

x,t, uniformly distributed over [2,5]. In Setting2,
all sources are homogeneous, i.e., λs

x,t = 5. Finally, in
Setting3, we conduct experiments with a much larger set of
sources and learners (|S| and |L|, respectively), as indicated
in Table 2.

7.2 Algorithms

We compare our proposed Frank-Wolfe based algorithm (we
denote it by FW) with several baseline data transmission
strategies derived in different ways:

• MaxSum: This maximizes the aggregate total useful
incoming traffic rates of learners, i.e., the objective is:

UMaxSum(λ) =
∑
ℓ∈L

∑
x∈X

λℓ
x.

• MaxAlpha: This maximizes the aggregate α-fair utili-
ties [50] of the total useful incoming traffic at learners,
i.e., the objective is:

UMaxAlpha(λ) =
∑
ℓ∈L

(
∑
x∈X

λℓ
x)

1−α/(1− α).

We set α = 5.

We also compare with another algorithm for the proposed
experimental design networks:

6. Our code and data are publicly available at
https://github.com/neu-spiral/Networked-Learning.

https://github.com/neu-spiral/Networked-Learning
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TABLE 2
Graph Topologies and Experiment Parameters

Setting1/2 Setting3
Graph |V | |E| |X | |T | |S| |L| |T | |S| |L|

synthetic topologies
Erdős-Rényi (ER) 100 1042 20 5 10 5 10 20 15
balanced-tree (BT) 341 680 20 5 10 5 10 20 15

hypercube (HC) 128 896 20 5 10 5 10 20 15
star 100 198 20 5 10 5 10 20 15
grid 100 360 20 5 10 5 10 20 15

small-world (SW) [48] 100 491 20 5 10 5 10 20 15
real backbone networks [49]
GEANT 22 66 20 3 3 3 4 4 4

Abilene 9 26 20 3 3 3 4 4 4
Deutsche Telekom 68 546 20 3 3 3 4 4 4

(Dtelekom)

• PGA: it also solves Prob. (16), as does our proposed
algorithm, via the projected gradient ascent [29]. As
PGA also requires gradients, we use our novel gradient
estimation (by Eq. (19)).

Note that projected gradient ascent finds a solution
within 1/2 from the optimal if the true gradients are acces-
sible [29] (a theoretical guarantee with estimated gradients
is out of our scope). We run FW and PGA for K = 50
iterations with step size δ = 0.02. In each iteration, we
estimate the gradient according to Eq. (19) with N = 50,
and n′ = ⌈2maxℓ,x λℓ

xT ⌉, where λℓ
x is given by the current

solution. We consider a data acquisition time T = 1.

7.3 Performance Metrics
To evaluate the performance of algorithms, we use Aggregate
Utility, defined in (16a) as one metric. Note that, aggregate
utility involves summation with infinite support, we thus
need to resort to sampling to estimate it, where we sample
with 1000 samples. Also, we define an Average Norm of
Estimation Error to measure the model estimation quality.
Formally, it is defined as:

1

|L|
∑
ℓ∈L

∥β̂
ℓ

MAP − βℓ∥ =
1

|L|
∑
ℓ∈L

∥(Xℓ⊤Xℓ+

σ2
tℓΣ

−1
ℓ )−1 · (Xℓ⊤yℓ + σ2

tℓΣ
−1
ℓ βℓ

0)− βℓ∥,
(34)

following the equation of MAP estimation (see Eq. (2)). We
average over 1000 realizations of the label noise as well
as the number of data arrived at the learner {nℓ}ℓ∈L to
calculate this expectation.

7.4 Results
Performance over Different Topologies. We first compare
the proposed algorithm (FW) with baselines in terms of the
aggregated utility and model estimation quality over sev-
eral networks, shown in Figures 2(a) and 2(b), respectively
(Setting1). Learners in these networks have distinct target
models to train. In all network topologies, FW outperforms
MaxSum and MaxAlpha in both aggregate utility and av-
erage norm of estimation error. PGA, which also is based
on our experimental design framework, performs well (sec-
ond best) in most networks w.r.t. estimation quality. In
experiments of synthetic topologies, two learners may learn
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(a) Aggregate Utility
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Fig. 2. Aggregate utility and average norm of estimation error in different
networks. We can observe that FW is the best in terms of maximizing the
utility and minimizing the estimation error in all networks.
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Fig. 3. Aggregate utility and average norm of estimation error per learner
of grid topology for three settings. All settings have similar result
pattern: FW and PGA perform better than other two, and FW is slightly
better than PGA.

the same type of model. The results patterns of Setting2
and Setting3 are similar to Setting1, where FW outperforms
other competitors. This also verifies Thm. 2 experimentally:
arrival rates, the number of learners, the number of sources
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TABLE 3
Aggregate Utility for Different Settings. Our algorithm FW outperforms the competitors in all settings.

Graph Setting1 Setting2 Setting3
UFW UMaxSum UMaxAlpha UPGA UFW UMaxSum UMaxAlpha UPGA UFW UMaxSum UMaxAlpha UPGA

Erdős-Rényi (ER) 270.8 266.9 177.3 200.5 270.7 266.6 188.3 200.7 391.6 378.5 218.3 195.3
balanced-tree (BT) 167.9 112.8 109.4 167.3 168.9 110.7 111.6 168.7 207.3 141.2 123.0 187.0

hypercube (HC) 260.7 253.9 176.9 201.3 260.7 254.1 174.2 201.7 368.3 354.6 199.9 191.0
star 184.4 147.9 144.1 182.7 184.7 147.8 141.4 182.5 217.3 155.9 149.2 196.1
grid 227.5 215.6 161.9 200.0 227.7 215.3 165.9 200.4 260.0 224.1 164.9 196.0

small-world (SW) [48] 238.9 228.2 163.6 200.6 238.7 228.5 172.5 200.8 293.8 269.5 173.3 196.3
GEANT 193.3 179.3 141.4 191.6 193.4 178.4 140.0 192.2 170.3 125.5 125.6 168.9
Abilene 193.8 181.0 152.6 190.0 195.1 180.2 149.5 194.3 189.5 174.9 125.3 181.3

Deutsche Telekom 205.1 197.8 150.1 193.8 208.2 196.8 153.0 193.9 212.9 202.1 158.6 191.1
(Dtelekom)
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Fig. 4. Algorithm comparison in abilene topology where two of the
learners have a same target model and the third has a different one.
The achieved aggregate utility and model estimation quality of different
algorithms are evaluated with different source data rates and bottleneck
link capacities.

and to name a few, all these do not affect our optimality
guarantees. We take grid topology as an example and show
the results in Fig. 3. We also list aggregate utility of all
topologies in three settings in Tab. 3 for reference.
Effect of Source Rates and Link Capacities. Next, we
evaluate how algorithm performance is affected by varying
source rates as well as link capacities. We focus on the
Abilene network, having 3 sources and 3 learners, the
same as that in Setting1/2, instead two of the learners have
a same target training model.

Figures 4(a) and 4(b) plot the aggregate utility and av-
erage total norm of estimation error across learners, with
different data source rates at the sources. The initial source
rates are sampled u.a.r. from 2 to 5, and we scale it by
different scaling factors. As the source rates increases, the
aggregate utility increases and the average norm of esti-
mation error decreases for all algorithms. FW is always the
best in both figures. Moreover, the proposed experimental
design framework can significantly improve the training
quality: algorithms based on our proposed framework (FW
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Fig. 5. Algorithm comparison in Abilene topology with different source
rates and link capacities where all learners have different target models.

and PGA) with source rates scaled by 2 already outperform
the other two algorithms (MaxSum and MaxAlpha) with
source rates scaled by 4. We see reverse results of MaxSum
and MaxAlpha in these two figures compared with Figure 2,
showing that the algorithm which considers fairness (i.e.,
α-fair utilities), may perform better if we have competing
learners.

Figures 4(c) and 4(d) show performance in Abilene
network with different link capacities of several bottleneck
links. The initial link capacities are divided by different
downsize factors. The overall trend is that as the link capaci-
ties decrease, algorithms achieve smaller aggregate network
utility and get a higher average norm of estimation error.
The proposed algorithm is always the best with different
bottleneck link capacities in both figures.

In Fig. 5, we further consider the same Abilene network
as in Fig. 2 and the same settings where all learners have
different target models, varying source rates and link capac-
ities. Compared with Fig. 4, we see similar trends for all
algorithms. The difference is that the MaxAlpha performs
much worse than MaxSum and other algorithms gaining
fewer benefits from considering fairness. The purposed FW
outperforms other baselines with all different parameter set-
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Fig. 6. Algorithms comparison in SW topology with different learners size
and sources size. Aggregate utility increases, while average norm of
estimation error decreases, with more learners and sources.

tings, showing the advantage of our purposed framework.
Effect of Source and Learner Set Size. Finally, the impact
of source set size |S| and learner set size |L| on aggregate
utility and average norm of estimation error is shown in
Fig. 6, where we take SW as an example. A comparison in
Tab. 3 and Fig. 3 between Setting1 and Setting3 also reflects
similar phenomena. To explore the effect of the learner set
size, we keep the source set size |S| = 20 and types set size
|T | = 10 for Fig. 6(a). The figure shows that when increasing
the number of learners, the aggregate utility increases and
estimation error decreases. This is because D-optimal design
is a DR-submodular function, which has a similar effect as
concavity: if the total data arrival is fixed, even distribution
of the data features leads to larger aggregate utility.

We study the impact of source set size by setting |L| = 10
and |T | = 10 for Fig. 6(b). As the number of sources
increases, the aggregate utility first increases very fast and
then tapers off. More sources reflect greater data generation
rates, and thus greater utility. However, because of DR-
submodularity, the marginal gain decreases as the num-
ber of sources increases. Furthermore, under limited band-
width, if useful feature vectors reach saturation, there will
be little utility increment as well. The same interpretation
applies to the estimation error in the opposite direction.

7.5 An Illustrative Simple Example
To further illustrate how the Frank-Wolfe Variant and our
particular objective behave we explore its performance on
a simple network design problem, shown in Fig. 7. There
are two types of labels: “video”, denoted by type 0, and
“radar”, denoted by type 1. Node 0 is a learner targeting
type “radar”, and node 1 is a learner targeting type “video”.
Each has a distinct prior covariance, with d = 10, generated
as described in Sec. 7.1, split in two: low confidence features

0
radar

video

2 3

4 5

1

learner

source1

1 1.5

1
1

1

1.5

Fig. 7. A simple illustrative example for network design. There are
two learners (nodes 0 and 1) and two sources (nodes 4 and 5). Link
capacities are shown next to edges, and source generation rates are
shown next to sources. The two types are also indicated in the figure.
As rates in source 1 exceed the capacities of edge (4,2), the latter is
a bottleneck edge, and a design needs to make intelligent use of this
resource.
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Fig. 8. Aggregate utility and average norm of estimation error in a simple
example. Our proposed FW outperform all the competitors.

for learner 0 are high confidence features for learner 1, and
vice-versa.

Node 4 is a source which generates radar and video
data with rates equal to 1, respectively, and node 5 is a
source which generates video data only with rate 1.5. Link
capacities of each edge are shown in Fig. 7. We consider a set
X with two feature vectors with dimension d = 10: x0 and
x1. These two vectors have distinct supports, split exactly
the same way as learners: hence, x0 is valuable to learner 0,
and x1 is valuable to learner 1.

Edge (4,2) has link capacity 1, which is half than the
rate with which source 2 generates data. As a result, this
is a bottleneck edge, and the network needs to intelligently
allocate allocate rates across the two different types, so that
the two learners indeed learn their respective model better.

Fig. 9 displays the rate allocated by different algorithms
for this instance. Algorithms FW and PGA have the same
objectives, so that the rates allocated look very similar. In
particular, in both allocations, learner 0 prefers features
0 with type 1 and learner 1 prefers features 1 with type
0. Algorithms MaxSum and MaxAlpha only focus on the
aggregate traffic, and do not distinguish different features
and types. This is verified the span of the allocation support
in MaxSum and MaxAlpha, e.g., over edge (3,1) and (5,3),
and also the same rates over the edge with different feature
vectors. MaxAlpha considers fairness over learner, which is
reflected by equal arrival rates at each learner.

We also compare the aggregate utility and model estima-
tion quality for all algorithms, shown in Fig. 8. Algorithms
FW and PGA have similar performance, much better than
MaxAlpha and MaxAlpha. Our proposed FW performs the
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Fig. 9. Rate allocation over learners and edges for different algorithms. The first four columns indicate the rates at (learner, feature vector). The rest
indicates (edge, feature vector, type). Algorithms FW and PGA have preferred features with targeted type, while MaxSum and MaxAlpha do not.

best along all the algorithms.

8 CONCLUSION

We propose experimental design networks, to determine a data
transmission strategy that maximizes the quality of trained
models in a distributed learning system. The underlying
optimization problem can be approximated even though its
objective function is non-concave.

Beyond extensions we have already listed, our frame-
work can be used to explore other experimental design
objectives (e.g., A-optimality and E-optimality) as well as
variants that include data source generation costs. Dis-
tributed and adaptive implementations of the rate allocation
schemes we proposed are also interesting future directions.
Incorporating non-linear learning tasks (e.g., deep neural
networks) is also an open avenue of exploration: though
Bayesian posteriors are harder to compute in closed-form
for this case, techniques such as variational inference [51]
could be used in this case. In turn, these could be used to
model the contribution of data to the reduction in model
uncertainty. Finally, an interesting extension of our model
involves a multi-stage setting, in which learners receive
data in one stage, update their posteriors, and use these
as new priors in the next stage. Studying the dynamics of
such a system, as well as how network design impacts these
dynamics, is a very interesting open problem.
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APPENDIX A
PROOF OF LEMMA 1
Proof. We extend the proof in Appendix A of [10] for the
supmodularity of D-optimal design over a set to the integer
lattice: For n ∈ Np and k ∈ N, we have

G(n+ kei)−G(n) =

= log det(Id +
k

σ2
xix

⊤
i (Σ

−1
0 +

p∑
i=1

ni

σ2
xix

⊤
i )

−1)

= log(1 +
k

σ2
x⊤
i A(n)−1xi),

where A(n) = Σ−1
0 +

∑p
i=1

ni

σ2xix
⊤
i , and the last equality

follows Eq. (24) in [52]. The monotonicity of G follows be-
cause A(n)−1 is positive semidefinite. Finally, since the ma-
trix inverse is decreasing over the positive semi-definite or-
der, we have A(n)−1 ⪰ A(m)−1, ∀ n,m ∈ Np and n ≤ m,
which leads to G(n+kei)−G(n) ≥ G(m+kei)−G(m).

APPENDIX B
PROOF OF LEMMA 2
Proof. To start with, λK ∈ D, as a convex combination of
points in D. Next, consider the point v∗ = (λ∗ ∨ λ) − λ =
(λ∗ − λ) ∨ 0 ≥ 0, in which λ is the solution at current
iteration and λ∗ ∈ D is the optimal solution. Because U is
non-decreasing (Thm. 1), we have

U(λ+ v∗) = U(λ∗ ∨ λ) ≥ U(λ∗). (35)

A DR-submodular continuous function is concave along any
non-negative direction, and any non-positive direction (see

http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf
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e.g., Prop. 4 in [15]), thus g(ξ) := U(λ+ξv∗), where g′(ξ) =
⟨v∗,∇U(λ+ ξv∗)⟩, is concave, hence,

U(λ∗)− U(λ) = g(1)− g(0) ≤ g′(0)× 1 = ⟨v∗,∇U(λ)⟩.
(36)

Then,

⟨v,∇U(λ)⟩
(26)
≥ amax

v∈D
⟨v,∇U(λ)⟩ − b ≥ a⟨λ∗,∇U(λ)⟩ − b

≥ a⟨v∗,∇U(λ)⟩ − b
(36)
≥ a(U(λ+ v∗)− U(λ))− b

(35)
≥ a(U(λ∗)− U(λ))− b, (37)

where the second inequality is because the LHS maxi-
mizes the inner product, and the third inequality is because
0 ≤ v∗ ≤ λ∗ and ∇U(λ) is positive (Thm. 1). From the def-
inition of the Hessian from Eqs. (24) and (25), we can show
that ∥∇2U∥F is upper bounded by 2|X ||L|T 2GMAX. The
largest eigenvalue is upper bounded by Lipschitz continu-
ous constant L, and max |λ(∇2U)| = ∥∇2U∥2 ≤ ∥∇2U∥F
[53]. Thus L = 2|X ||L|T 2GMAX is the Lipschitz continuous
constant of ∇U . Then, we have

U(λk+1)− U(λk) = U(λk + γkv
k)− U(λk)

≥ γk⟨vk,∇U(λk)⟩ − L

2
γ2
k∥vk∥22 (Lipschitz)

(37)
≥ aγk(max

λ∈D
U(λ)− U(λk))− γkb−

L

2
γ2
k∥vk∥22

After rearrangement, we have

U(λk+1)−max
λ∈D

U(λ) ≥

(1− aγk)[U(λk)−max
λ∈D

U(λ)]− γkb−
L

2
γ2
kλ

2
MAX,

since ∥vk∥22 ≤ λ2
MAX. By telescope,

U(λK)−max
λ∈D

U(λ) ≥

[U(λ0)−max
λ∈D

U(λ)]e−a − b− L

2

K−1∑
k=0

γ2
kλ

2
MAX.

Finally, as U(λ0) = 0 and γk = δ = 1/K, we have

U(λK) ≥ (1− e−a)U(λ∗)− L

2
δλ2

MAX − b.

APPENDIX C
PROOF OF LEMMA 4
Proof. We further define

TAILℓ
x =

∞∑
n=n′+1

∆ℓ
x(λ

ℓ, n) · T · Pr[nℓ
x = n].

We have

HEADℓ
x ≥ ∆ℓ

x(λ
ℓ, n′) · T · Pr[nℓ

x ≤ n′]

and
TAILℓ

x ≤ ∆ℓ
x(λ

ℓ, n′) · T · Pr[nℓ
x ≥ n′ + 1],

since ∆ℓ
x(λ

ℓ, t1) ≥ ∆ℓ
x(λ

ℓ, t2) for t1 ≤ t2, resulting from
the submodularity of G (Lemma 1). We note that ∂U

∂λℓ
x

=

HEADℓ
x +TAILℓ

x. Then we have,

HEADℓ
x

HEADℓ
x +TAILℓ

x

=
1

1 +
TAILℓ

x

HEADℓ
x

≥

1

1 +
∆ℓ

x(λ
ℓ,n′)·T ·Pr[nℓ

x≥n′+1]

∆ℓ
x(λ

ℓ,n′)·T ·(1−Pr[nℓ
x≥n′+1]

)
= 1− Pr[nℓ

x ≥ n′ + 1],

thus,

HEADℓ
x ≥ (1− Pr[nℓ

x ≥ n′ + 1])
∂U

∂λℓ
x

≥ (1− e
− (n′−λℓ

xT+1)2

2λℓ
xT

h(
n′−λℓ

xT+1

λℓ
xT

)
)
∂U

∂λℓ
x

,

where h(u) = 2 (1+u) ln (1+u)−u
u2 (Lemma 3).

APPENDIX D
PROOF OF LEMMA 5
Proof. Our final estimator of the partial derivative is given
by

∂̂U

∂λℓ
x

≡ T
n′∑

n=0

̂∆ℓ
x(λ

ℓ, n)Pr[nℓ
x = n],

where

̂∆ℓ
x(λ

ℓ, n) =
1

N

N∑
j=1

(Gℓ(nℓ,j |nℓ,j
x =n+1)−Gℓ(nℓ,j |nℓ,j

x =n)).

We define

Xj(n) =
Gℓ(nℓ,j |

n
ℓ,j
x =n+1

)−Gℓ(nℓ,j |
n
ℓ,j
x =n

)−∆ℓ
x(λ

ℓ,n)

GMAX
,

where
GMAX = max

ℓ∈L,x∈X
(Gℓ(ex)−Gℓ(0)).

We have |Xj(n)| ≤ 1, because

GMAX ≥ Gℓ(ex)−Gℓ(0)

≥ Gℓ(nℓ|nx = n+ 1)−Gℓ(nℓ|nx = n),

for any ℓ ∈ L,x ∈ X , n ≥ 0. By Chernoff bounds described
by Theorem A.1.16 in [46], we have

Pr

∣∣∣∣∣∣
N∑
j=1

n=n′∑
n=0

Xj(n)

∣∣∣∣∣∣ > c

 ≤ 2e−c2/2N(n
′
+1).

Suppose we let c = δ · N/T , where δ is the step size, then
we have∣∣∣∣∣ ∂̂U∂λℓ

x

−HEADℓ
x

∣∣∣∣∣
≤

∣∣∣∣∣∣
n′∑

n=0

N∑
j=1

Gℓ(nℓ,j |
n
ℓ,j
x =n+1

)−Gℓ(nℓ,j |
n
ℓ,j
x =n

)−∆ℓ
x(λ

ℓ,n)

N T

∣∣∣∣∣∣
=
∣∣∣∑n′

t=0

∑N
j=1 X

j(n)
∣∣∣ · T

N ·GMAX ≤ δ ·GMAX,
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with probability greater than 1 − 2 · e−δ2N/2T 2(n′+1). By
Lemma 4, we have ∂U

∂λℓ
x

≥ HEADℓ
x ≥ (1 − P[nℓ

x ≥
n′ + 1]) · ∂U

∂λℓ
x

. Thus, we have

−δ ·GMAX ≤ ∂U
∂λℓ

x
− ∂̂U

∂λℓ
x
≤ δ ·GMAX+Pr[nℓ

x ≥ n′+1] · ∂U
∂λℓ

x
.

(38)
We now use the superscript k to represent the param-
eters for the kth iteration: we find vk ∈ D that max-
imizes ⟨vk, ∇̂U(λk)⟩. Let uk ∈ D be the vector that
maximizes ⟨uk,∇U(λk)⟩ instead and define PMAX =
maxk=1,...,K Pk

MAX where Pk
MAX = maxl∈L,x∈X P[nℓ,k

x ≥
t′ + 1] and λMAX ≡ maxλ∈D

∑
ℓ∈L ∥λℓ∥1. We have

⟨vk,∇U(λk)⟩ ≥ ⟨vk, ∇̂U(λk)⟩ − λMAXδ ·GMAX

≥⟨uk, ∇̂U(λk)⟩ − λMAXδ ·GMAX

≥(1− PMAX) · ⟨uk,∇U(λk)⟩ − 2λMAXδ ·GMAX,

where the first and last inequalities are due to (38) and the

second inequality is because vk maximizes ⟨vk, ∇̂U(λk)⟩.
The above inequality requires the satisfaction of (38) for
every partial derivative. By union bound, the above in-
equality satisfies with probability greater than 1 − 2|X∥L| ·
e−δ2N/2T 2(n′+1).
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