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Abstract—Utilizing the concept of hypothesis margins
to measure the quality of a set of features has been a
growing line of research in the last decade. However, most
previous algorithms have been developed under the large
hypothesis margin principles of the 1-NN algorithm, such
as Simba. Little attention has been paid so far to exploiting
the hypothesis margins of boosting to evaluate features.
Boosting is well known to maximize the training examples’
hypothesis margins, in particular, the average margins
which are known to be the first statistics that considers
the whole margin distribution. In this paper, we describe
how to utilize the training examples’ mean margins of
boosting to select features. A weight criterion, termed
Margin Fraction (MF), is assigned to each feature that
contributes to the average margin distribution combined
in the final output produced by boosting. Applying the idea
of MF to a sequential backward selection method, a new
embedded selection algorithm is proposed, called SBS-MF.
Experimentation is carried out using different data sets,
which compares the proposed SBS-MF with two boosting
based feature selection approaches, as well as to Simba.
The results show that SBS-MF is effective in most of the
cases.

Keywords-Feature selection; boosting; average margin;

I. INTRODUCTION

Boosting has attracted much attention in the machine
learning community mainly because of its excellent
performance and computational attractiveness for large
datasets [25], [19]. The main breakthrough came with
Freund and Schapire’s most successful AdaBoost algo-
rithm [10], [11]. The essence of AdaBoost is to train a
number of simple weak classifiers that are linearly com-
bined into a single strong classifier. A major advantage
of the AdaBoost algorithm is the adaptive selection of
discriminative and complementary features during the
training process which most often yields better feature
or variable selection while keeping or even increasing
the prediction accuracy. AdaBoost has been used, in
particular for feature selection, with great success in
many applications like face recognition [27], [9], text
mining [29] and intrusion detection [2], [15].

AdaBoost has the property that it does not often
seem to suffer from overfitting, even after a large

number of iterations [4], [22]. To understand this lack of
overfitting, Breiman [4] first used the notion of variance
and bias for classification to argue that AdaBoost could
avoid overfitting by reducing variance, since it is in
ways similar to bagging [3]. Schapire et.al. [24], how-
ever, explained to some extent a reasonable explanation
to the success of AdaBoost by the margin theory. The
margin of a boosted classifier is a number between
−1 and 1, that according to the margin theory, can
be thought of as a confidence measure of a classifier’s
predictive ability, or as a guarantee on the generalization
performance. If the margin of a classifier is large, then
it tends to perform well on test data. If the margin
is small, then the classifier tends not to perform so
well. Furthermore, Schapire et al. showed that AdaBoost
has a tendency to increase the margins on the training
examples. Thus, though not entirely complete, their
theory and experiments strongly support the notion
that margins are highly relevant to the behavior and
generalization performance of AdaBoost.

Breiman [4], however, soon thereafter raised serious
doubts on the margin theory by designing a boosting-
type algorithm called arc-gv. Breiman’s experiments
indicated that his algorithm achieved higher margins
than AdaBoost, and yet performed worse on test data.
Reyzin and Schapire [23] reproduced Breiman’s exper-
iments and were able to reconcile his results with the
margins explanation, noting that the weak classifiers
found by arcgv are more complex than those found
by AdaBoost. Although the empirical success of the
AdaBoost algorithm depends on many factors (e.g., the
type of data and how noisy it is, the capacity of the weak
learning algorithm, the number of boosting iterations,
regularization and the entire margin distribution over the
training examples), it is well accepted that margin distri-
bution is crucial to relate margin to the generalization of
AdaBoost. Previously the minimum margin bound was
established for AdaBoost, however, researchers believe
that this is far from sufficient. Intuitively, Reyzin and
Schapire [23] suggested to use the average margin as a
measure to compare margin distributions, but provided
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no bound prove for it; this was the focus of Gao and
Zhou [12] who recently proved the average margin
bound for AdaBoost and showed that a larger average
margin implies stronger generalization.

In this work, we took an unusual approach for using
boosting as an effective feature subset selection (FSS)
technique. We introduce the idea of utilizing the training
examples’ average margin to measure the quality and
relative importance of features. In each boosting itera-
tion, a base hypothesis is learned with a prediction con-
fidence for each example. The weights of misclassified
instances are increased and those of correctly classified
instances are decreased according to the confidence of
the learned base hypothesis. Consequently, the learner
is forced to search for base hypotheses which correctly
classify these hard examples and thus increase their mar-
gins. Since the margin tends to give a strong indication
of a learner’s performance in practice, a natural goal
is to find learners (features) that achieve a maximum
margin. For this purpose, we propose an evaluation
function which assigns weights to subsets of features
according to the margin they induce. The weight, termed
Margin Fraction (MF), is measured by computing the
cumulative effect each feature has on the average margin
associated with the weighted linear combination that
boosting produces, i.e., the margin fraction that is due
to a feature.

The problem of searching the “best” subset of fea-
tures is solved by means of a greedy algorithm based
on backward selection [17]. A backward sequential
selection is used because of its lower computational
complexity compared to randomized or exponential
algorithms and its optimality in the subset selection
problem [6]. For the sake of simplicity, the proposed
algorithm will be referred to as SBS-MF (Sequential
Backward Selection using Margin Fraction). Hence, the
SBS-MF goal is to find a subset of size r among d
features (r < d). The method starts with all the features
and at each iteration an AdaBoost with decision stumps
algorithm is trained, followed by removing one or more
“bad” features from further consideration. The goodness
of the features is determined by the margin fraction
weights produced within AdaBoost. The features re-
maining after a number of iterations are deemed to be
the most useful for discrimination, and can be used to
provide insights into the given data.

Margin based feature selection is a growing line of
research. There are two main ways to define margins [7].
The sample-margin (SM) measures the distance be-
tween the instance and the decision boundary induced
by the classifier. SVM, for example, finds the separating

(SM) (HM)

Figure 1: Sample Margin (SM) measures how much can
an instance travel before it hits the decision boundary.
On the other hand Hypothesis Margin (HM) measures
how much can the hypothesis travel before it hits an
instance [7].

hyper-plane with the largest SM. As an alternative
definition, the hypothesis-margin (HM) requires the
existence of a distance measure on the hypothesis class.
The margin of a hypothesis with respect to an instance
is the distance between the hypothesis and the closest
hypothesis that assigns an alternative label to the given
instance. Fig. 1 shows examples of both SM and HM.
AdaBoost and 1-NN use the concept of HM. Various
feature selection algorithms have been developed under
the large margin (SM or HM) principles such as SVM-
based feature selection [14] and Relief family (1-NN
based) algorithms, such as Simba [13].

To our knowledge, almost no previous work has
exploited the characteristics of the hypothesis margins
of boosting to determine the quality of features. The
two main related works, particularly in boosting with
decision stumps with a greedy search, are: 1) the work
of Das [8], who proposed the BDSFS (Boosted Decision
Stump Feature Selection) algorithm, and 2) Tsuchiya
and Fujiyoshi [28] algorithm. Das applies a forward
selection search strategy. The selection of the next
feature to be considered is based on the information gain
criterion and takes into consideration the weight of each
dataset instance. This selected feature is then added to
the set that will be returned and used to create a decision
stump (used as the weak learner), which updates the
weights of the dataset examples by assigning higher
weights to examples that have often been misclassified
in this round. The process repeats until a pre-specified
number of features have been selected, in a process very
similar to boosting. In Tsuchiya and Fujiyoshi [28] work
the features are evaluated based on the contribution
ratio (CR) criterion. The CR is defined as the relative
importance of features based on the confidence ratio of
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Figure 2: Boosting H(x) values for training instances of Prostate dataset. a) after 10 rounds, and b) after 100
rounds.

the learned base hypothesis. Similar to our approach, the
Tsuchiya and Fujiyoshi algorithm starts with a given set
of features, the CR of each feature from a feature set
is estimated, and features that are not contributing and
that have a low CRs are removed.

In this paper, however, we show that the dynam-
ics inherent to boosting offer ideal means to evaluate
features utilizing the training examples’ margins dis-
tribution, and while a feature may have a large CR,
it will not contribute to a good overall margin unless
its “conditional” margin is also large. Thus, a better
indicator is its fraction of the overall margin.

This paper is organized as follows. In Section 2, we
review the AdaBoost margin concept. In Section 3, we
present our proposed feature weighting using margin
fraction. Our experimental evaluation of the approach
is described and discussed in Section 4. We conclude
in Section 5 with some pointers to future work.

II. BACKGROUND

A. Boosting Margins

Definition Let S = {(xi, yi)}i={1,···,m} be a set of m
instances, where xi is a pattern vector x ∈ �F and yi
is a class label yi ∈ {−1, 1}, drawn i.i.d. from D. And
let H be a hypothesis space (in this paper we constrain
H to be finite).

Boosting calls a given weak or base learning algo-
rithm repeatedly in a series of rounds t = 1, . . . , T .

A base learner’s goal is to find a weak hypothesis
ht : X → {−1, 1} appropriate for the distribution Dt.
One of the main ideas of the algorithm is to maintain
a distribution or set of weights over the training set.
The weight of this distribution on training example i on
round t is denoted Dt(i). Initially, all weights are set
equally, but in each round, the weights of incorrectly
classified examples are increased so that the weak
learner is forced to focus on the hard examples in the
training set. After a hypothesis is received, the algorithm
updates the weights of the distributions Dt. Combining
the hypotheses generated by these weak learners will
collectively produce the following weighted linear clas-
sifier:

H(xi) =
T∑

t=1

αtht(xi) (1)

where

αt =
1

2
ln
1 + γt
1 + γt

(2)

where γt =
∑m

i=1 Dt(i)yiht(xi) is called the edge of
ht, which is an affine transformation of the error rate
of ht(xi).

Boosting is particularly good at finding hypotheses
with large margins, in which it concentrates on those
examples whose margins are small (or negative) and
forces the base learning algorithm to generate good
classifications for those examples [10]. The margin of
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boosting at T rounds associated with any instance i is
defined as

ρ(xi) =
yiH(xi)

ω
=

yi
∑T

t=1 αtht(xi)

ω
(3)

while ω =
∑T

t=1 |αt| served as a normalization
factor. It is easy to see that the margin is a number
in the range [−1, 1], and that an example is classified
correctly if and only if its margin is positive, i.e., H(x)
classifies the example correctly as shown in Fig. 2. A
large positive margin can be interpreted as a “confident”
correct classification. The distribution of the margin can
be visualized by plotting the cumulative distribution
function (CDF) of margins, i.e., the fraction of examples
whose margin is at most n as a function of n ∈ [−1, 1].
AdaBoost effectively maximizes the minimum margin
(min yH(x)), which leads to good generalization ability
as Schapire et.al. proved in Theorem 1 [24].

However, recently, Gao and Zhou [12] show that
compared to previous statistics on margin theory (i.e.,
minimum margin), the average margin is one of the
statistics that considers the whole margin distribution
and thus includes more information.

The average margin ES [yH(x)] across m examples
can be defined as:

ρ̄ =
1

m

m∑
i=1

ρ(xi) (4)

B. Average Margin Bound

Gao and Zhou [12] provided an upper bound for the
generalization error of AdaBoost in term of average
margin by Theorem 6. Which we briefly describe as
follows.

Theorem 2.1: For constant γ > 0, suppose base
learner ht in each iteration has edge γt ≥ γ and set

τ =
−0.99 ln(1− γ2)

ln(1 + γ)− ln(1− γ)

For any δ > 0, if θ = ES [yH(x)] >
√
8/|H| and the

iteration number

T ≥
⌈

100

ln(1 − γ2)
ln

(
1

m

(
16 ln 2|H|

τ2θ2

(ln 2m2 − ln ln |H|) + ∈ ln |H|
δ

))⌉

then with probability at least 1 − δ over the random
choice of sample S with size m, every voting classifier

H(x) by AdaBoost satisfies the following bound:

PrD[yH(x) < 0] ≤
(
ln |H|
m

+

√
8

m

(
8 ln 2|H|
τ2θ2

ln
2m2

ln |H| + ln
|H|
δ

) )

The Theorem states that the generalization of Ad-
aBoost depends not only on the sample size and the
complexity of the base learner, but also on the average
margin, the number of iterations and the goodness of
base learner. All these factors could affect the gen-
eralization error, and thus, completely explaining Ad-
aBoost’s resistance to overfitting is more difficult than
what has been disclosed by previous theoretical results.
In this sense, we would rather use average margin than
other statistics to evaluate the quality of features.

III. MARGIN FRACTION FOR FEATURE WEIGHTING

AND SELECTION ALGORITHM

In this section, we present our new feature selection
based on the concept of the average margin induced
by boosting. Our method observes the training exam-
ples’ mean margins to evaluate the quality of features.
A weight criterion, termed Margin Fraction (MF), is
assigned to each feature that contributes to the aver-
age margin distribution combined in the final output
produced by boosting. Applying the idea of the MF
to a sequential backward selection FSS method, a new
selection algorithm is proposed, termed SBS-MF.

To perform feature selection we consider features as
the weak learners for boosting. The choice of the weak
learner is usually driven by optimizing the prediction
performance. In addition, some structural properties can
be another useful criterion as well. AdaBoost estimator
is a linear combination of weak learners. Therefore,
structural properties of the boosting function estimator
are given by linear combination of structural character-
istics of the weak leaner.

A. Stumps and larger trees as weak learners

Trees are among the most popular base procedures
in machine learning. They have the advantage to be
invariant under monotone transformations of predictor
variables, i.e., we do not need to search for good data
transformations. When using stumps [10], [30], i.e., a
tree with two terminal nodes, the boosting estimate will
be an additive model in the original predictor variables,
because every stump-estimate is a function of a single
predictor variable only. Similarly, boosting trees with (at
most) d + 1 terminal nodes results in a nonparametric
model having at most interactions of order d − 1:
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e.g., for d = 2, we would pick up interaction terms
between pairs of predictor variables. Thus, if we want
to constrain the degree of interactions, we can easily do
this by constraining the (maximal) number of nodes in
the tree learner. For many real datasets, it seems that
low-order interaction (or even additive) models are suf-
ficiently rich for good prediction and interpretation. For
example, the naive Bayes classifier works surprisingly
well in many applications [16]. Also boosting with
stumps, yielding an additive model, has proven to be
successful in many areas, e.g. winning the performance
prediction challenge of the IEEE World Congress on
Computational Intelligence 2006 [18]. Thus, we often
get good performance with trees having 2 or 3 terminal
nodes (d = 1 or 2, respectively). With such small values
of d, our proposed feature selection is computationally
fast.

Therefore, we construct a set of weak classifiers by
considering decision stumps. For each feature f and a
given threshold θ, a decision stump h can be constructed
as

h(x)
def
=

{ −1, xf ≤ θ
+1, xf > θ

where xf denotes the component of feature vector x,
which corresponds to feature f .

B. Hypothesis Margin Feature Weight

Definition Let F be the total number of unique features
used across all T rounds i.e., decision stumps, and for
any chosen feature f , let hf,j be the decision stump
corresponds to the j-th use of feature f , and let Nf be
the total number of times that feature f is used. We
then have

∑F
f=1 Nf = T . Let αf,j be the associated

confidence.

Now for any individual feature f , one can consider
the weighted linear combination associated with that
feature and the “conditional” margin associated with
just that weighted linear combination for any instance
i.

Hf (xi) =

Nf∑
j=1

αf,jhf,j(xi) (5)

ρf (xi) =
yi
∑Nf

j=1 αf,jhf,j(xi)∑Nf

j=1 |αf,j |
(6)

Consider the fraction of the absolute “confidence”
weight associated with any feature f , defined as follows:

Γf =

∑Nf

j=1 αf,j∑T
t=1 |αt|

=

∑Nf

j=1 αf,j∑F
f=1

∑Nf

j=1 |αf,j |
(7)

We then have the following theorem.

Theorem 3.1: the overall margin associated with any
instance “i” is the weighted linear combination of
conditional margins, where Γf are the weights.

F∑
f=1

Γfρf (xi) = ρ(xi)

Proof:

F∑
f=1

Γfρf (xi) =

F∑
f=1

(∑Nf

j=1 αf,j∑T
t=1 |αt|

)
ρf (xi)

=

∑F
f=1

(∑Nf

j=1 αf,j

)
ρf (xi)∑T

t=1 |αt|

=

(∑F
f=1

(∑Nf

j=1 αf,j

)
∑T

t=1 |αt|

.

(
yi

∑Nf
j=1 αf,jhf,j(xi)
∑Nf

j=1 αf,j

)
∑T

t=1 |αt|

)

=
yi
∑F

f=1

∑Nf

j=1 αf,jhf,j(x)∑T
t=1 |αt|

= ρ(xi)

This helps to support the use of Γf as an indicator of
the utility of a given feature f , which is basically the
contribution ratio (CR) weight criterion that Tsuchiya
and Fujiyoshi [28] and Alshawabkeh et.al. [2] proposed
(we will give more details about the CR weight criterion
in Section III-C). However, while a feature f may have a
large Γf , it will not contribute to a good overall margin
unless ρf is also large. A better indicator is the fraction
of the overall margin that is due to f :

ρf (xi) =
Γfρf (xi)

ρ(xi)
(8)

Note, however, that this only deals with a single
instance i. To consider the margin across all instances
we use the average margin, which can be redefined as:

ρ̄ =
1

m

m∑
i=1

F∑
f=1

Γfρf (xi) (9)
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Thus, the MF due to feature f is computed as:

MFf =
Γf

1
m

∑m
i=1 ρf (xi)

1
m

∑m
i=1 ρ(xi)

= Γf

∑m
i=1 ρf (xi)∑m
i=1 ρ(xi)

=

∑Nf

j=1 αf,j∑T
t=1 |αt|

·
∑m

i=1

(
yi

∑Nf
j=1 αf,jhf,j(xi)
∑Nf

j=1 |αf,j |

)
∑m

i=1

(
yi

∑
T
t=1 αt(xi)∑
T
t=1 |αt|

)

=

∑m
i=1

∑Nf

j=1 yiαf,jhf,j(xi)∑m
i=1

∑T
t=1 yiαtht(xi)

(10)

We can use MF as an indicator of the utility of a
given feature f . Typically, the higher the value of MF,
the better the feature f .

C. Comparison between Margin Fraction MF and Con-
tribution Ratio CR

Tsuchiya and Fujiyoshi has proposed a feature
evaluation method based on AdaBoost with decision
stumps [28]. They introduced a metric, called contri-
bution ratio CR, that indicates how well the features
”contribute” to the classification performance based on
the performance weight α of the weak hypothesis ht.
We will refer to this method as AdaBoost-CR.

A contribution ratio CRf for each feature f is defined
by:

CRf =

T∑
t=1

ᾱt δK [P (ht)− f ] (11)

where ᾱt is the average confidence assigned to feature
f , δK is the Kronecker delta; which is a function of two
variables that is 1 if they are equal and 0 otherwise,
and P () is a function for outputting the feature chosen
at round t in the AdaBoost training process. In other
words, the CRf is equal to the fraction of the absolute
”confidence” weight associated with any feature f , thus,
it is equal to Γf that we defined in Equation 7. However,
while CRf is a helpful evaluation metric of the quality
of a given feature f , it is not an accurate indicator of
its performance. A feature f may have a large CRf

value but will not contribute to a good overall margin.
A better indicator is the margin fraction MF that is due
to f .

D. Sequential Backward Selection using Margin Frac-
tion

For a given dataset with the size of d, the goal
for feature selection is to select r features (r < d)
that provides the best results. Here the MF weight
used as a ranking criterion for our proposed algorithm.

Algorithm 1 The SBS-MF algorithm

1. Initialization: feature ranked list Rlist = [ ];
subset of surviving features Slist = [1, · · · , d].

2. repeat until Slist = [ ]

(a) Train an AdaBoost classifier with all
the training data using the subset of
surviving features Slist.

(b) for all features in Slist, do evaluate
the weight criterion MFf of feature
f endfor.

(c) Find the feature with smallest MF
weight:
f = argminf (MF ).

(d) Update feature ranked list:
Rlist = [Slist(f), Rlist].

(e) Eliminate the feature with smallest
MF weight:
Slist = [1, · · · , f − 1, f +
1, · · · , length(Slist)].

3. Output Feature ranked list Rlist.

The sequential backward selection search algorithm is
used. The selection process starts from a full set of
features then removes sequentially the most irrelevant
ones. To find the most irrelevant feature of the current
surviving subset, AdaBoost algorithm is trained on the
training set with the current surviving features subset.
The classification results of AdaBoost are then used to
obtain the MF weights for each feature. The features are
then ranked based on the MF weight criterion. Finally,
the most irrelevant feature, which its MF weight is the
smallest, is eliminated. The procedure is repeated until
r features are removed or all of the features are ranked.
The SBS-MF method is summarized in Algorithm 1.

IV. EXPERIMENTAL SETUP

A. Data Sets

To validate performance fairly and to provide a com-
prehensive testing suite for feature selection methods
under different conditions, two groups of benchmark
datasets are adopted in our simulation experiments.
The first group includes datasets with large number of
samples. These datasets are all available from the UCI
Machine Learning Repository [20] and most of them are
frequently used in the literatures. Table I summarizes
some general information about these datasets. Their
full documentation can be obtained from the UCI web-
site. Some of these datasets may embody missing values
or continuous features, and so they would be processed
during the preprocessing phases. For missing values, we
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Table I: Data sets description.

Dataset Features Instances
Chess 32 3196
Ionosphere 34 351
Mushroom 22 8124
Musk clean1 166 476
Spambase 57 4601
Lymphoma 7129 77
Prostate 6000 89

replaced them with the most frequently used values and
means for nominal and numeric features, respectively.

The second group includes two microarray datasets
that contain a large number of features and a small
number of samples: Lymphoma data [21] and Prostate
cancer data [26], as described in Table I. The data sets
were minimally preprocessed by trimming the range of
inspected mass/charge ratios, normalizing and reducing
the amount of noise.

B. Performance Assessment and Discussion

The performance of SBS-MF was assessed using
the benchmark data sets and was compared against,
AdaBoost-CR, BDSFS and Simba.

In simulation experiments, the datasets were firstly
fed into these feature selectors, which will generate
different feature ranking sets in which the features are
sorted in a descending order according to their priorities.
For UCI sets we chose 40% of top ranked features.
After that, datasets with newly selected features were
passed to external learning algorithms to assess clas-
sification performance. Currently, various outstanding
learning algorithms are available. In our experiments,
two classifiers, namely, 1-Nearest Neighbor (1-NN) and
SVM, were chosen to test prediction capability of the
selected subset. The reason to choose them is that these
classifiers represent different approaches in learning
and often used in data mining applications because of
relatively high efficiency.

To achieve impartial results, 10-fold cross validations
had been adopted for each algorithm-dataset combina-
tion in verifying classification capability. That is to say,
for each dataset before and after feature selection, we
run every classification algorithm on it 10 times and
at each time a 10-fold cross validation was used, and
the final results were their average values. To determine
whether the difference is significant or not, pair t-tests
between accuracies without feature selector and with
each selector at a time had been performed. Throughout

this paper, the difference of accuracies is considered
significantly different if its p-value is less than 0.05
(i.e., confidence level greater than 95%) according to
a paired t-test.

C. Performance Results of UCI Sets

The experimental results about classification perfor-
mance on the UCI datasets for classifiers using all-
features and using the four feature selection algorithms
are presented in Table II. Notation ”•” (or ”◦”) denotes
that the performance of classifier with current selector is
significantly better (or worse) than those without using
selector (i.e., All-features) in statistical test. In addition,
the bold value in entries means that it is the largest
one among these three feature selectors in the same
classifier. The average value of accuracies with the same
selector is given in the ”Ave.” row.

The results in Table II show that the performance
using SBS-MF are better than other approaches in the
1-NN classifier. SBS-MF has three maximal values of
classification accuracy over 5 datasets. From the view of
average performance SBS-MF is still relatively superior
to other selectors.

For SVM classifier, one may also observe that our
proposed method clearly surpasses others in many cases.
As an illustration, for SBS-MF, the quantities of cases
with significantly better and worse performance are
three and zero, respectively. In addition, SBS-MF has
the highest classification performance over three-quarter
datasets, which is higher than other selection algorithms.
Correspondingly, the average value of accurate ratios in
SBS-MF is also the largest one.

D. Small Training Sets

To compare the performance of SBS-MF, AdaBoost-
CR, BDSFS and Simba on small training sets, we
examined two microarray datasets concerning two clas-
sification problems. These datasets have already been
used for benchmarking feature selection algorithms (for
example, see Chen et al. [5]). The Lymphoma data
set contains 77 samples: 58 are diffuse large B-cell
lymphoma, and 19 are follicular lymphomas, described
by 7129 features, and the Prostate cancer data set is
composed of 89 samples: 63 have no evidence of cancer,
and 26 have prostate cancer, described by 6000 features.

In order to speed up the feature selection procedure,
half of the features are removed at each step until 100
features remain still to be ranked. Then features are
removed one at a time. For performance comparison, we
rank all of the features using the four feature selection
methods. We then take a prefix of this ranking and train
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the learning algorithms with the prefix. The learning
algorithms then are tested on the data.

Since the datasets are unbalanced, initial weights for
AdaBoost were adjusted to account for the skewed class
distributions [1]. We also applied stratified 10-fold cross
validation to evaluate the methods. We repeated the
stratified 10-fold cross validation 20 times and averaged
results over each trial. Further, on imbalanced data sets,
algorithms will be hard pressed to classify test samples
as members of the minority class because the discrim-
inant scores given by the classifier are often weighted
toward the majority class. For that, we evaluated the
results using the area under the ROC curve (AUC)
metric, which is one of the statistics that researchers
commonly use to focus on the minority class.

Sub-figures in Fig. 3 show the classification results
in terms of AUC versus the number of features selected
using an 1-NN and SVM classifiers. Lines with ◦
markers indicate classifiers using Simba-selected fea-
tures, lines with 	 markers indicate classifiers using
BDSFS-selected features, lines with + markers indicate
classifiers using AdaBoost-CR-selected features, and
lines with × markers indicate classifiers using SBS-
MF-selected features and the solid black line indicates
the performance where all the features are used for
classification.

The top subfigures in Fig. 3 show the AUC results
for the Lymphoma data. The features selected by SBS-
MF outperform other methods with 1-NN, and SVM
classifiers. Further, note that SBS-MF is able to achieve
this with as few as 20 features. What this indicates
is that SBS-MF is more effective in selecting fewer
high quality features, such that after keeping 70 features
(with 1-NN), adding more features may not improve and
may even degrade classifier performance. We observe
the same trend when using 1-NN and SVM that SBS-
MF achieves a higher AUC value compared to the other
methods with fewer features on Prostate data (bottom
subfigures in Fig. 3).

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new feature selection algorithm,
called SBS-MF, is proposed based on the concept of
the average margin induced by boosting. Our method
observes the training examples’ mean margins to eval-
uate the quality of features. A weight criterion, termed
Margin Fraction (MF), is assigned to each feature that
contributes to the average margin distribution combined
in the final output produced by boosting, i.e., the
margin fraction that is due to a feature. A backward
sequential selection is used to search for the “best”
subset of features since it has lower computational

complexity compared to other search algorithms. Our
method starts with all the features and at each iteration
an AdaBoost with decision stumps algorithm is trained,
followed by removing one or more “bad” features from
further consideration. The goodness of the features is
determined by the margin fraction weights produced in
the AdaBoost. The features remaining after a number
of iterations are deemed to be the most useful for
discrimination.

We have validated the performance of our method
on seven data sets. Five data sets were taken from
UCI repository that contain relatively large number of
samples. The remaining two datasets are microarray
data. These data sets have a small number of samples
with a large number of features. We compared our
method to two boosting with decision stumps feature
selection methods as well as to a margin-based feature
selection. Our results show that our method is effective
in most cases.

Our method might not be robust to noise since it
is based on the hard margins of boosting. Part of the
future work is to investigate how to overcome this issue
by utilizing the soft margins of boosting instead.
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