Formula Sheet

 $x(t) = x_f + \left[x(t_o) - x_f\right]e^{-(t-t_o)/\tau}$, general response for 1st-order circuit, $\tau = \frac{L}{R}$ or $\tau = RC$

$$v_{L} = L\frac{di}{dt} \qquad i_{L} = \frac{1}{L} \int_{t_{o}}^{t} v(x)dx + i(t_{o}) \qquad p_{L} = Li\frac{di}{dt} \qquad \omega_{L} = \frac{1}{2}Li^{2}$$

$$v_{C} = \frac{1}{C} \int_{t_{o}}^{t} i(x)dx + v(t_{o}) \qquad i_{C} = C\frac{dv}{dt} \qquad p_{C} = Cv\frac{dv}{dt} \qquad \omega_{C} = \frac{1}{2}Cv^{2}$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2}$$
 $\omega_o^2 = \frac{1}{LC}$ $\alpha = \frac{1}{2RC}$ (parallel) $\alpha = \frac{R}{2L}$ (series)

• The response of a second-order circuit is overdamped, underdamped, or critically damped as follows:

THE CIRCUIT IS	WHEN	QUALITATIVE NATURE OF THE RESPONSE
Overdamped	$\alpha^2 > \omega_o^2$	The voltage or current approaches its final value without oscillation
Underdamped	$\alpha^2 < \omega_o^2$	The voltage or current oscillates about its final value
Critically damped	$\alpha^2 = \omega_o^2$	The voltage or current is on the verge of oscillating about its final value

In determining the natural response of a second-order circuit, we first determine whether it is over-, under-, or critically damped, and then we solve the appropriate equations as follows:

DAMPING	NATURAL-RESPONSE EQUATIONS	COEFFICIENT EQUATIONS OVERDAMPED
Overdamped	$x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$x(0) = A_1 + A_2;$ $dx/dt(0) = A_1s_1 + A_2s_2$
	$x(t) = (B_1 \cos \omega_d t + B_2 \sin \omega_d t)e^{-\alpha t}$	$x(0) = B_1;$ $dx/dt(0) = -\alpha B_1 + \omega_d B_2,$
	$x(t) = (D_1 t + D_2)e^{-\alpha t}$	where $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$ $x(0) = D_2,$ $dx/dt(0) = D_1 - \alpha D_2$

 In determining the step response of a second-order circuit, we apply the appropriate equations depending on the damping, as follows:

57 JO 50	OILT	TANK AND
DAMPING	NATURAL-RESPONSE EQUATIONS ¹	COEFFICIENT EQUATIONS OVERDAMPED
Overdamped	$x(t) = X_f + A_1' e^{s_1 t} + A_2' e^{s_2 t}$	$x(0) = X_f + A'_1 + A'_2;$ $dx/dt(0) = A'_1 s_1 + A'_2 s_2$
Underdamped	$x(t) = X_f + (B_1' \cos \omega_d t + B_2' \sin \omega_d t)e^{-\alpha t}$	$x(0) = X_f + B_1';$ $dx/dt(0) = -\alpha B_1' + \omega_d B_2'$
Critically damped	$x(t) = X_f + D_1' t e^{-\alpha t} + D_2' e^{-\alpha t}$	$x(0) = X_f + D'_2;$ $dx/dt(0) = D'_1 - \alpha D'_2$