
Balancing Power in DC
Circuits

Balancing power in dc circuits is a good method for verifying that the voltages
and currents calculated for the elements in the circuit are consistent. When
the power balances, the sum of the powers for eqch circuit component will be
zero. This means that all of the power generated in the circuit is absorbed
by the circuit, so the net power is zero. We will use power balancing to
con¯rm the voltages and currents calculated when using the node voltage and
mesh current methods of circuit analysis illustrated in upcoming chapters.
Performing a power balance depends on using the passive sign convention
correctly. Remember that the passive sign convention tells us whether to use
a positive or a negative sign in equations relating voltage and current for a
single circuit component. The passive sign convention applies to the power
equation as follows:

² When the arrow indicating current direction in a component points
from the positive voltage polarity mark to the negative voltage polarity
mark for that same component, p = +vi;

² When the arrow indicating current dirction in a component points from
the negative voltage polarity mark to the positive voltage polarity mark
for that same component, p = ¡vi.

In other words, when the current arrow points from + to ¡, use a + sign
in the equation, and when the current arrow points from ¡ to + using a ¡
sign in the equation | the current arrow points to the sign to be used in the
equation.
Performing a power balance consists of the following steps:

1. Create a table with ¯ve (5) columns. The ¯rst column will identify the
component whose power is to be calculated. The second column is the
value of the voltage drop across that component, from the + polarity
mark to the ¡ polarity mark. The third column is the value of the
current °owing through that component, in the direction of the current
arrow. The fourth column is the equation to be used to calculate the
power for this component. In the examples, this equation will be +vi
or ¡vi, where the sign in the equation is determined by the passive
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Figure 1: The circuit for Power Balance Example 1

sign convention. The ¯fth column is the numerical value of the power
for that component, calculated by substituting the current and voltage
values into the equation. Remember that when the power is greater
than zero, the component is absorbing power from the circuit, and when
the power is less than zero the component is delivering power to the
circuit.

2. Identify each component in Column 1, and ¯ll in that component's
voltage and current in Columns 2 and 3, respectively.

3. Using the passive sign convention, determine whether the power equa-
tion for each component is +vi or¡vi and ¯ll in the equation in Column
4.

4. Substitute the value for voltage and current into the power equation
and compute the power for each component. Put this value in Column
5.

5. When the table is completed, sum all of the power values in Column
5. If the sum is zero, the power balances for this circuit.

We begin with circuits whose power balances. Once you have balanced
the power for these circuits, we move on to circuits whose power does not
balance due to a sign error, and suggest a method for ¯nding the error.

Power Balance Example 1

Create a table to determine whether or not the power balances for the circuit
in Fig. 1.
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Solution

1. The ¯ve column table is shown below, with the columns labeled. We
have seven rows in the table to accommodate the seven circuit compo-
nents in Fig. 1.

Component v (V) i (A) Equation p (W)

2. We ¯ll in Columns 1, 2, and 3 by identifying the component in Column
1, copying its voltage from Fig. 1 into Column 2, and copying its current
from Fig. 1 into Column 3. The result is the partially completed table
shown below:

Component v (V) i (A) Equation p (W)
A 9 3
B ¡6 ¡4
C 10 3
D 1 ¡7
E 5 4
F ¡2 ¡3
G 12 ¡4

3. Now, pay careful attention to the voltage polarity and current direction
for each component, and use this information together with the pas-
sive sign convention to determine whether the power equation for each
component is +vi or ¡vi. Visualize the current arrow aligned with the
voltage polarity markings; then, the current arrow points to the correct
sign. The result is the partially completed table shown below:

Component v (V) i (A) Equation p (W)
A 9 3 +vi
B ¡6 ¡4 ¡vi
C 10 3 ¡vi
D 1 ¡7 +vi
E 5 4 ¡vi
F ¡2 ¡3 +vi
G 12 ¡4 ¡vi
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4. Now substitute the values for voltage and current from Columns 2 and
3 into the equation in Column 4, paying close attention to all signs.
The resulting value for the power should be placed in Column 5. The
completed table is shown below:

Component v (V) i (A) Equation p (W)
A 9 3 +vi 27
B ¡6 ¡4 ¡vi ¡24
C 10 3 ¡vi ¡30
D 1 ¡7 +vi ¡7
E 5 4 ¡vi ¡20
F ¡2 ¡3 +vi 6
G 12 ¡4 ¡vi 48

5. Finally, we use the completed table to determine whether the power is
balanced by summing the power values in Column 5:

27 + (¡24) + (¡30) + (¡7) + (¡20) + 6 + 48 = 0 W

As we expected, the power balances.

Now try using the power balance method for the practice problems below.
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Figure 2: The circuit for Power Balance Practice Problem 1

Power Balance Practice Problem 1

Determine whether or not the power balances for the circuit in Fig. 2.

1. The table is shown below, with columns labeled and six rows to accom-
modate the six components in Fig.2.

2. Fill in Columns 1, 2, and 3 by identifying the component in Column 1,
copying its voltage from Fig. 2 into Column 2, and copying its current
from Fig. 2 into Column 3.

3. Determine whether the power equation for each component is +vi or
¡vi. Place the appropriate equation in Column 4.

4. Substitute the values for voltage and current from Columns 2 and 3
into the equation in Column 4 and place the resulting value for the
power in Column 5 to complete the table.

5. Use the completed table to determine whether the power is balanced
by summing the power values in Column 5.

Component v (V) i (A) Equation p (W)
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Figure 3: The circuit for Power Balance Practice Problem 2

Power Balance Practice Problem 2

Determine whether or not the power balances for the circuit in Fig. 3.

1. The table is shown below, with columns labeled and six rows to accom-
modate the six components in Fig.3.

2. Fill in Columns 1, 2, and 3 by identifying the component in Column 1,
copying its voltage from Fig. 3 into Column 2, and copying its current
from Fig. 3 into Column 3.

3. Determine whether the power equation for each component is +vi or
¡vi. Place the appropriate equation in Column 4.

4. Substitute the values for voltage and current from Columns 2 and 3
into the equation in Column 4 and place the resulting value for the
power in Column 5 to complete the table.

5. Use the completed table to determine whether the power is balanced
by summing the power values in Column 5.

Component v (V) i (A) Equation p (W)
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Figure 4: The circuit for Power Balance Practice Problem 3

Power Balance Practice Problem 3

Determine whether or not the power balances for the circuit in Fig. 4.

1. The table is shown below, with columns labeled and six rows to accom-
modate the six components in Fig.4.

2. Fill in Columns 1, 2, and 3 by identifying the component in Column 1,
copying its voltage from Fig. 4 into Column 2, and copying its current
from Fig. 4 into Column 3.

3. Determine whether the power equation for each component is +vi or
¡vi. Place the appropriate equation in Column 4.

4. Substitute the values for voltage and current from Columns 2 and 3
into the equation in Column 4 and place the resulting value for the
power in Column 5 to complete the table.

5. Use the completed table to determine whether the power is balanced
by summing the power values in Column 5.

Component v (V) i (A) Equation p (W)
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Figure 5: The circuit for Power Balance Example 2

Power Balance Example 2

We know that one sign error exists in the circuit in Fig. 5. Create a table to
show that the power does not balance. Use the table to determine where the
error exists, and correct the error.

Solution

1. The ¯ve column table is shown below, with the columns labeled. We
have eight rows in the table to accommodate the eight circuit compo-
nents in Fig. 5.

Component v (V) i (A) Equation p (W)

2. We ¯ll in Columns 1, 2, and 3 by identifying the component in Column
1, copying its voltage from Fig. 5 into Column 2, and copying its current
from Fig. 5 into Column 3. The result is the partially completed table
shown below:
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Component v (V) i (A) Equation p (W)
A 12 ¡3
B 28 ¡3
C 18 3
C 10 5
C 12 10
C ¡27 ¡15
G 17 ¡8
H 15 7

3. Now, pay careful attention to the voltage polarity and current direc-
tion for each component, and use this information together with the
passive sign convention to determine whether the power equation for
each component is +vi or ¡vi. The result is the partially completed
table shown below:

Component v (V) i (A) Equation p (W)
A 12 ¡3 +vi
B 28 ¡3 +vi
C 18 3 +vi
D 10 5 ¡vi
E 12 10 ¡vi
F ¡27 ¡15 +vi
G 17 ¡8 +vi
H 15 7 ¡vi

4. Now substitute the values for voltage and current from Columns 2 and
3 into the equation in Column 4, paying close attention to all signs.
Place the resulting value for the power in Column 5. The completed
table is shown below:

Component v (V) i (A) Equation p (W)
A 12 ¡3 +vi ¡36
B 28 ¡3 +vi ¡84
C 18 3 +vi 54
D 10 5 ¡vi ¡50
E 12 10 ¡vi ¡120
F ¡27 ¡15 +vi 405
G 17 ¡8 +vi ¡136
H 15 7 ¡vi ¡105

5. Use the completed table to determine whether the power is balanced
by summing the power values in Column 5:

(¡36)+(¡84)+54+(¡50)+(¡120)+405+(¡136)+(¡105) = ¡72 W
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The power does not balance, because there is a sign error in Fig. 5.
One way to ¯nd the sign error is to divide the sum of the power values
by 2. This works because a single sign error causes a power value to
have a positive sign instead of a negative sign (or vice versa), so the
power is added instead of subtracted (or vice versa) and the sum of
the power values is then twice the power whose sign is in error. In
this example, half the sum of the power values is ¡72=2 = ¡36 W,
which is the power associated with component A. Looking at Fig. 5 it
is easy to see that the current value assigned to component A should
be +3A, to ¡3A. This makes the current in component A consistent
with the currents assigned to components B and C which are in series
with component A and must have the same current. Thus, the power
for component A is +36W; when we sum the power values we get

36 + (¡84) + 54 + (¡50) + (¡120) + 405 + (¡136) + (¡105) = 0 W

so now the power balances.

Now try using the power balance method for the practice problems below,
each of which contains a single sign error. When the power does not balance,
identify the component containing the sign error and correct the error.
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Figure 6: The circuit for Power Balance Practice Problem 4

Power Balance Practice Problem 4

Determine whether or not the power balances for the circuit in Fig. 6.

1. The table is shown below, with columns labeled and eight rows to
accommodate the eight components in Fig.6.

2. Fill in Columns 1, 2, and 3 by identifying the component in Column 1,
copying its voltage from Fig. 6 into Column 2, and copying its current
from Fig. 6 into Column 3.

3. Determine whether the power equation for each component is +vi or
¡vi. Place the appropriate equation in Column 4.

4. Substitute the values for voltage and current from Columns 2 and 3
into the equation in Column 4 and place the resulting value for the
power in Column 5 to complete the table.

5. Use the completed table to determine whether the power is balanced by
summing the power values in Column 5. If the power is not balanced,
determine which component has a sign error and correct the error.
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Component v (V) i (A) Equation p (W)
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Figure 7: The circuit for Power Balance Practice Problem 5

Power Balance Practice Problem 5

Determine whether or not the power balances for the circuit in Fig. 7.

1. The table is shown below, with columns labeled and eight rows to
accommodate the eight components in Fig.7.

2. Fill in Columns 1, 2, and 3 by identifying the component in Column 1,
copying its voltage from Fig. 7 into Column 2, and copying its current
from Fig. 7 into Column 3.

3. Determine whether the power equation for each component is +vi or
¡vi. Place the appropriate equation in Column 4.

4. Substitute the values for voltage and current from Columns 2 and 3
into the equation in Column 4 and place the resulting value for the
power in Column 5 to complete the table.

5. Use the completed table to determine whether the power is balanced by
summing the power values in Column 5. If the power is not balanced,
determine which component has a sign error and correct the error.
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Component v (V) i (A) Equation p (W)
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Figure 8: The circuit for Power Balance Practice Problem 6

Power Balance Practice Problem 6

Determine whether or not the power balances for the circuit in Fig. 8.

1. The table is shown below, with columns labeled and eight rows to
accommodate the eight components in Fig.8.

2. Fill in Columns 1, 2, and 3 by identifying the component in Column 1,
copying its voltage from Fig. 8 into Column 2, and copying its current
from Fig. 8 into Column 3.

3. Determine whether the power equation for each component is +vi or
¡vi. Place the appropriate equation in Column 4.

4. Substitute the values for voltage and current from Columns 2 and 3
into the equation in Column 4 and place the resulting value for the
power in Column 5 to complete the table.

5. Use the completed table to determine whether the power is balanced by
summing the power values in Column 5. If the power is not balanced,
determine which component has a sign error and correct the error.
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Component v (V) i (A) Equation p (W)
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Reading

² Section 1.3 | passive sign convention

² Section 1.4 | power; interpreting the sign of power

² Section 1.7 | KVL and KCL; currents in series components, voltage
across parallel components

Additional Problems

² 1.17 | 1.19

² 1.21 | 1.27

Solutions

² Power Balance Practice Problem 1

48¡ 120¡ 570 + 120 + 342 + 180 = 0W

² Power Balance Practice Problem 2

900¡ 900¡ 300¡ 1800 + 1980 + 120 = 0W

² Power Balance Practice Problem 3

240 + 100 + 30¡ 120 + 30¡ 280 = 0W

² Power Balance Practice Problem 4

30 + 60¡ 55¡ 30 + 90¡ 150 + 351¡ 176 = 120W

The current in component B should be ¡3A.
² Power Balance Practice Problem 5

20¡ 18¡ 6¡ 45 + 119 + 24¡ 30¡ 16 = 48W
The current in component F should be ¡2A.

² Power Balance Practice Problem 6

¡900 + 125 + 600¡ 2600 + 275 + 750 + 200¡ 250 = ¡1800W
The current in component A should be ¡15A.
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Combining Resistors in Series
and in Parallel

We can combine resistors in series and in parallel to reduce the number of
resistors in a circuit, which often simpli¯es any analysis we wish to perform
on the circuit. Resistors are in series when they are connected end-to-end
and have exactly the same current. Resistors are in parallel when they are
connected at two points and have exactly the same voltage drop. Be sure
to check your circuit carefully to be sure that the conditions are satis¯ed for
series or parallel connections before combining resistors.
The best way to combine resistors in series and in parallel is to make the

combinations one step at a time, redrawing the circuit after each step. You
are less likely to make a mistake if you take a methodical approach and take
the time to redraw the circuit. We propose a four step method, as follows:

1. Draw the simpli¯ed circuit you expect to construct once all appropriate
resistors are combined in series and in parallel. This simpli¯ed circuit
should contain any components whose voltages or currents were sought
in the original circuit.

2. Starting from the original circuit, make a combinations of resistors in
series or in parallel, one step at a time. Redraw the circuit after each
step. Make sure that any components whose voltages or currents were
sought in the original circuit remain in each of your drawings. The
last combination you make should result in a circuit that looks like the
simpli¯ed circuit from Step 1.

3. Use the simpli¯ed circuit to calculate any voltages or currents speci¯ed
in the original circuit. Usually these calculations involve a simple cir-
cuit analysis technique, such as Ohm's law, current division, or voltage
division.

4. Check your solution. To do this, redraw the original circuit and label
it with the voltages or currents you calculated in Step 3. Use these
values to calculate the voltages or currents for the remaining compo-
nents in the circuit. Finally, calculate the power for each component
and con¯rm that the power balances.

We illustrate this method with the two examples that follow.
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Figure 1: The circuit for Combining Resistors Example 1

Figure 2: The circuit for Combining Resistors Example 1, with all resistors
combined into one equivalent.

Combining Resistors Example 1

Combine resistors in series and in parallel to simplify the circuit in Fig. 1 so
it is easy to calculate the current i.

Solution

1. We want to calculate the current i °owing in the voltage source in
Fig. 1. Therefore we can combine all of the resistors in this ¯gure into
one equivalent resistor, as seen in Fig. 2.

2. It is usually best to combine the resistors working from one side of the
circuit to the other. We will start on the right side of this circuit, as
that is the furthest from the location of the current we wish to calculate.
We see that the 10− resistor and the 14− resistor are connected end-
to-end, so have the same current °owing through them. Thus they are
in series, so they can be combined into a single resistor whose value is
10 + 14 = 24−. The resulting simpli¯ed circuit is shown in Fig. 3.

Contining from the right side of Fig. 3 we see that the 8− resistor and
the 24− resistor are connected at both ends, so have the same voltage
drop across them. Thus they are in parallel, so can be combined into
a single resistor whose value is (8)(24)=(8 + 24) = 6−. The resulting
simpli¯ed circuit is shown in Fig. 4.
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Figure 3: The result of combining the 10− and 14− resistors from Fig. 1.

Figure 4: The result of combining the 8− and 14− resistors from Fig. 3.

Continuing with the simpli¯ed circuit in Fig. 4 we see that both 6−
resistors and the 4− resistor are connected end-to-end, so have the same
current °owing through them. This means that these three resistors
are in series and can be combined into one equivalent resistor whose
value is 6 + 6 + 4 = 16−. The resulting simpli¯ed circuit is shown in
Fig. 5. Note that Fig. 5 is exactly the same as Fig. 2 and that we now
have calculated the equivalent resistance seen by the voltage source.

3. We can easily calculate the current in the voltage source in Fig. 4 using
Ohm's law:

i = 10V=16− = 625 mA

4. We check our result by redrawing the original circuit with the current
drawn from the voltage source indicated, as seen in Fig. 6. Using

Figure 5: The result of combining all of the resistors from Fig. 4.
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Figure 6: The original circuit with all currents calculated, ready to calculate
power.

this current and current division, we can calculate the currents in all
remaining components, also shown in Fig. 6:

i6− = i = 625 mA (in series with the voltage source);
i4− = i = 625 mA (in series with the voltage source);
i8− = (24)(0:625)=(32) = 468:75 mA (current division);
i10− = 625¡ 468:75 = 156:25 mA (KCL);
i14− = i10− = 156:25 mA (in series with the 10− resistor);

Now we can use these currents to calculate the power for each element:

p10V = ¡vi = (10)(0:625)) = ¡6250 mW;
p6− = i2R = 0:6252(6) = 2343:75 mW;
p4− = i2R = 0:6252(4) = 1562:5 mW;
p8− = i2R = 0:468752(8) = 1757:813 mW;
p10− = i2R = 0:156252(10) = 244:141 mW;
p14− = i2R = 0:156252(14) = 341:797 mW;

The sum of the powers is zero, con¯rming that our original calculation
for the current i was correct.

Let's consider one more example before practicing these resistor combi-
nation techniques.
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Figure 7: The circuit for Combining Resistors Example 2

Figure 8: The circuit for Combining Resistors Example 2, with all but one
of the resistors combined into one equivalent, maintaining the resistor with
the unknown voltage v.

Combining Resistors Example 2

Combine resistors in series and in parallel to simplify the circuit in Fig. 7 so
it is easy to calculate the voltage v.

Solution

1. We want to calculate the voltage drop across a speci¯c resistor, so we
cannot combine this resistor with any others. If we do, we will lose
the component across which the voltage v is de¯ned. If possible, we
would like to combine all of the remaining resistors in the circuit into
one equivalent resistor. The circuit would then look like the one shown
in Fig. 8. This circuit is easily analyzed using voltage division to ¯nd
the requested voltage v.

2. Now we try to ¯nd resistors in series or in parallel. We see that the
10− resistor and the 14− resistor are connected end-to-end, so have the
same current °owing through them. Thus they are in series, so they
can be combined into a single resistor whose value is 10 + 14 = 24−.
The resulting simpli¯ed circuit is shown in Fig. 9.

In Fig. 3 we see that the 12− resistor and the 24− resistor are connected
at both ends, so have the same voltage drop across them. Thus they
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Figure 9: The result of combining the 10− and 14− resistors from Fig. 7.

Figure 10: The result of combining the 12− and 24− resistors from Fig. 9.

are in parallel, so can be combined into a single resistor whose value is
(12)(24)=(12 + 24) = 8−. The resulting simpli¯ed circuit is shown in
Fig. 10.

Continuing with the simpli¯ed circuit in Fig. 10 we see that all of the
components are connected end-to-end, and thus are in series. Any time
components are in series we can rearrange their order without having
any e®ect on the circuit. We make a rearrangement to place the 8−
resistor next to the 4− resistor, as shown in Fig. 11. Remember that
rearranging can also be performed with parallel connected components,
as long as the parallel structure is maintained.

The ¯nal step is to combine the 8− resistor and the 4− resistor. The

Figure 11: The result of rearranging the series-connected components in
Fig. 10.
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Figure 12: The result of combining the 8− and 4− resistors in Fig. 11.

Figure 13: The original circuit with all currents calculated, ready to calculate
power.

result is a 8 + 4 = 12− resistor, shown in Fig. 12.

3. Now we can use voltage division to calculate the voltage v for the circuit
in Fig. 12:

v =
8−

8−+ 12−
(¡20V ) = ¡8 V

4. We check our result by redrawing the original circuit with the current
drawn from the voltage source indicated, as seen in Fig. 13. Using
this voltage we can calculate the current in the 8− resistor and in
the voltage source and 4! resistor in series with it. We can then use
current division to calculate the currents in all remaining components,
also shown in Fig. 13:

i8− = ¡8=8 = ¡1 A (Ohm's law);
i20V = i8− = ¡1 A (in series with the 8− resistor);
i4− = i8− = ¡1 A (in series with the 8− resistor);
i14− = (12)(¡1)=(36) = ¡1=3 A (current division);
i10− = i14− = ¡1=3 A (in series with the 14− resistor);
i12− = ¡1 + 1=3 = ¡2=3 A (KCL);
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Now we can use these currents to calculate the power for each element:

p24V = vi = (20)(¡1)) = ¡20 W;
p8− = i2R = 12(8) = 8 W;
p4− = i2R = 12(4) = 4 W;
p10− = i2R = (1=3)2(10) = 10=9 W;
p14− = i2R = (1=3)2(14) = 14=9 W;
p12− = i2R = (2=3)2(12) = 48=9 W;

The sum of the powers is zero, con¯rming that our original calculation
for the current v was correct.

Now you are ready to practice these circuit simpli¯cation techniques in
the problems that follow.
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Figure 14: The circuit for Combining Resistors Practice Problem 1.

Combining Resistors Practice Problem 1

Find the voltage v for the circuit in Fig. 14.

1. In the space below, draw the simpli¯ed circuit that will result from
series and parallel combinations of resistors. Be sure that the voltage
v appears in this simpli¯ed circuit.

2. From the original circuit, combine resistors in series and in parallel, one
step at a time, redrawing the circuit after each step. Remember that
you can reorder components in series or components in parallel without
a®ecting the circuit, if that helps you see further simpli¯cations.
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Continue the simpli¯cations below.

3. Your ¯nal circuit should match the circuit you drew in Step 1; redraw
it here and use it to calculate v.

4. Redraw the original circuit, placing the value of v in your drawing. Use
that value of v to calculate currents for all other components. Then
use these values to calculate power for each component, and con¯rm
that the power balances.
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Figure 15: The circuit for Combining Resistors Practice Problem 2.

Combining Resistors Practice Problem 2

Find the current v for the circuit in Fig. 15.

1. In the space below, draw the simpli¯ed circuit that will result from
series and parallel combinations of resistors. Be sure that the current
v appears in this simpli¯ed circuit.

2. From the original circuit, combine resistors in series and in parallel, one
step at a time, redrawing the circuit after each step. Remember that
you can reorder components in series or components in parallel without
a®ecting the circuit, if that helps you see further simpli¯cations.
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Continue the simpli¯cations below.

3. Your ¯nal circuit should match the circuit you drew in Step 1; redraw
it here and use it to calculate v.

4. Redraw the original circuit, placing the value of v in your drawing. Use
that value of v to calculate currents for all other components. Then
use these values to calculate power for each component, and con¯rm
that the power balances.
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Figure 16: The circuit for Combining Resistors Practice Problem 3.

Combining Resistors Practice Problem 3

Find the current i for the circuit in Fig. 16.

1. In the space below, draw the simpli¯ed circuit that will result from
series and parallel combinations of resistors. Be sure that the current
i appears in this simpli¯ed circuit.

2. From the original circuit, combine resistors in series and in parallel, one
step at a time, redrawing the circuit after each step. Remember that
you can reorder components in series or components in parallel without
a®ecting the circuit, if that helps you see further simpli¯cations.
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Continue the simpli¯cations below.

3. Your ¯nal circuit should match the circuit you drew in Step 1; redraw
it here and use it to calculate i.

4. Redraw the original circuit, placing the value of i in your drawing. Use
that value of i to calculate currents for all other components. Then use
these values to calculate power for each component, and con¯rm that
the power balances.
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Figure 17: The circuit for Combining Resistors Practice Problem 4.

Combining Resistors Practice Problem 4

Find the current i for the circuit in Fig. 17.

1. In the space below, draw the simpli¯ed circuit that will result from
series and parallel combinations of resistors. Be sure that the current
i appears in this simpli¯ed circuit.

2. From the original circuit, combine resistors in series and in parallel, one
step at a time, redrawing the circuit after each step. Remember that
you can reorder components in series or components in parallel without
a®ecting the circuit, if that helps you see further simpli¯cations.
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Continue the simpli¯cations below.

3. Your ¯nal circuit should match the circuit you drew in Step 1; redraw
it here and use it to calculate i.

4. Redraw the original circuit, placing the value of i in your drawing. Use
that value of i to calculate currents for all other components. Then use
these values to calculate power for each component, and con¯rm that
the power balances.
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Figure 18: The circuit for Combining Resistors Practice Problem 5.

Combining Resistors Practice Problem 5

Find the voltage v for the circuit in Fig. 18.

1. In the space below, draw the simpli¯ed circuit that will result from
series and parallel combinations of resistors. Be sure that the voltage
v appears in this simpli¯ed circuit.

2. From the original circuit, combine resistors in series and in parallel, one
step at a time, redrawing the circuit after each step. Remember that
you can reorder components in series or components in parallel without
a®ecting the circuit, if that helps you see further simpli¯cations.
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Continue the simpli¯cations below.

3. Your ¯nal circuit should match the circuit you drew in Step 1; redraw
it here and use it to calculate v.

4. Redraw the original circuit, placing the value of v in your drawing. Use
that value of v to calculate currents for all other components. Then
use these values to calculate power for each component, and con¯rm
that the power balances.
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Figure 19: The circuit for Combining Resistors Practice Problem 6.

Combining Resistors Practice Problem 6

Find the current i for the circuit in Fig. 19.

1. In the space below, draw the simpli¯ed circuit that will result from
series and parallel combinations of resistors. Be sure that the current
i appears in this simpli¯ed circuit.

2. From the original circuit, combine resistors in series and in parallel, one
step at a time, redrawing the circuit after each step. Remember that
you can reorder components in series or components in parallel without
a®ecting the circuit, if that helps you see further simpli¯cations.
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Continue the simpli¯cations below.

3. Your ¯nal circuit should match the circuit you drew in Step 1; redraw
it here and use it to calculate i.

4. Redraw the original circuit, placing the value of i in your drawing. Use
that value of i to calculate currents for all other components. Then use
these values to calculate power for each component, and con¯rm that
the power balances.
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Reading

² in Introductory Circuits for Electrical and Computer Engineering:
{ Section 1.6 | Ohm's law

{ Section 1.7 | KVL and KCL

{ Section 2.1 | resistors in series and in parallel

{ Section 2.2 | voltage division and current division

² in Electric Circuits, sixth edition:
{ Section 2.2 | Ohm's law

{ Section 2.4 | KVL and KCL

{ Section 3.1 | resistors in series

{ Section 3.2 | resistors in parallel

{ Section 3.3 | voltage division

{ Section 3.4 | current division

² Workbook section | Power Balancing in DC Circuits

Additional Problems

² in Introductory Circuits for Electrical and Computer Engineering:
{ 2.6 | 2.8

² in Electric Circuits, sixth edition:
{ 3.6 | 3.8

Solutions

² Combining Resistors Practice Problem 1:

Req = ((18k9) + 6 + 8)k(20 + 10) = 12− v = 60 V

.

² Combining Resistors Practice Problem 2:

Req = ((18 + 10)k21) + (12k4) = 15− i = 10 A

.
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² Combining Resistors Practice Problem 3:

Req = (((20k5) + 4)k8) + 6)k15 = 6− i = 3 A

.

² Combining Resistors Practice Problem 4:

Req = ((3k6) + 4 + 6)k12 = 6− i = ¡6 A

.

² Combining Resistors Practice Problem 5:

Req = (((15k30) + 10)k20) + 12 + 8 = 30− v = 90 V

.

² Combining Resistors Practice Problem 6:

Req = ((18 + 12)k6k20) + 8 = 12− i = 2 A

.
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Node Voltage Method

The node voltage method provides a systematic means to specify the equa-
tions needed to solve a circuit. The term "solve a circuit" means to ¯nd
all of the voltages and all of the currents for all of the components in the
circuit.
The node voltage method uses the essential nodes in a circuit. Remem-

ber that the essential nodes are the points in the circuit where three or more
circuit elements are connected.
The node voltage method usesKCL equations that are written at certain

essential nodes. Recall that KCL states that the sum of all of the currents
at a node is zero.
The node voltage method is comprised of the following steps:

1. Identify all of the essential nodes in the circuit. To do this we will place
a large black dot at each essential node.

2. Choose one of the essential nodes as the reference node. We will use a
special symbol to label the reference node.

3. Assign variable names to each of the non-reference essential nodes.
Each variable name represents the voltage drop between its node and
the reference node. We will use variable names like v1; va; v¢ and so
on.

4. Write a KCL equation at each of the non-reference essential nodes
where the voltage with respect to the reference node is unknown. We
will be methodical in writing these KCL equations, always summing
the currents leaving the node.

5. Write any supplemental equations that are needed. These equations
arise when there are dependent sources in the circuit, and when there
are voltage sources in the circuit.

6. Express all of the equations in standard form. The standard form we
use will allow our equations to be solved using a calculator, using a
matrix method such as Cramer's rule, or using a computer tool such
as MATLAB.
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Figure 1: The circuit for Node Voltage Example 1

7. Solve the equations and check your solution using a power balance. If
the power balances, use the solution to calculate the desired output
value for the circuit.

We begin with an example that contains only resistors and independent
current sources. Once you have mastered these types of circuits, we move
on to example circuits containing dependent current sources, and then to
circuits containing voltage sources.

Node Voltage Example 1

Using the node voltage method, ¯nd vo for the circuit in Fig. 1.

Solution

1. Identify the essential nodes. There are four points at which three or
more circuit elements connect, so there are four essential nodes. They
have been labeled with large black dots in Fig. 2.

2. Chose a reference node. The choice of the reference node is entirely
arbitrary; no matter which essential node is chosen, the voltages and
currents that result from the analysis will have the same values. You
should chose an essential node that makes the circuit analysis easier,
if possible. In the circuit in Fig. 2 we have chosen the bottom node as
the reference node, and labeled it with the symbol for circuit ground.
We chose this node because it is one of the two nodes associated with
vo, the voltage of interest.

3. Assign variable names to the non-reference essential nodes. This is
shown in Fig. 2. Note that we have labeled the center node vo, because
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Figure 2: The circuit in Fig. 1 with the essential nodes marked, the reference
node chosen, and the remaining essential nodes labeled.

it is the voltage we seek. Remember that these variable names represent
the voltage di®erence between the node being labeled and the reference
node.

4. Write a KCL equation at each non-reference essential node. We sum
the currents leaving each node. The equations are given below. Note
that since each node is a point at which three circuit components meet,
each KCL equation has three terms.

at v1: ¡5 + v1 ¡ vo
10

+ 2 = 0

at vo:
vo ¡ v1
10

+
vo
15
+
vo ¡ v2
9

= 0

at v2:
v2 ¡ vo
9

+
v2
7
¡ 2 = 0

Note that we have three unknowns, the three node voltages vo, v1, and
v2, and three equations in terms of those unknowns.

5. Write any supplemental equations. In this example, there are no sup-
plemental equations, since there are no dependent sources or voltage
sources in the circuit. Also, we already have a su±cient number of
equations to solve for all of the unknowns.

6. Express the equations in standard form. The form we use collects all
of the terms involving each of the unknowns on the left-hand side of
each equation, and collects the constants on the right-hand side of each
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Figure 3: The circuit for Node Voltage Example 1, solved.

equation. This is shown below:

at v1: v1

µ
1

10

¶
+ vo

µ
¡ 1
10

¶
+ v2 (0) = 3

at vo: v1

µ
¡ 1
10

¶
+ vo

µ
1

10
+
1

15
+
1

9

¶
+ v2

µ
¡1
9

¶
= 0

at v2: v1 (0) + vo

µ
¡1
9

¶
+ v2

µ
1

9
+
1

7

¶
= 2

Note that there are three terms on the left-hand side of each equa-
tion, one for each of the three unknown variables. Be sure to check
these equations against the KCL equations from the previous step to
be certain you know how to use the standard form.

7. Solve the equations and check your solution. When these equations are
input into a calculator, the solution is

v1 = 60 V; vo = 30 V; v2 = 21 V.

The circuit is repeated in Fig. 3 with the values of the node voltages
labeled, and the currents through each of the branches labeled. Re-
member that we can calculate the current through each resistor using
Ohm's law. Using the values in Fig. 3, we can calculate the power for
each component:

p5A = ¡vi = ¡(60)(5) = ¡300 W;
p2A = vi = (60¡ 21)(2) = 78 W;
p10− = v2=R = (60¡ 30)2=10 = 90 W;
p15− = v2=R = (30)2=15 = 60 W;
p9− = v2=R = (30¡ 21)2=9 = 9 W;
p7− = v2=R = (21)2=7 = 63 W;
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Thus, X
p = ¡300 + 78 + 90 + 60 + 9 + 63 = 0 W checks

The power balance veri¯es that we have the correct solution, so vo = 30
V.

Now try using the node voltage method for each of the practice problems
below.
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Figure 4: The circuit for Node Voltage Practice Problem 1.

Node Voltage Practice Problem 1

Find vo for the circuit in Fig. 4.

1. Identify the essential nodes by adding black dots to Fig. 4.

2. Choose a reference node by adding the ground symbol to Fig. 4.

3. Assign variable names to the non-reference essential nodes in Fig. 4.

4. Write a KCL equation at each non-reference essential node.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 5: The circuit for Node Voltage Practice Problem 2.

Node Voltage Practice Problem 2

Find io for the circuit in Fig. 5.

1. Identify the essential nodes by adding black dots to Fig. 5.

2. Choose a reference node by adding the ground symbol to Fig. 5.

3. Assign variable names to the non-reference essential nodes in Fig. 5.

4. Write a KCL equation at each non-reference essential node.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Figure 6: The circuit for Node Voltage Practice Problem 3.

Node Voltage Practice Problem 3

Find vo for the circuit in Fig. 6.

1. Identify the essential nodes by adding black dots to Fig. 6.

2. Choose a reference node by adding the ground symbol to Fig. 6.

3. Assign variable names to the non-reference essential nodes in Fig. 6.

4. Write a KCL equation at each non-reference essential node.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 7: The circuit for Node Voltage Practice Problem 4.

Node Voltage Practice Problem 4

Find io for the circuit in Fig. 7.

1. Identify the essential nodes by adding black dots to Fig. 7.

2. Choose a reference node by adding the ground symbol to Fig. 7.

3. Assign variable names to the non-reference essential nodes in Fig. 7.

4. Write a KCL equation at each non-reference essential node.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Figure 8: The circuit for Node Voltage Practice Problem 5.

Node Voltage Practice Problem 5

Find the power dissipated by the 10− resistor for the circuit in Fig. 8.

1. Identify the essential nodes by adding black dots to Fig. 8.

2. Choose a reference node by adding the ground symbol to Fig. 8.

3. Assign variable names to the non-reference essential nodes in Fig. 8.

4. Write a KCL equation at each non-reference essential node.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate p10−.
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Figure 9: The circuit for Node Voltage Example 2

Figure 10: The circuit in Fig. 9 with the essential nodes marked, the reference
node chosen, and the remaining essential nodes labeled.

Node Voltage Example 2

Using the node voltage method, ¯nd vo for the circuit in Fig. 9

Solution

1. Identify the essential nodes. There are three points at which three or
more circuit elements connect, so there are three essential nodes. They
have been labeled with large black dots in Fig. 10.

2. Chose a reference node. In the circuit in Fig. 10 we have chosen the
top right node as the reference node, and labeled it with the symbol for
circuit ground. We chose this node because it is one of the two nodes
associated with vo, the voltage of interest.

3. Assign variable names to the non-reference essential nodes. This is
shown in Fig. 10. Note that we have labeled the top left node vo,
because it is the voltage we seek. Remember that these variable names
represent the voltage di®erence between the node being labeled and the
reference node.

4. Write a KCL equation at each non-reference essential node. We sum
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the currents leaving each node. The equations are given below.

at vo: ¡5i¯ + vo ¡ v1
4

+
vo
1

= 0

at v1: 5i¯ +
v1 ¡ vo
4

+
v1
5
¡ 4 = 0

Note that we have three unknowns, the two node voltages vo and v1,
and the current i¯ that controls the dependent source. Yet we only have
two KCL equations. This means we have to specify a third equation.

5. Write any supplemental equations. This is where the third equation will
be developed. Whenever there are dependent sources in our circuit, we
will need to write a supplemental equation that de¯nes the voltage
or current used to control the dependent source in terms of the node
voltages in our circuit. This supplemental equation is also called a
constraint equation, because it constrains the relationship between
two or more unknowns in our circuit, so that one of the unknowns is
no longer an independent variable but rather is dependent on the other
independent variables in our circuit.

Notice that the controlling current i¯ is the current through the 5−
resistor, so we use Ohm's law to de¯ne this current in terms of the
voltage di®erence across the resistor and the resistance. The constraint
equation is thus

i¯ =
0¡ v1
5

The two KCL equations and this constraint equation now provide the
three equations needed to solve for the three unknowns in the circuit.

6. Express the equations in standard form. This is shown below:

at vo: i¯ (¡5) + v1

µ
¡1
4

¶
+ vo

µ
1

4
+ 1

¶
= 0

at v1: i¯ (5) + v1

µ
1

4
+
1

5

¶
+ vo

µ
¡1
4

¶
= 4

constraint: i¯ (1) + v1

µ
1

5

¶
+ vo (0) = 0

7. Solve the equations and check your solution. When these equations are
input into a calculator, the solution is

i¯ = 2 A; v1 = ¡10 V; vo = 6 V.

The circuit is repeated in Fig. 11 with the values of the node voltages
labeled, and the currents through each of the branches labeled. Re-
member that we can calculate the current through each resistor using

17



Figure 11: The circuit for Node Voltage Example 2, solved.

Ohm's law. Using the values in Fig. 11, we can calculate the power for
each component:

p5i¯ = vi = (¡10¡ 6)[5(2)] = ¡160 W;
p4A = vi = [0¡ (¡10)](4) = 40 W;
p4− = v2=R = [6¡ (¡10)]2=4 = 64 W;
p1− = v2=R = (6¡ 0)2=1 = 36 W;
p5− = v2=R = (¡10¡ 0)2=5 = 20 W;

Thus, X
p = ¡160 + 40 + 64 + 36 + 20 = 0 W checks

The power balance veri¯es that we have the correct solution, so vo =
6 V.

Now try using the node voltage method as it applies to circuits with
dependent sources for each of the practice problems below.
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Figure 12: The circuit for Node Voltage Practice Problem 6.

Node Voltage Practice Problem 6

Find io for the circuit in Fig. 12.

1. Identify the essential nodes by adding black dots to Fig. 12.

2. Choose a reference node by adding the ground symbol to Fig. 12.

3. Assign variable names to the non-reference essential nodes in Fig. 12.

4. Write a KCL equation at each non-reference essential node.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Figure 13: The circuit for Node Voltage Practice Problem 7.

Node Voltage Practice Problem 7

Find vo for the circuit in Fig. 13.

1. Identify the essential nodes by adding black dots to Fig. 13.

2. Choose a reference node by adding the ground symbol to Fig. 13.

3. Assign variable names to the non-reference essential nodes in Fig. 13.

4. Write a KCL equation at each non-reference essential node.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 14: The circuit for Node Voltage Practice Problem 8.

Node Voltage Practice Problem 8

Find the power delivered to the circuit in Fig. 14.

1. Identify the essential nodes by adding black dots to Fig. 14.

2. Choose a reference node by adding the ground symbol to Fig. 14.

3. Assign variable names to the non-reference essential nodes in Fig. 14.

4. Write a KCL equation at each non-reference essential node.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate the power delivered to the circuit.
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Figure 15: The circuit for Node Voltage Practice Problem 9.

Node Voltage Practice Problem 9

Find io for the circuit in Fig. 15.

1. Identify the essential nodes by adding black dots to Fig. 15.

2. Choose a reference node by adding the ground symbol to Fig. 15.

3. Assign variable names to the non-reference essential nodes in Fig. 15.

4. Write a KCL equation at each non-reference essential node.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Figure 16: The circuit for Node Voltage Practice Problem 10.

Node Voltage Practice Problem 10

Find vo for the circuit in Fig. 16.

1. Identify the essential nodes by adding black dots to Fig. 16.

2. Choose a reference node by adding the ground symbol to Fig. 16.

3. Assign variable names to the non-reference essential nodes in Fig. 16.

4. Write a KCL equation at each non-reference essential node. (Hint |
interchange the positions of the 5 V source and the 2− resistor.)

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.

27



6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.

28



Figure 17: The circuit for Node Voltage Example 3

Figure 18: The circuit in Fig. 17 with the essential nodes marked, the refer-
ence node chosen, the remaining essential nodes labeled, and the supernode
identi¯ed.

Node Voltage Example 3

Using the node voltage method, ¯nd vo for the circuit in Fig. 17

Solution

1. Identify the essential nodes. There are ¯ve points at which three or
more circuit elements connect, so there are ¯ve essential nodes. They
have been labeled with large black dots in Fig. 18.

2. Chose a reference node. In the circuit in Fig. 18 we have chosen the
top right node as the reference node, and labeled it with the symbol for
circuit ground. We chose this node because it is one of the two nodes
associated with vo, the voltage of interest.

3. Assign variable names to the non-reference essential nodes. This is
shown in Fig. 18. Note that the node labeled v2 could also have been
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labeled vo, as this is the node that de¯nes the desired output with
respect to the reference node.

4. Write a KCL equation at each non-reference essential node. We modify
this step whenever the circuit has a voltage source between two essential
nodes. This circuit has two such voltage sources. Consider ¯rst the 10
V source. Since this voltage source is between a non-reference essential
node (the node labeled v3) and the reference node, it establishes a
voltage of 10 V at the non-reference essential node. Thus, v3 = 10 V,
so there is no need to write a KCL equation at the node labeled v3.

Now consider the dependent voltage source. It, too, is between two
essential nodes, but now neither node is the reference node. Any time
a voltage source is between two non-reference essential nodes, it con-
strains the di®erence between the two voltages and forms a supernode.
To deal with the supernode, we write one KCL equation for the supern-
ode, and one constraint equation de¯ning the relationship between the
two node voltages that comprise the supernode. The supernode is iden-
ti¯ed by the dashed area in Fig. 18.

Thus, in this step we write a KCL equation at each non-reference es-
sential node whose voltage is not known, and at each supernode. For
the circuit in Fig. 18, there is one known node voltage, two node volt-
ages that comprise the supernode, and one remaining unknown node
voltage. Thus we write two KCL equations, given below.

at v2:
v2 ¡ v1
2

+
v2
5
+
v2 ¡ 10
10

= 0

at supernode: ¡15 + v1 ¡ v2
2

+
v4 ¡ 10
1

+
v4
3

= 0

5. Write any supplemental equations. Since there is a dependent source in
the circuit, we know we will need at least one supplemental equation.
This equation de¯nes the quantity used to control the dependent source,
i¯ in terms of the labeled node voltages. Thus, the equation is

i¯ =
v1 ¡ v2
2

But we are not ¯nished yet! Remember that the existence of a su-
pernode means that two of the essential nodes are constrained by the
voltage source in between these nodes. Therefore, every time we de¯ne
a supernode in a circuit, we should expect to write a supplemental,
or constraint, equation that relates the two essential nodes contained
by the supernode. In this circuit, the supernode contains the essential
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Figure 19: The circuit for Node Voltage Example 3, solved.

nodes labeled v1 and v4, and the constraint equation de¯nes the limita-
tion on the voltage di®erence between these two nodes. The constraint
equation is

3i¯ = v1 ¡ v4
The two KCL equations and the two supplemental equations provide
the four independant equations needed to solve for our three unknown
essential node voltages (v1, v2, and v4 | remember that v3 = 10 V
because of the independent voltage source between v3 and the reference
node) and our unknown controlling current (i¯).

6. Express the equations in standard form. This is shown below:

at v2: v1

µ
¡1
2

¶
+ v2

µ
1

2
+
1

5
+
1

10

¶
+ v4 (0) + i¯ (0) = 1

at supernode: v1

µ
1

2

¶
+ v2

µ
¡1
2

¶
+ v4

µ
1 +

1

3

¶
+ i¯ (0) = 25

dep. source: v1

µ
¡1
2

¶
+ v2

µ
1

2

¶
+ v4 (0) + i¯ (1) = 0

supernode: v1 (¡1) + v2 (0) + v4 (1) + i¯ (3) = 0

7. Solve the equations and check your solution. When these equations are
input into a calculator, the solution is

v1 = 30 V; v2 = 20 V; v4 = 15 V; i¯ = 5A.

The circuit is repeated in Fig. 19 with the values of the node voltages
labeled, and the currents through each of the branches labeled. Re-
member that we can calculate the current through each resistor using
Ohm's law. Using the values in Fig. 19, we can calculate the power for
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each component:

p15A = ¡vi = ¡(15)(30) = ¡450 W;
pd:s: = vi = [3(5)](10) = 150 W;
p10V = vi = (6)(10) = 60 W;
p2− = i2R = (5)2(2) = 50 W;
p5− = i2R = (4)2(5) = 80 W;
p10− = i2R = (1)2(10) = 10 W;
p1− = i2R = (5)2(1) = 25 W;
p3− = i2R = (5)2(3) = 75 W;

Thus,X
p = ¡450 + 150 + 60 + 50 + 80 + 10 + 25 + 75 = 0 W checks

The power balance veri¯es that we have the correct solution, so vo = 20
V.

Now try using the node voltage method as it applies to circuits with
voltage sources between essential nodes for each of the practice problems
below.
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Figure 20: The circuit for Node Voltage Practice Problem 11.

Node Voltage Practice Problem 11

Find io for the circuit in Fig. 20.

1. Identify the essential nodes by adding black dots to Fig. 20.

2. Choose a reference node by adding the ground symbol to Fig. 20.

3. Assign variable names to the non-reference essential nodes in Fig. 20.

4. Write a KCL equation at each non-reference essential node for which
the voltage is not already known, and at each supernode.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Figure 21: The circuit for Node Voltage Practice Problem 12.

Node Voltage Practice Problem 12

Find vo for the circuit in Fig. 21.

1. Identify the essential nodes by adding black dots to Fig. 21.

2. Choose a reference node by adding the ground symbol to Fig. 21.

3. Assign variable names to the non-reference essential nodes in Fig. 21.

4. Write a KCL equation at each non-reference essential node for which
the voltage is not already known, and at each supernode.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 22: The circuit for Node Voltage Practice Problem 13.

Node Voltage Practice Problem 13

Find vo for the circuit in Fig. 22.

1. Identify the essential nodes by adding black dots to Fig. 22.

2. Choose a reference node by adding the ground symbol to Fig. 22.

3. Assign variable names to the non-reference essential nodes in Fig. 22.

4. Write a KCL equation at each non-reference essential node for which
the voltage is not already known, and at each supernode.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 23: The circuit for Node Voltage Practice Problem 14.

Node Voltage Practice Problem 14

Find the power delivered to the circuit in Fig. 23.

1. Identify the essential nodes by adding black dots to Fig. 23.

2. Choose a reference node by adding the ground symbol to Fig. 23.

3. Assign variable names to the non-reference essential nodes in Fig. 23.

4. Write a KCL equation at each non-reference essential node for which
the voltage is not already known, and at each supernode.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate the power delivered to the circuit.
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Figure 24: The circuit for Node Voltage Practice Problem 15.

Node Voltage Practice Problem 15

Find vo for the circuit in Fig. 24.

1. Identify the essential nodes by adding black dots to Fig. 24.

2. Choose a reference node by adding the ground symbol to Fig. 24.

3. Assign variable names to the non-reference essential nodes in Fig. 24.

4. Write a KCL equation at each non-reference essential node for which
the voltage is not already known, and at each supernode.

5. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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6. Express all of the equations in standard form.

7. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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pendent sources

{ Section 3.4 | supernodes

² in Electric Circuits, sixth edition:
{ Section 4.1 | terminology and de¯nitions

{ Section 4.2 | introduction to node voltage method

{ Section 4.3 | node voltage method with circuits containing de-
pendent sources

{ Section 4.4 | supernodes

² Workbook section | Power Balancing in DC Circuits

Additional Problems

² in Introductory Circuits for Electrical and Computer Engineering:
{ 3.2 | 3.13

{ 3.16 | 3.23

{ 3.25

² in Electric Circuits, sixth edition:
{ 4.2 | 4.13

{ 4.16 | 4.18

{ 4.20 | 4.26

Solutions

² Node Voltage Practice Problem 1 | with the lower node chosen as the
reference node, the node voltages are 70V, 82V, and 7V and vo = 7V.

² Node Voltage Practice Problem 2 | with the lower node chosen as the
reference node, the node voltages are 38V, 65V, and 14V and io = 3A.

² Node Voltage Practice Problem 3 | with the lower node chosen as the
reference node, the node voltages are 20V, 12V, and 50V and vo = 12V.
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² Node Voltage Practice Problem 4 | with the lower node chosen as the
reference node, the node voltages are 30V, 20V, and 12V and io = 1A.

² Node Voltage Practice Problem 5 | with the lower node chosen as the
reference node, the node voltages are 36V, 50V, and 40V and p10− =
10W.

² Node Voltage Practice Problem 6 | with the lower node chosen as the
reference node, the node voltages are 36V, 24V, and 16V and io = 2A.

² Node Voltage Practice Problem 7 | with the lower node chosen as the
reference node, the node voltages are 18V, 8V, and ¡7V and vo = ¡7V.

² Node Voltage Practice Problem 8 | with the lower node chosen as the
reference node, the node voltages are 64V, 40V, and 24V and pdelivered =
1000W.

² Node Voltage Practice Problem 9 | with the lower node chosen as the
reference node, the node voltages are 30V and 48V and io = 6A.

² Node Voltage Practice Problem 10 | with the lower node chosen as
the reference node, the node voltages are 20V and 10V and vo = 20V.

² Node Voltage Practice Problem 11 | with the lower node chosen as
the reference node, the node voltages are 25V and 50V and io = 5A.

² Node Voltage Practice Problem 12 | with the lower node chosen as the
reference node, the node voltages are 80V, 20V, and 60V and vo = 60V.

² Node Voltage Practice Problem 13 | with the lower node chosen as
the reference node, the node voltages are 20V, 40V, 52V, and 100V and
vo = ¡48V.

² Node Voltage Practice Problem 14 | with the lower node chosen as
the reference node, the node voltages are ¡40V, 20V, and 60V and
pdelivered = 2500V.

² Node Voltage Practice Problem 15 | with the lower node chosen as the
reference node, the node voltages are 25V, 15V, and 40V and vo = 40V.
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Mesh Current Method

The mesh current method is the companion of the node voltage method. The
mesh current method, like the node voltage method, provides a systematic
means to specify the equations needed to solve a circuit. Why do we have
two of these systematic methods? Because for a particular circuit, one of the
two methods might be easier to use, might give the desired result directly,
might involve writing and solving fewer equations, or might just appeal to
you more than the other method. With two methods you have a choice, and
you should think through the steps of each method before deciding which
one to use. Remember that once you have used one method to solve the
circuit, you can use the other method to check your solution, instead of or
in addition to using a power balance.
The mesh current method uses the meshes in a circuit. Remember that

a mesh is a loop in the circuit that does not contain any other loops. The
mesh current method uses KVL equations that are written for each of the
meshes in the circuit. Remember that KVL states the the sum of all of the
voltage drops around a loop is zero.
The mesh current method can be broken into the following steps:

1. Identify all of the meshes in the circuit. To do this we draw a curved
arrow to identify the direction of the current °owing in the mesh.

2. Assign a variable name to the current in each mesh. Place the vari-
able name next to the curved arrow that identi¯es the current and its
direction. Use variable names like i1, ia, i¯, and so on.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow. We will use the same clockwise direction for each
current arrow and thus will always sum the voltages in a clockwise
direction.

4. Write any supplemental equations that are needed. Supplemental equa-
tions will be needed when there are dependent sources in the circuit
and when there are current sources in the circuit.

5. Transform all of the equations into standard form. The standard form
will enable you to solve the equations on a calculator, to solve them
using a matrix method like Cramer's rule, or to solve them using a
computer tool like MATLAB.
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Figure 1: The circuit for Mesh Current Example 1

6. Solve the equations and check your solution using a power balance. If
the power balances, use the solution to calculate the desired output
value for the circuit.

First we present an example that contains only resistors and independent
voltage sources. Once you have mastered these types of circuits we move
on to circuits containing dependent voltage sources, and then to circuits
containing current sources.

Mesh Current Example 1

Using the mesh current method, ¯nd io for the circuit in Fig. 1

Solution

1. Identify all of the meshes in the circuit by drawing curved arrows in the
center of the mesh in the direction of the current °ow. The direction
of the current °ow is arbitrary, but to be consistent we will always
de¯ne the direction of current °ow as clockwise. The current arrows
are shown in Fig. 2.

2. Assign a variable name for each mesh current and label the current
arrow in each mesh. The chosen variable names are also shown in
Fig. 2. Remember that the mesh currents are the currents that exist
on the perimeter of each mesh. When a component belongs to only one
mesh, its current is the same as the mesh current. When a component
belongs to two meshes, its current is the sum of the mesh currents,
where the sum must take the mesh current directions into account.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow. It is a good idea to put a little \x" at the point on
the mesh where you start. In the left mesh, we will start just below
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Figure 2: The circuit for Mesh Current Example 1, with the mesh currents
de¯ned

the 30V source, and in the right mesh, we will start to the left of the
18V source.

left mesh: ¡30 + 10i1 + 3(i1 ¡ i2) + 8i2 = 0
right mesh: ¡18 + 2i2 + 1i2 + 3(i2 ¡ i1) = 0

Note that there are two unknowns, the two mesh currents i1 and i2,
and two equations in terms of those unknowns.

4. Write any supplemental equations. In this example there are no sup-
plemental equations, since there are no dependent sources or current
sources in the circuit. Also, we have already written a su±cient number
of equations to solve for all of the unknowns.

5. Place the equations in standard form. The form we use collects all
of the terms involving each of the unknowns on the left-hand side of
each equation, and collects the constants on the right-hand side of the
equation. The standard form for the mesh current equations is shown
below:

left mesh: i1(10 + 3 + 8) + i2(¡3) = 30
right mesh: i1(¡3) + i2(2 + 1 + 3) = 0

Note that there are two terms on the left-hand side of each equation,
one for each of the two unknown mesh currents, and each mesh current
variable appears in the same position in each equation. Be sure to
check your standard form equations against your original mesh current
equations to make sure you have not made an errors.

6. Solve the equations and check your solution. When these equations are
input into a calculator, the solution is

i1 = 2 A; i2 = 4 A
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Figure 3: The circuit for Mesh Current Example 1, solved

The circuit is repeated in Fig. 3 with the values of all the currents
through every component labeled. Using the values in Fig. 3 we can
calculate the power for each component:

p30V = ¡vi = ¡(30)(2) = ¡60 W;
p18V = ¡vi = ¡(18)(4) = ¡72 W;
p10− = i2R = 22(10) = 40 W;
p3− = i2R = 22(3) = 12 W;
p8− = i2R = 22(8) = 32 W;
p2− = i2R = 42(2) = 32 W;
p1− = i2R = 42(1) = 16 W;

Thus,X
p = ¡60¡ 72 + 40 + 12 + 32 + 32 + 16 = 0 W checks

The power balance veri¯es that we have the correct solution, so io =
i1 = 2 A.

Now try using the mesh current method for each of the practice problems
below.
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Figure 4: The circuit for Mesh Current Practice Problem 1.

Mesh Current Practice Problem 1

Find io for the circuit in Fig. 4.

1. Identify all of the meshes in the circuit by drawing a curved arrow
in the center of each mesh in Fig. 4 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 4.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Figure 5: The circuit for Mesh Current Practice Problem 2.

Mesh Current Practice Problem 2

Find io for the circuit in Fig. 5.

1. Identify all of the meshes in the circuit by drawing a curved arrow
in the center of each mesh in Fig. 5 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 5.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Figure 6: The circuit for Mesh Current Practice Problem 3.

Mesh Current Practice Problem 3

Find vo for the circuit in Fig. 6.

1. Identify all of the meshes in the circuit by drawing a curved arrow
in the center of each mesh in Fig. 6 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 6.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 7: The circuit for Mesh Current Practice Problem 4.

Mesh Current Practice Problem 4

Find the power dissipated in the 32− resistor for the circuit in Fig. 7.

1. Identify all of the meshes in the circuit by drawing a curved arrow
in the center of each mesh in Fig. 7 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 7.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate p32−.
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Figure 8: The circuit for Mesh Current Practice Problem 5.

Mesh Current Practice Problem 5

Find vo for the circuit in Fig. 8.

1. Identify all of the meshes in the circuit by drawing a curved arrow
in the center of each mesh in Fig. 8 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 8.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 9: The circuit for Mesh Current Example 2

Figure 10: The circuit for Mesh Current Example 2, with the mesh currents
de¯ned

Mesh Current Example 2

Using the mesh current method, ¯nd io for the circuit in Fig. 1

Solution

1. Identify all of the meshes in the circuit by drawing curved arrows in
the center of the mesh in the direction of the current °ow. As usual,
we de¯ne the direction of current °ow as clockwise. The current arrows
are shown in Fig. 10.

2. Assign a variable name for each mesh current and label the current
arrow in each mesh. The chosen variable names are also shown in
Fig. 10.

3. Write a KVL equation around each of the meshes in the direction of the
current arrow. In the left mesh, we will start just below the dependent
source, in the center mesh we start just to the left of the 22V source,
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and in the right mesh we will start to the left of the dependent source.

left mesh: ¡7iÁ + 2i1 + 3(i1 ¡ i2) = 0
center mesh: ¡22 + 4(i2 ¡ i3) + 5i2 + 3(i2 ¡ i1) = 0

right mesh: ¡v¢
3
+ 8i3 + 4(i3 ¡ i2) = 0

Note that there are ¯ve unknowns, the three mesh currents i1, i2, and
i3, the current iÁ that controls one dependent source and the voltage
v¢ that controls the other dependent source. Yet there are only three
KVL equations. This means we have to specify two more equations.

4. Write any supplemental equations. This is where the remaining two
equations will be developed. Whenever there are dependent sources in
the circuit, we will need to write a supplemental equation for each de-
pendent source that de¯nes the current or voltage used to control each
source in terms of the mesh currents in our circuit. These supplemental
equations are also called constraint equations because they constrain
the relationship between two or more unknowns in our circuit. Thus,
one of the unknowns is no longer an independent variable byt rather is
dependent on the other independent variables in the circuit.

Now turn to the circuit in Fig. 10. Notice that the controlling current iÁ
is the same as the mesh current i2. Thus, our ¯rst constraint equation
is

iÁ = i2

From the circuit we see that the controlling voltage v¢ is the voltage
drop across the 4− resistor. We use Ohm's Law to de¯ne that voltage
drop in terms of the current °owing through the resistor. The current
°owing through the resistor in the direction of the voltage drop must
be de¯ned in terms of the mesh currents, so is equal to i2 ¡ i3. Thus,
our second constraint equation is

v¢ = 4(i2 ¡ i3)

The three KVL equations and the two constraint equations now provide
the ¯ve equations needed to solve for the ¯ve unknowns in the circuit.

5. Place the equations in standard form. This is shown below:

left mesh: i1(2 + 3) + i2(¡3) + i3(0) + iÁ(¡7) + v¢(0) = 0
center mesh: i1(¡3) + i2(3 + 4 + 5) + i3(¡4) + iÁ(0) + v¢(0) = 22
right mesh: i1(0) + i2(¡4) + i3(4 + 8) + iÁ(0) + v¢(¡1=3) = 0
constraint: i1(0) + i2(1) + i3(0) + iÁ(¡1) + v¢(0) = 0
constraint: i1(0) + i2(¡4) + i3(4) + iÁ(0) + v¢(1) = 0
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Figure 11: The circuit for Mesh Current Example 2, solved

6. Solve the equations and check your solution. When these equations are
input into a calculator, the solution is

i1 = 10 A; i2 = 5 A; i3 = 2 A; iÁ = 5 A; v¢ = 12 V

The circuit is repeated in Fig. 11 with the values of all the currents
through every component labeled. Using the values in Fig. 11 we can
calculate the power for each component:

p7iÁ = ¡vi = ¡[7(5)](10) = ¡350 W;
p22V = ¡vi = ¡(22)(5) = ¡110 W;
pv¢=3 = ¡vi = ¡[12=3](2) = ¡8 W;
p2− = i2R = 102(2) = 200 W;
p3− = i2R = 52(3) = 75 W;
p5− = i2R = 52(5) = 125 W;
p4− = i2R = 32(4) = 36 W;
p8− = i2R = 22(8) = 32 W;

Thus,X
p = ¡350¡ 110¡ 8 + 200 + 75 + 125 + 36 + 32 = 0 W checks

The power balance veri¯es that we have the correct solution, so io =
i2 = 5 A.

Now try using the mesh current method for each of the practice problems
below.
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Figure 12: The circuit for Mesh Current Practice Problem 6.

Mesh Current Practice Problem 6

Find io for the circuit in Fig. 12.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 12 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 12.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Figure 13: The circuit for Mesh Current Practice Problem 7.

Mesh Current Practice Problem 7

Find vo for the circuit in Fig. 13.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 13 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 13.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 14: The circuit for Mesh Current Practice Problem 8.

Mesh Current Practice Problem 8

Find the power delivered in the circuit in Fig. 14.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 14 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 14.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate pdelivered.
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Figure 15: The circuit for Mesh Current Practice Problem 9.

Mesh Current Practice Problem 9

Find the power for the 15− resistor in the circuit in Fig. 15.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 15 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 15.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate p15−.
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Figure 16: The circuit for Mesh Current Practice Problem 10.

Mesh Current Practice Problem 10

Find vo in the circuit in Fig. 16.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 16 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 16.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 17: The circuit for Mesh Current Example 3

Figure 18: The circuit for Mesh Current Example 3, with the mesh currents
de¯ned.

Mesh Current Example 3

Using the mesh current method, ¯nd io for the circuit in Fig. 17

Solution

1. Identify all of the meshes in the circuit by drawing curved arrows in
the center of the mesh in the direction of the current °ow. As usual,
we de¯ne the direction of current °ow as clockwise. The current arrows
are shown in Fig. 18.

2. Assign a variable name for each mesh current and label the current
arrow in each mesh. The chosen variable names are also shown in
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Figure 19: The circuit for Mesh Current Example 3, with a known mesh
current and a supermesh.

Fig. 18.

3. Write a KVL equation around each of the meshes in the direction of the
current arrow. We modify this step whenever the circuit contains cur-
rent sources. The circuit in Fig. 18 has two current sources. Consider
¯rst the 6A current source. This current source is on the perimeter of
a mesh, meaning that the current source establishes the value of the
mesh current in this mesh. Thus, i1 = 6A, so there is no need to write
a KVL equation for this mesh.

Now consider the 8A current source. This source is shared between two
meshes, rather than being on the perimeter of a single mesh. Any time
a current source is shared between two meshes, the two meshes should
be combined to form a supermesh. Whenever a supermesh is present
in a circuit we will write one single KVL equation for the supermesh
and one constraint equation de¯ning the relationship between the two
mesh currents that form the supermesh. Figure 19 shows the known
value of the current in the top left mesh and identi¯es the path of the
supermesh with a dashed line.

Thus, in this step we write a KVL equation for each single mesh where
the current is not known and for each supermesh. For the circuit in
Fig. 19 we need only write the single KVL equation for the supermesh,
because the remaining mesh current is known. We start just to the left
of the dependent voltage source:

supermesh: 29i¯ + 8i2 + 6i3 + 5(i3 ¡ 6A) + 4(i2 ¡ 6A) = 0

4. Write any supplemental equations. Since there is a dependent source in
the circuit, we know we will need at least one supplemental equation.
This equation de¯nes the quantity used to control the dependent source,
i¯, in terms of the labeled mesh currents. Thus, the equation is

i¯ = 6A¡ i3
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Figure 20: The circuit for Mesh Current Example 3, solved

But there is a second supplemental, or constraint, equation due to the
presence of the supermesh. Remember that the current source shared
between the two meshes constrains the di®erence between these mesh
currents. The second constraint equation is thus

i3 ¡ i2 = 8 A

The single KVL equation and the two supplemental equations provide
the three equations needed to solve for the three unknowns | i2, i3,
and i¯. Remember that i1 = 6A because of the current source on the
perimeter of the top left mesh.

5. Solve the equations and check your solution. When these equations are
input into a calculator, the solution is

i2 = ¡4 A; i3 = 4 A; i¯ = 2 A

The circuit is repeated in Fig. 20 with the values of all the currents
through every component labeled. In addition, we have labeled the
voltage drop across each current source. The voltage drops were cal-
culated by writing a KVL equation for a mesh containing the current
source and treating the voltage drop across the current source as an
unknown. For example, to calculate the voltage drop across the 6A
current source, de¯ne the voltage drop as v6A (positive at the top) and
write a KVL equation for the top left mesh, starting just below the 6A
source and going clockwise:

¡v6A + (3−)(6A) + (4−)(10A) + (5−)(2A) = 0

Solving, we see that v6A = 68V, as indicated in Fig. 20. Using the
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values in Fig. 20 we can calculate the power for each component:

p6A = ¡vi = ¡(68)(6) = ¡408 W;
p8A = ¡vi = ¡(14)(8) = ¡112 W;
p29i¯ = vi = [29(2)](¡4) = ¡232 W;
p3− = i2R = 62(3) = 108 W;
p4− = i2R = 102(4) = 400 W;
p5− = i2R = 22(5) = 20 W;
p6− = i2R = 42(6) = 96 W;
p8− = i2R = 42(8) = 128 W;

Thus,X
p = ¡408¡ 112¡ 232+108+400+20+96+128 = 0 W checks

The power balance veri¯es that we have the correct solution, so io =
i2 = ¡4 A.

Now try using the mesh current method for each of the practice problems
below.
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Figure 21: The circuit for Mesh Current Practice Problem 11.

Mesh Current Practice Problem 11

Find the power delivered to the 18− resistor in the circuit in Fig. 21.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 21 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 21.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate p18−.
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Figure 22: The circuit for Mesh Current Practice Problem 12.

Mesh Current Practice Problem 12

Find io for the circuit in Fig. 22.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 22 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 22.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Figure 23: The circuit for Mesh Current Practice Problem 13.

Mesh Current Practice Problem 13

Find vo for the circuit in Fig. 23.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 23 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 23.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate vo.
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Figure 24: The circuit for Mesh Current Practice Problem 14.

Mesh Current Practice Problem 14

Find the power for the 80V source in the circuit in Fig. 24.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 24 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 24.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate p80V.
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Figure 25: The circuit for Mesh Current Practice Problem 15.

Mesh Current Practice Problem 15

Find io for the circuit in Fig. 25.

1. Identify all of the meshes in the circuit by drawing a curved arrow in
the center of each mesh in Fig. 25 to represent the direction of the
current in that mesh.

2. Assign variable names to all of the mesh currents by labeling the mesh
current arrows in Fig. 25.

3. Write a KVL equation around each of the meshes in the direction of
the current arrow.

4. Are any supplemental equations required? If not, why not? If so, write
them in the space below.
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5. Express all of the equations in standard form.

6. Solve the equations, using a calculator, a computer tool, or Cramer's
method.

Check your solution by calculating the power for each element and
summing the power for all elements.

Calculate io.
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Reading

² in Introductory Circuits for Electrical and Computer Engineering:
{ Section 3.1 | terminology and de¯nitions

{ Section 3.5 | introduction to mesh current method

{ Section 3.6 | mesh current method with circuits containing de-
pendent sources

{ Section 3.7 | supermeshes

² in Electric Circuits, sixth edition:
{ Section 4.1 | terminology and de¯nitions

{ Section 4.5 | introduction to mesh current method

{ Section 4.6 | mesh current method with circuits containing de-
pendent sources

{ Section 4.7 | supermeshes

² Workbook section | Power Balancing in DC Circuits

Additional Problems

² in Introductory Circuits for Electrical and Computer Engineering:
{ 3.26

{ 3.29 | 3.41

² in Electric Circuits, sixth edition:
{ 4.27

{ 4.30 | 4.42

Solutions

² Mesh Current Practice Problem 1 | the clockwise mesh currents are
4A, 2A, and 1A and io = 1A.

² Mesh Current Practice Problem 2 | the clockwise mesh currents are
16A, 6A, and 11A and io = 5A.

² Mesh Current Practice Problem 3 | the clockwise mesh currents are
¡5A, ¡2A, and 6A and vo = 60V.

² Mesh Current Practice Problem 4 | the clockwise mesh currents are
¡5A, ¡20A, and ¡15A and p32− = 800W.
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² Mesh Current Practice Problem 5 | the clockwise mesh currents are
20A, 12A, 7A, and 3A and vo = 100V.

² Mesh Current Practice Problem 6 | the clockwise mesh currents are
¡4A, 4A, and 2A and io = 2A.

² Mesh Current Practice Problem 7 | the clockwise mesh currents are
4A, 8A, ¡2A, and 3A and vo = 80V.

² Mesh Current Practice Problem 8 | the clockwise mesh currents are
4A, 6A, and 2A and pdelivered = 560W.

² Mesh Current Practice Problem 9 | the clockwise mesh currents are
¡6A, ¡2A, and ¡5A and p15− = 60W.

² Mesh Current Practice Problem 10 | the clockwise mesh currents are
¡15A, ¡10A and ¡20A and vo = 130V.

² Mesh Current Practice Problem 11 | the clockwise mesh currents are
¡5A, 15A, and 5A and p18− = 450W.

² Mesh Current Practice Problem 12 | the clockwise mesh currents are
¡15A, ¡45A, and ¡70A and io = 25A.

² Mesh Current Practice Problem 13 | the clockwise mesh currents are
¡20A, ¡40A, and ¡15A and vo = 100V.

² Mesh Current Practice Problem 14 | the clockwise mesh currents are
7A, ¡8A, and 10A and p80V = 560W (delivered).

² Mesh Current Practice Problem 15 | the clockwise mesh currents are
15A, 6A, and ¡2A and io = 9A.
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Th¶evenin and Norton
Equivalents

The Th¶evenin equivalent method allows you to replace any circuit consist-
ing of independent sources, dependent sources, and resistors with a simple
circuit consisting of a single voltage source in series with a single resistor
where the simple circuit is equivalent to the original circuit. This means
that a resistor ¯rst attached to the original circuit and then attached to the
simple circuit could not distinguish between the two circuits, since the resistor
would experience the same voltage drop, the same current °ow, and thus the
same power dissipation. The Th¶evenin equivalent method can thus be used
to reduce the complexity of a circuit and make it much easier to analyze. A
Norton equivalent circuit consists of a single current source in parallel with
a single resistor and can be constructed from a Th¶evenin equivalent circuit
using source transformation. Thus in this section we will present a tech-
nique for calculating the component values for a Th¶evenin equivalent circuit;
if you want the Norton equivalent circuit, you can calculate the Th¶evenin
equivalent circuit and use source transformation.
There are three important quantities that make up a Th¶evenin equivalent

circuit: the open-circuit voltage, voc, the short-circuit current, isc, and the
Th¶evenin equivalent resistance, RTh. In the Th¶evenin equivalent circuit, the
value of the voltage source is voc and the value of the series resistor is RTh.
In the Norton equivalent circuit, the value of the current source is isc and the
value of the parallel resistor is RTh. But it is not necessary to calculate all
three quantities, since they are related by the following equation:

voc = RThisc:

Thus we need to determine just two of these three quantities, and can use
their relationship to ¯nd the third quantity, if desired.
In circuits containing only independent sources and resistors, our Th¶evenin

equivalent method will determine the values of voc and RTh. When a circuit
also contains dependent sources we will modify the method and determine
voc and isc. In the examples and practice problems that follow we will cal-
culate the Th¶evenin equivalent or Norton equivalent circuit as seen from a
single load resistor. We will then reattach the load resistor to the Th¶evenin
equivalent or Norton equivalent circuit and analyze this simpli¯ed circuit to
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determine a requested quantity.
The Th¶evenin equivalent method can be broken into the following steps:

1. First calculate the open-circuit voltage. Draw the circuit with the load
resistor removed, which creates an open circuit where the resistor once
was. Label this circuit with + and ¡ polarity markings and the symbol
voc. Then use any circuit analysis technique to determine the value of
voc. In the examples we will usually use the mesh current method or
the node voltage method.

2. Next calculate the Th¶evenin equivalent resistance if the circuit contains
only independent sources and resistors, or the short-circuit current if
the circuit also contains dependent sources. To calculate the Th¶evenin
equivalent resistance, draw the circuit with the load resistor removed.
From the perspective of the resulting open circuit, calculate the equiv-
alent resistance. To do this, replace all voltage sources with short
circuits and all current sources with open circuits. Then make series
and parallel combinations of the remaining resistors until only one re-
sistor remains. This is the Th¶evenin equivalent resistor. If there are
dependent sources in the circuit, you cannot use the previous method
to calculate the Th¶evenin equivalent resistance because you cannot re-
move the independent sources without changing the way the dependent
sources behave. Therefore you must calculate the short-circuit current
instead. To do this, draw the circuit the the load resistor removed and
replaced by a short circuit (a wire). Label the current in the short cir-
cuit isc. Then use any circuit analysis technique to determine the value
of isc. We usually employ the node voltage method or the mesh current
method. Remember that we can use the open-circuit voltage and the
short-circuit current to determine the Th¶evenin equivalent resistance
with the equation

RTh =
voc
isc
:

3. Now draw the Th¶evenin equivalent circuit, which consists of a voltage
source with the value voc in series with a resistor whose value is RTh,
or the Norton equivalent circuit, which consists of a current source
with the value isc in parallel with a resistor whose value is RTh. Then
attach the original load resistor to complete the circuit. Use any circuit
analysis method to determine the requested voltage, current or power
in this simpli¯ed circuit.

4. You can check your result by analyzing the original circuit using any
appropriate circuit analysis technique. We will usually employ the node
voltage method or the mesh current method.

The ¯rst example is a circuit without dependent sources. We consider
circuits with dependent sources in the second example.
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Figure 1: The circuit for Th¶evenin Equivalent Example 1

Figure 2: The circuit for Th¶evenin Equivalent Example 1, con¯gured to
determine the open-circuit voltage voc.

Th¶evenin Equivalent Example 1

Find vo for the circuit in Fig. 1 by replacing the circuit to the left of the 15−
resistor with its Th¶evenin equivalent and analyzing the resulting simpli¯ed
circuit.

Solution

1. Redraw the circuit in Fig. 1 with the 15− resistor replaced by an open
circuit labeled voc and calculate the value of voc. We will use the node
voltage method to determine voc, so we have identi¯ed the reference
node and labeled the remaining non-reference essential nodes with sym-
bols if the voltage at the node is not known. The resulting circuit is
shown in Fig. 2. The node voltage equations are
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Figure 3: The circuit for Th¶evenin Equivalent Example 1, con¯gured to
determine the Th¶evenin equivalent resistance RTh.

At v1:
v1 ¡ 50
10

+
v1
20
+ 0:5 = 0

At voc:
voc ¡ 50
20

+
voc
30
¡ 0:5 = 0

Rewriting the node voltage equations in standard form we get

At v1:
µ
1

10
+
1

20

¶
v1 + (0)voc = (50=10)¡ 0:5

At voc: (0)v1 +
µ
1

20
+
1

30

¶
voc = (50=20) + 0:5

The calculator solution is

v1 = 30 V; voc = 36 V.

2. Since there are no dependent sources in the circuit in Fig. 1 we can
calculate the Th¶evenin equivalent resistance. To do this, redraw the
circuit in Fig. 1, replacing the 15− resistor with an open circuit, the
current source with an open circuit, and the voltage source with a
short circuit. The resulting circuit is shown in Fig. 3. Notice that in
Fig. 3 the 10− and 20− resistors in the lower left have been bypassed
by a short circuit, and that the remaining 20− and 30− resistors are in
parallel. Therefore, the equivalent resistance is given by

RTh = 20k30 = (20)(30)

20 + 30
= 12−:

3. Now draw the Th¶evenin equivalent circuit and attach the 15− resistor.
The result is shown in Fig. 4. To ¯nd vo in this simple circuit, use
voltage division:

vo =
15

15 + 12
(36) = 20 V
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Figure 4: The circuit for Th¶evenin Equivalent Example 1, with the compo-
nents to the left of the 15− resistor replaced by a Th¶evenin equivalent.

Figure 5: The circuit for Th¶evenin Equivalent Example 1, prepared for node
voltage analysis.

4. We can check this result by analyzing the original circuit in Fig. 1 to
¯nd vo. We choose the node voltage method for this analysis, and
the circuit in Fig. 5 is con¯gured for such analysis. The node voltage
equations are

At v1:
v1 ¡ 50
10

+
v1
20
+ 0:5 = 0

At vo:
vo ¡ 50
20

+
vo
30
+
vo
15
¡ 0:5 = 0

Rewriting the node voltage equations in standard form we get

At v1:
µ
1

10
+
1

20

¶
v1 + (0)voc = (50=10)¡ 0:5

At vo: (0)v1 +
µ
1

20
+
1

30
+
1

15

¶
= (50=20) + 0:5

The calculator solution is

v1 = 30 V; vo = 20 V.

Thus the solution obtained with the Th¶evenin equivalent circuit is con-
¯rmed.
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Figure 6: The circuit for Th¶evenin Equivalent Example 2

Figure 7: The circuit for Th¶evenin Equivalent Example 1, con¯gured to
determine the open-circuit voltage voc.

Th¶evenin Equivalent Example 2

Find io for the circuit in Fig. 6 by replacing the circuit to the left of the
4− resistor with its Norton equivalent and analyzing the resulting simpli¯ed
circuit.

Solution

1. Redraw the circuit in Fig. 6 with the 4− resistor replaced by an open
circuit labeled voc and calculate the value of voc. We will use the node
voltage method to determine voc, so we have identi¯ed the reference
node. The remaining non-reference essential nodes form a single su-
pernode with the dependent source, so we label those nodes with sym-
bols and identify the suprenode. The resulting circuit is shown in Fig. 7.
The node voltage analysis equations consist of one supernode equation
and two constraint equations, one for the supernode and one for the
dependent source. The equations are

Supernode:
v1 ¡ 50
2

+
v1
6
+
voc
2

= 0

Constraint: v1 ¡ voc = 4ix

Constraint:
v1
6

= ix
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Figure 8: The circuit for Th¶evenin Equivalent Example 2, con¯gured to
determine the short-circuit current isc.

Rewriting the node voltage equations in standard form we get

Supernode:
µ
1

2
+
1

6

¶
v1 +

µ
1

2

¶
voc + (0)ix = (50=2)

Constraint: (1)v1 + (¡1)voc + (¡4)ix = 0

Constraint:
µ
1

6

¶
v1 + (0)voc + (¡1)ix = 0

The calculator solution is

v1 = 30 V; voc = 10 V; ix = 5 A.

2. Since there is a dependent source in the circuit in Fig. 6 we must
calculate the short-circuit current. To do this, redraw the circuit in
Fig. 6, replacing the 4− resistor with short circuit and label the current
in the short circuit isc. Since we want to ¯nd this short-circuit current
the mesh current method is a good choice, so we also identify and
label the mesh currents. The resulting circuit is shown in Fig. 8. We
need three mesh current equations and a constraint equation for the
dependent source. The equations are The equations are

Left mesh: ¡50 + 8i1 + 6(i1 ¡ i2) = 0
Center mesh: 4ix + 2(i2 ¡ isc) + 6(i2 ¡ i1) = 0
Right mesh: 3:6isc + 2(isc ¡ i2) = 0
Constraint: i1 ¡ i2 = ix

Rewriting the mesh current equations in standard form we get

Left mesh: (8)i1 + (¡6)i2 + (0)isc + (0)ix = 50
Center mesh: (¡6)i1 + (8)i2 + (¡2)isc + (4)ix = 0
Right mesh: (0)i1 + (¡2)i2 + (5:6)isc + (0)ix = 0
Constraint: (1)i1 + (¡1)i2 + (0)isc + (¡1)ix = 0

The calculator solution is

i1 = 11:5 A; i2 = 7 A; isc = 2:5 A; ix = 4:5 A.
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Figure 9: The circuit for Th¶evenin Equivalent Example 2, with the compo-
nents to the left of the 4− resistor replaced by a Norton equivalent.

Figure 10: The circuit for Th¶evenin Equivalent Example 2, prepared for mesh
current analysis.

3. Now draw the Norton equivalent circuit by placing a current source
whose value is isc = 2:5A in parallel with a resistor whose value is
rTh = voc=isc = 10=2:5 = 4−, attach the 4− load resistor. The result is
shown in Fig. 9. To ¯nd io in this simple circuit, use current division:

io =
4

4 + 4
(2:5) = 1:25 A

4. We can check this result by analyzing the original circuit in Fig. 6 to
¯nd io. We choose the mesh current method for this analysis, and the
circuit in Fig. 10 is con¯gured for such analysis. We need three mesh
current equations and one constraint equation, as shown below:

Left mesh: ¡50 + 8i1 + 6(i1 ¡ i2) = 0
Center mesh: 4ix + 2(i2 ¡ io) + 6(i2 ¡ i1) = 0
Right mesh: 3:6io + 4io + 2(io ¡ i2) = 0
Constraint: i1 ¡ i2 = ix

Rewriting the mesh current equations in standard form we get

Left mesh: (8)i1 + (¡6)i2 + (0)io + (0)ix = 50
Center mesh: (¡6)i1 + (8)i2 + (¡2)io + (4)ix = 0
Right mesh: (0)i1 + (¡2)i2 + (9:6)io + (0)ix = 0
Constraint: (1)i1 + (¡1)i2 + (0)io + (¡1)ix = 0

The calculator solution is

i1 = 10:75 A; i2 = 6 A; io = 1:25 A; ix = 4:75 A.
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Thus the solution obtained with the Norton equivalent circuit is con-
¯rmed.

Now try using the Th¶evenin equivalent method for each of the practice
problems below.
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Figure 11: The circuit for Th¶evenin Equivalent Practice Problem 1.

Th¶evenin Equivalent Practice Problem 1

Find vo for the circuit in Fig. 11 by replacing the circuit to the left of the
36− resistor with its Th¶evenin equivalent.

1. Redraw the circuit in Fig. 11, replacing the 36− resistor with an open
circuit. Use this circuit to calculate voc.

10



2. Are there dependent sources in the circuit? If not, ¯nd the Th¶evenin
equivalent resistor by redrawing the circuit in Fig. 11 with the load re-
sistor removed, the voltage sources replaced by short circuits, and the
current sources replaced with open circuits. Then make series and par-
allel combinations of resistors until a single equivalent resistor remains.
If there are dependent sources in the circuit, ¯nd the short circuit cur-
rent by redrawing the circuit in Fig. 11, replacing the 36− resistor with
a short circuit whose current is isc. Use this circuit to ¯nd isc.

3. Draw the Th¶evenin equivalent circuit and attach the 36− resistor. Use
this circuit to calculate vo.
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4. Check your solution by analyzing the original circuit in Fig. 11 to ¯nd
vo.
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Figure 12: The circuit for Th¶evenin Equivalent Practice Problem 2.

Th¶evenin Equivalent Practice Problem 2

Find io for the circuit in Fig. 12 by replacing the circuit to the left of the 3−
resistor with its Norton equivalent.

1. Redraw the circuit in Fig. 12, replacing the 3− resistor with an open
circuit. Use this circuit to calculate voc.

13



2. Are there dependent sources in the circuit? If not, ¯nd the Th¶evenin
equivalent resistor by redrawing the circuit in Fig. 12 with the load
resistor removed, the voltage sources replaced by short circuits, and
the current sources replaced with open circuits. Then make series and
parallel combinations of resistors until a single equivalent resistor re-
mains. If there are dependent sources in the circuit, ¯nd the short
circuit current by redrawing the circuit in Fig. 12, replacing the load
resistor with a short circuit whose current is isc. Use this circuit to ¯nd
isc.

3. Draw the Norton equivalent circuit and attach the 3− resistor. Use
this circuit to calculate io.
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4. Check your solution by analyzing the original circuit in Fig. 12 to ¯nd
io.
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Figure 13: The circuit for Th¶evenin Equivalent Practice Problem 3.

Th¶evenin Equivalent Practice Problem 3

Find vo for the circuit in Fig. 13 by replacing the circuit to the left of the
16− resistor with its Th¶evenin equivalent.

1. Redraw the circuit in Fig. 13, replacing the 16− resistor with an open
circuit. Use this circuit to calculate voc.

16



2. Are there dependent sources in the circuit? If not, ¯nd the Th¶evenin
equivalent resistor by redrawing the circuit in Fig. 13 with the load
resistor removed, the voltage sources replaced by short circuits, and
the current sources replaced with open circuits. Then make series and
parallel combinations of resistors until a single equivalent resistor re-
mains. If there are dependent sources in the circuit, ¯nd the short
circuit current by redrawing the circuit in Fig. 13, replacing the load
resistor with a short circuit whose current is isc. Use this circuit to ¯nd
isc.

3. Draw the Th¶evenin equivalent circuit and attach the 16− resistor. Use
this circuit to calculate vo.
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4. Check your solution by analyzing the original circuit in Fig. 13 to ¯nd
vo.
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Figure 14: The circuit for Th¶evenin Equivalent Practice Problem 4.

Th¶evenin Equivalent Practice Problem 4

Find power dissipated in the 40− resistor for the circuit in Fig. 14 by replacing
the circuit to the left of the 40− resistor with its Th¶evenin equivalent.

1. Redraw the circuit in Fig. 14, replacing the 40− resistor with an open
circuit. Use this circuit to calculate voc.
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2. Are there dependent sources in the circuit? If not, ¯nd the Th¶evenin
equivalent resistor by redrawing the circuit in Fig. 14 with the load
resistor removed, the voltage sources replaced by short circuits, and
the current sources replaced with open circuits. Then make series and
parallel combinations of resistors until a single equivalent resistor re-
mains. If there are dependent sources in the circuit, ¯nd the short
circuit current by redrawing the circuit in Fig. 14, replacing the load
resistor with a short circuit whose current is isc. Use this circuit to ¯nd
isc.

3. Draw the Th¶evenin equivalent circuit and attach the 40− resistor. Use
this circuit to calculate the power dissipated by this 40− resistor.
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4. Check your solution by analyzing the original circuit in Fig. 14 to ¯nd
p40−.
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Figure 15: The circuit for Th¶evenin Equivalent Practice Problem 5.

Th¶evenin Equivalent Practice Problem 5

Find vo for the circuit in Fig. 15 by replacing the circuit to the left of the
16− resistor with its Th¶evenin equivalent.

1. Redraw the circuit in Fig. 15, replacing the 16− resistor with an open
circuit. Use this circuit to calculate voc.
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2. Are there dependent sources in the circuit? If not, ¯nd the Th¶evenin
equivalent resistor by redrawing the circuit in Fig. 15 with the load
resistor removed, the voltage sources replaced by short circuits, and
the current sources replaced with open circuits. Then make series and
parallel combinations of resistors until a single equivalent resistor re-
mains. If there are dependent sources in the circuit, ¯nd the short
circuit current by redrawing the circuit in Fig. 15, replacing the load
resistor with a short circuit whose current is isc. Use this circuit to ¯nd
isc.

3. Draw the Th¶evenin equivalent circuit and attach the 16− resistor. Use
this circuit to calculate vo.
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4. Check your solution by analyzing the original circuit in Fig. 15 to ¯nd
vo.

24



Figure 16: The circuit for Th¶evenin Equivalent Practice Problem 6.

Th¶evenin Equivalent Practice Problem 6

Find the power dissipated in the 100− resistor for the circuit in Fig. 16
by replacing the circuit to the left of the 100− resistor with its Th¶evenin
equivalent.

1. Redraw the circuit in Fig. 16, replacing the 100− resistor with an open
circuit. Use this circuit to calculate voc.
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2. Are there dependent sources in the circuit? If not, ¯nd the Th¶evenin
equivalent resistor by redrawing the circuit in Fig. 16 with the load
resistor removed, the voltage sources replaced by short circuits, and
the current sources replaced with open circuits. Then make series and
parallel combinations of resistors until a single equivalent resistor re-
mains. If there are dependent sources in the circuit, ¯nd the short
circuit current by redrawing the circuit in Fig. 16, replacing the load
resistor with a short circuit whose current is isc. Use this circuit to ¯nd
isc.

3. Draw the Th¶evenin equivalent circuit and attach the 100− resistor. Use
this circuit to calculate the power dissipated in this resistor.
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4. Check your solution by analyzing the original circuit in Fig. 16 to ¯nd
p100−.
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Figure 17: The circuit for Th¶evenin Equivalent Practice Problem 7.

Th¶evenin Equivalent Practice Problem 7

Find vo for the circuit in Fig. 17 by replacing the circuit to the left of the
250− resistor with its Th¶evenin equivalent.

1. Redraw the circuit in Fig. 17, replacing the 250− resistor with an open
circuit. Use this circuit to calculate voc.
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2. Are there dependent sources in the circuit? If not, ¯nd the Th¶evenin
equivalent resistor by redrawing the circuit in Fig. 17 with the load
resistor removed, the voltage sources replaced by short circuits, and
the current sources replaced with open circuits. Then make series and
parallel combinations of resistors until a single equivalent resistor re-
mains. If there are dependent sources in the circuit, ¯nd the short
circuit current by redrawing the circuit in Fig. 17, replacing the load
resistor with a short circuit whose current is isc. Use this circuit to ¯nd
isc.

3. Draw the Th¶evenin equivalent circuit and attach the 250− resistor. Use
this circuit to calculate vo.
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4. Check your solution by analyzing the original circuit in Fig. 17 to ¯nd
vo.

30



Figure 18: The circuit for Th¶evenin Equivalent Practice Problem 8.

Th¶evenin Equivalent Practice Problem 8

Find io for the circuit in Fig. 18 by replacing the circuit to the left of the
80− resistor with its Norton equivalent.

1. Redraw the circuit in Fig. 18, replacing the 80− resistor with an open
circuit. Use this circuit to calculate voc.
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2. Are there dependent sources in the circuit? If not, ¯nd the Th¶evenin
equivalent resistor by redrawing the circuit in Fig. 18 with the load
resistor removed, the voltage sources replaced by short circuits, and
the current sources replaced with open circuits. Then make series and
parallel combinations of resistors until a single equivalent resistor re-
mains. If there are dependent sources in the circuit, ¯nd the short
circuit current by redrawing the circuit in Fig. 18, replacing the load
resistor with a short circuit whose current is isc. Use this circuit to ¯nd
isc.

3. Draw the Norton equivalent circuit and attach the 80− resistor. Use
this circuit to calculate io.
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4. Check your solution by analyzing the original circuit in Fig. 18 to ¯nd
io.
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Reading

² in Introductory Circuits for Electrical and Computer Engineering:
{ Section 3.9 | Th¶evenin and Norton equivalents

{ Section 3.10 | more Th¶evenin and Norton equivalents

² in Electric Circuits, sixth edition:
{ Section 4.10 | Th¶evenin and Norton equivalents

{ Section 4.11 | more Th¶evenin and Norton equivalents

² Workbook section | Node Voltage Method

² Workbook section | Mesh Current Method

Additional Problems

² in Introductory Circuits for Electrical and Computer Engineering:
{ 3.50 | 3.56

{ 3.58

² in Electric Circuits, sixth edition:
{ 4.58 | 4.62

{ 4.66

{ 4.69 | 4.70

Solutions

² Th¶evenin Equivalent Practice Problem 1:

voc = 3:75 V isc = 208:33 mA RTh = 18− vo = 2:5 V.

² Th¶evenin Equivalent Practice Problem 2:

voc = 10 V isc = 5 A RTh = 2− io = 2 A.

² Th¶evenin Equivalent Practice Problem 3:

voc = 105 V isc = 13:125 A RTh = 8− vo = 70 V.

² Th¶evenin Equivalent Practice Problem 4:

voc = 250 V isc = 25 A RTh = 10− p40− = 1 kW.
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² Th¶evenin Equivalent Practice Problem 5:

voc = ¡20 V isc = ¡1:25 A RTh = 16− vo = ¡10 V.

² Th¶evenin Equivalent Practice Problem 6:

voc = 75 V isc = 1:5 A RTh = 50− p100− = 25 W.

² Th¶evenin Equivalent Practice Problem 7:

voc = 125 V isc = 2 A RTh = 62:5− vo = 100 V.

² Th¶evenin Equivalent Practice Problem 8:

voc = 120 V isc = 3 A RTh = 40− io = 1 A.
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Circuits with Op Amps

The operational ampli¯er (op amp) is a complex nonlinear device with
three distinct operating regions: a linear region, in which the output volt-
age is proportional to the di®erence between the two input voltages, and
two saturation regions where the output voltage takes on either the positive
power supply voltage or the negative power supply voltage. But with two
simplifying assumptions about the behavior and characteristics of op amps
we can readily analyze circuits containing these devices. The assumptions
are as follows:

² The op amp is ideal. From the standpoint of the op amp as a device, this
means that the op amp has in¯nite input resistance, in¯nite open loop
gain, and zero output resistance. From the standpoint of analyzing
a circuit containing an op amp, this means that there is no current
°owing into the input terminals of the op amp (because of the in¯nite
input resistance) and there is no voltage drop across the input terminals
of the op amp when it is operating in its linear region (because of the
in¯nite open loop gain).

² The op amp is operating in its linear region. In order to make this
assumption, the circuit containing the op amp must have a negative
feedback path which is a connection from the output terminal of
the op amp to the inverting input terminal (the one labeled with a
¡ sign). This assumption, combined with the assumption that the op
amp is ideal, allows us to assume that there is no di®erence between the
voltages at the input terminals of the op amp. This assumption leads
to the conclusion that the output voltage must be within the range of
voltage values established by the positive and negative power supplies
if the op amp is indeed within its linear operating region.

To analyze a circuit with an op amp, we begin be making the above
assumptions. Then we write one or more node voltage equations at the
input terminals of the op amp. Note that we can never write a node voltage
equation at the output terminal of the op amp, because we have no method
for calculating the current °owing into the op amp at the output terminal.
Once we solve the node voltage equations, we check to see whether or not
our second assumption can be validated. To do this, we check the voltage
at the output of the op amp to see whether or not its value is within the
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range of values established by the positive and negative power supplies. If
the output voltage is within the speci¯ed range, our analysis is complete; if
not, the output voltage saturates at the power supply voltage closest to the
one calculated in our analysis.
We divide the analysis of a circuit containing an op amp into four steps:

1. Assume that the op amp is ideal and operating in its linear region.
Label the two input nodes for the op amp with voltages, usually vp for
the non-inverting terminal (the one with the + sign) and vn for the
inverting terminal (the one with the ¡ sign). Label the output node
for the op amp with a voltage, usually vo.

2. If possible, calculate the numerical value of the node voltage at the
non-inverting input to the op amp. Remember that the ideal op amp
assumption tells us that there is no current °owing into the op amp.
If a numerical calculation is not possible, calculate the node voltage
at the non-inverting terminal as a function of the source voltage or
voltages connected to that terminal

3. Now, write a KCL equation at the inverting input terminal of the op
amp. Remember that by assumption, the voltage at the inverting input
node is the same as the voltage at the non-inverting input node cal-
culated in Step 2. The node voltage equation written at the inverting
terminal will always involve the output voltage variable because of the
negative feedback path that allows the op amp to operate within its
linear region. Then solve the node voltage equation for the voltage at
the output node.

4. Examine the value of the voltage at the output node. If the op amp
is actually operating within its linear region, the output voltage will
be between the two power supply voltages. If it is, your analysis is
complete. If it is not, then the output voltage is not the value you
calculated, but instead will saturate at the power supply voltage it is
closest to, giving the correct value for the output voltage.

We illustrate this method with the two examples that follow.

Op Amp Example 1

Find the voltage drop vo for the circuit in Fig. 1.

Solution

1. We assume that the op amp is ideal and operating in its linear region.
This allows us to assume that the value of the current °owing into the
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Figure 1: The circuit for Op Amp Example 1

Figure 2: The circuit for Op Amp Example 1, with the three node voltages
for the op amp identi¯ed and labeled.

op amp at its two input terminals is zero, and that the voltage drop
between those same two input terminals is zero. We label the three
node voltages, two at the op amp's input and one at its output, as
shown in Fig. 2.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp. We can do this for the voltage vp quite easily. Since there
is no current °owing into the op amp by assumption, there can be no
voltage drop across the 10k− resistor. Thus,

vp = 2 V.

3. Write a node voltage equation at the inverting input node of the op
amp. The node voltage equation is written by summing the currents
leaving the node vn. Remember that the current leaving this node and
°owing into the op amp is zero by assumption.

vn ¡ 0
4000

+
vn ¡ vo
20;000

= 0
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Figure 3: The circuit for Op Amp Example 2

By assumption, there is no voltage drop between the two input termi-
nals for the op amp. Thus,

vn = vp = 2 V.

Substituting this value into the node voltage equation and solving for
vo we get

vo = 12 V.

4. Examine the value of the output voltage. If the op amp is within its
linear region of operation, as we assumed, then

¡6 V · vo · +6 V.

But our calculation gave the result vo = 12 V. Therefore, the assump-
tion of linear operation is invalid, and in fact, the op amp has saturated.
The value of the output voltage is the same as the value of the power
supply closest to the value of 12 V. Thus,

vo = 6 V.

Op Amp Example 2

Find the range of values for the voltage vs such that the output voltage vo
does not saturate for the circuit in Fig. 3.

Solution

1. We assume that the op amp is ideal and operating in its linear region.
This allows us to assume that the value of the current °owing into the
op amp at its two input terminals is zero, and that the voltage drop
between those same two input terminals is zero. We label the three
node voltages, two at the op amp's input and one at its output, as
shown in Fig. 4.

4



Figure 4: The circuit for Op Amp Example 2, with the three node voltages
for the op amp identi¯ed and labeled.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp. We can do this for the voltage vp using voltage division.
Since there is no current °owing into the op amp by assumption, the
wire connecting the node labeled vp to the op amp acts like an open
circuit. Therefore, the loop formed by the 60V source, the 15k− resistor
and the 10k− resistor acts as though it is not attached to the rest of
the circuit. The voltage vp is then the voltage drop across the 10k−
resistor, whose value we calculate using voltage division. Thus,

vp =
10;000

10;000 + 15;000
(60) = 24 V.

3. Write a node voltage equation at the inverting input node of the op
amp. The node voltage equation is written by summing the currents
leaving the node vn. Remember that the current leaving this node and
°owing into the op amp is zero by assumption.

vn ¡ vs
8000

+
vn ¡ vo
32;000

= 0

By assumption, there is no voltage drop between the two input termi-
nals for the op amp. Thus,

vn = vp = 24 V.

Substituting this value into the node voltage equation and solving for
vo we get

vo = 120¡ 4vs
4. Now we use the two power supply voltages as the limiting values for
v0. We consider one limiting value at a time by substituting it into
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the equation from Step 3 and calculating the value of vs that would
produce this limiting value. When vo = 10V,

10 = 120¡ 4vs so vs =
120¡ 10

4
= 27:5 V.

When vo = ¡15V,

¡15 = 120¡ 4vs so vs =
120 + 15

4
= 33:75 V.

Thus, the range of values for vs for which vo will not saturate (and the
op amp remains in its linear operating region) is

27:5 V · vs · 33:75 V.

Now you are ready to practice analyzing circuits with op amps in the
problems that follow.
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Figure 5: The circuit for Op Amp Practice Problem 1.

Op Amp Practice Problem 1

Find the range of values for the voltage vs such that the output voltage vo
does not saturate and the op amp remains in its linear region of operation
for the circuit in Fig. 5.

1. Assume that the op amp is ideal and operating in its linear region.
Label the three node voltages, two at the op amp's input and one at
its output, in Fig. 5.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp, or write an equation for the voltage vp in terms of the
source voltage.

3. Write a node voltage equation at the inverting input node of the op
amp. Solve this equation for vo.
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4. Use the two power supply voltages as the limiting values for vo and
calculate the range of values for vs that will keep vo within its limiting
values.
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Figure 6: The circuit for Op Amp Practice Problem 2.

Op Amp Practice Problem 2

Find the range of values for the voltage vs such that the output voltage vo
does not saturate and the op amp remains in its linear region of operation
for the circuit in Fig. 6.

1. Assume that the op amp is ideal and operating in its linear region.
Label the three node voltages, two at the op amp's input and one at
its output, in Fig. 6.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp, or write an equation for the voltage vp in terms of the
source voltage.

3. Write a node voltage equation at the inverting input node of the op
amp. Solve this equation for vo.
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4. Use the two power supply voltages as the limiting values for vo and
calculate the range of values for vs that will keep vo within its limiting
values.
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Figure 7: The circuit for Op Amp Practice Problem 3.

Op Amp Practice Problem 3

Calculate io for the circuit in Fig. 7.

1. Assume that the op amp is ideal and operating in its linear region.
Label the three node voltages, two at the op amp's input and one at
its output, in Fig. 7.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp, or write an equation for the voltage vp in terms of the
source voltage.

3. Write a node voltage equation at the inverting input node of the op
amp. Solve this equation for vo. Use this value of vo to calculate io.
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4. Is the value for vo within the range of voltages de¯ned by the power
supplies? If so, your value of io is correct. If not, you must recalculate
io based on the saturated value of vo.
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Figure 8: The circuit for Op Amp Practice Problem 4.

Op Amp Practice Problem 4

What value for Rf will yield the equation vo = 5 ¡ 4va for the circuit in
Fig. 8.

1. Assume that the op amp is ideal and operating in its linear region.
Label the three node voltages, two at the op amp's input and one at
its output, in Fig. 8.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp, or write an equation for the voltage vp.

3. Write a node voltage equation at the inverting input node of the op
amp. Simplify this equation for vo. Use this equation for vo to calculate
Rf .
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4. This problem does not concern a calculated value for vo. We assume
that the op amp is in its linear region of operation in order to obtain
the equation speci¯ed in the problem.
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Figure 9: The circuit for Op Amp Practice Problem 5.

Op Amp Practice Problem 5

Find the range of values for the voltage vs such that the output voltage vo
does not saturate and the op amp remains in its linear region of operation
for the circuit in Fig. 9.

1. Assume that the op amp is ideal and operating in its linear region.
Label the three node voltages, two at the op amp's input and one at
its output, in Fig. 9.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp, or write an equation for the voltage vp in terms of the
source voltage.

3. Write a node voltage equation at the inverting input node of the op
amp. Solve this equation for vo.
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4. Use the two power supply voltages as the limiting values for vo and
calculate the range of values for vs that will keep vo within its limiting
values.
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Figure 10: The circuit for Op Amp Practice Problem 6.

Op Amp Practice Problem 6

Find the range of values for the voltage va such that the output voltage vo
does not saturate and the op amp remains in its linear region of operation
for the circuit in Fig. 10.

1. Assume that the op amp is ideal and operating in its linear region.
Label the three node voltages, two at the op amp's input and one at
its output, in Fig. 10.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp, or write an equation for the voltage vp in terms of the
source voltage.
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3. Write a node voltage equation at the inverting input node of the op
amp. Solve this equation for vo.

4. Use the two power supply voltages as the limiting values for vo and
calculate the range of values for va that will keep vo within its limiting
values.
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Figure 11: The circuit for Op Amp Practice Problem 7.

Op Amp Practice Problem 7

Find the range of values for the voltage vs such that the output voltage vo
does not saturate and the op amp remains in its linear region of operation
for the circuit in Fig. 11.

1. Assume that the op amp is ideal and operating in its linear region.
Label the three node voltages, two at the op amp's input and one at
its output, in Fig. 11.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp, or write an equation for the voltage vp in terms of the
source voltage.
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3. Write a node voltage equation at the inverting input node of the op
amp. Solve this equation for vo.

4. Use the two power supply voltages as the limiting values for vo and
calculate the range of values for vs that will keep vo within its limiting
values.
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Figure 12: The circuit for Op Amp Practice Problem 8.

Op Amp Practice Problem 8

Find the range of values for the voltage va such that the output voltage vo
does not saturate and the op amp remains in its linear region of operation
for the circuit in Fig. 12.

1. Assume that the op amp is ideal and operating in its linear region.
Label the three node voltages, two at the op amp's input and one at
its output, in Fig. 12.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp, or write an equation for the voltage vp in terms of the
source voltage.
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3. Write a node voltage equation at the inverting input node of the op
amp. Solve this equation for vo.

4. Use the two power supply voltages as the limiting values for vo and
calculate the range of values for va that will keep vo within its limiting
values.
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Figure 13: The circuit for Op Amp Practice Problem 9.

Op Amp Practice Problem 9

Find the range of values for the resistor Ra such that the output voltage vo
does not saturate and the op amp remains in its linear region of operation
for the circuit in Fig. 13.

1. Assume that the op amp is ideal and operating in its linear region.
Label the three node voltages, two at the op amp's input and one at
its output, in Fig. 13.

2. Calculate the value of the voltage at the non-inverting input node of
the op amp, or write an equation for the voltage vp.
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3. Write a node voltage equation at the inverting input node of the op
amp. Solve this equation for vo.

4. Use the two power supply voltages as the limiting values for vo and
calculate the range of values for Rf that will keep vo within its limiting
values.
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Reading

² in Introductory Circuits for Electrical and Computer Engineering:
{ Section 4.1 | terminology

{ Section 4.2 | op amp operating regions

{ Section 4.3 | inverting ampli¯er

{ Section 4.4 | summing ampli¯er

{ Section 4.5 | non-inverting ampli¯er

{ Section 4.6 | di®erence ampli¯er

² in Electric Circuits, sixth edition:
{ Section 5.1 | terminology

{ Section 5.2 | op amp operating regions

{ Section 5.3 | inverting ampli¯er

{ Section 5.4 | summing ampli¯er

{ Section 5.5 | non-inverting ampli¯er

{ Section 5.6 | di®erence ampli¯er

² Workbook section | Node Voltage Method

Additional Problems

² in Introductory Circuits for Electrical and Computer Engineering:
{ 4.2 | 4.3

{ 4.9 | 4.12

{ 4.21 | 4.24

{ 4.26

² in Electric Circuits, sixth edition:
{ 5.2 | 5.3

{ 5.10 | 5.14

{ 5.22 | 4.25

{ 5.27
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Solutions

² Op amp Practice Problem 1: 4:5 V · vs · 12 V.
² Op amp Practice Problem 2: ¡19:5 V · vs · ¡12 V.
² Op amp Practice Problem 3: io = ¡1 mA.
² Op amp Practice Problem 4: Rf = 20 k−:

² Op amp Practice Problem 5: ¡6 V · vs · 4 V.
² Op amp Practice Problem 6: ¡1:5 V · va · 3 V.
² Op amp Practice Problem 7: ¡5 V · vs · 4 V.
² Op amp Practice Problem 8: ¡7 V · va · 3 V.
² Op amp Practice Problem 9: 1:5 k− · Rf · 12 k−:
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Natural and Step Response of
First-Order (RL and RC)
Circuits

Here we review and then practice the techniques that enable us to analyze a
select group of circuits. These are circuits containing one equivalent resistor
and either one equivalent inductor or one equivalent capacitor that has initial
stored energy. The use of the phrase \one equivalent" means that if the
circuit contains two or more resistors, for example, they must be arranged
in such a way that they can be combined in series and in parallel to form
one single equivalent resistor. The same holds for circuit that contain two or
more inductors, or two or more capacitors. These circuits are refered to as
RL and RC circuits, and are also called ¯rst-order circuits, because their
describing equation is a ¯rst-order di®erential equation.
These circuits usually contain a switch that is in one position for t < 0,

switches positions at t = 0, and remains at that second position inde¯nitely.
When the switch is in its ¯rst position, there is usually an independent
current or voltage source in the circuit as well, used to generate the energy
that the inductor or capacitor will have stored at t = 0. When the switch
moves to its second position, there may or may not be an independent current
or voltage source in the circuit. If there is, it continues to supply energy to
the circuit inde¯nitely, and we call the analysis a step response problem.
If there is not an independent source in the circuit for t ¸ 0, then the energy
initially stored is dissipated to the resistor and we call the analysis a natural
response problem. Fortunately the natural response problem and the step
response problem are closely related, so we can use the same circuit analysis
technique for both problems.
Analyzing RL circuits is very similar to analyzing RC circuits so we

can also use the same circuit analysis technique for both circuits. There
are basically three steps in the analysis: ¯nd the initial condition, which is
the initial current in the inductor and is the initial voltage drop across the
capacitor; ¯nd the ¯nal value, which is the ¯nal current in the inductor and
is the ¯nal voltage drop across the capacitor; and ¯nd the time constant,
¿ , which equals L=R for an RL circuit and equals RC for an RC circuit.
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Once we have these three quantities, the response is given by

FV + ( IV ¡ FV )e¡t=¿

where IV is the initial value and FV is the ¯nal value. For RL circuits we
will use this formula to calculate the current in the inductor; if we want
any other quantities, we will calculate them from the inductor current. For
RC circuits we will use this formula to calculate the voltage drop across the
capacitor; if we want any other quantities, we will again calculate them from
the capacitor voltage.
The ¯rst-order analysis method for RL and RC circuits can be broken

into the following steps:

1. Redraw the circuit as it appears for t < 0, replacing the switch with
an open circuit if it is open, and with a short circuit if it is closed.
Since it is assumed that the switch has been in this position for a long
time, this places the inductor or the capacitor in the presence of a
constant source. Therefore, an inductor behaves like a short circuit
while a capacitor behaves like an open circuit. If you are dealing with
an RL circuit, replace the inductor with a short circuit and calculate
the current through the short circuit, which will be the initial current,
Io. If you have an RC circuit, replace the capacitor with an open circuit
and calculate the voltage drop across the open circuit, which will be
the initial voltage, Vo.

2. Redraw the circuit as it appears for t ¸ 0, replacing the switch with an
open circuit it it is open and with a short circuit if it is closed. If there
are no independent sources in the circuit, this is the natural response
problem and the ¯nal value is 0, since all of the initially stored energy
in the inductor or capacitor will be dissipated by the resistor as t!1.
This means that in the RL circuit the ¯nal current is If = 0 and in the
RC circuit the ¯nal voltage is Vf = 0.

If there is an independent source in the circuit for t ¸ 0 this is the
step response problem. If you have an RL circuit, the inductor will
have been in the presence of this independent source for a long time as
t!1 and so behaves like a short circuit. Replace the inductor with a
short circuit and calculate the current in the short circuit. This is the
¯nal current, If . Make sure the direction of the current arrow is the
same when computing Io in Step 1 and when computing If in this step.
If you have an RC circuit, the capacitor will have been in the presence
of the independent source for a long time as t!1 and behaves like an
open circuit. Replace it with an open circuit and calculate the voltage
drop across the open circuit. This is the ¯nal voltage, Vf . Make sure
that the polarity of the voltage when you are calculating the initial
voltage Vo is the same as the polarity of the voltage when you are
calculating the ¯nal value Vf .
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3. Redraw the circuit from Step 2 (the circuit as it appears for t ¸ 0)
and make the following modi¯cations to enable you to calculate the
time constant, ¿ . If you have an RL circuit, remove the inductor from
the drawing; if you have an RC circuit, remove the capacitor from
the circuit. In either case, ¯nd the Th¶evenin equivalent resistance as
seen from the open circuit where the component was located. If there
are no dependent sources in the circuit, this means you can replace
any voltage sources with short circuits, replace any current sources
with open circuits, and make series and parallel combinations of the
remaining resistors until a single resistor value is found. If there are
dependent sources in the circuit you must ¯nd the Th¶evenin equivalent
resistance by calculating the open circuit voltage, voc and the short
circuit current, isc and use the equation RTh = voc=isc. The Th¶evenin
equivalent resistance is used to ¯nd the time constant ¿ :

For RL circuits: ¿ = L=RTh For RC circuits: ¿ = RThC

4. Using the initial value from Step 1, the ¯nal value from Step 2, and the
time constant from Step 3, ¯nd the response of the circuit for t ¸ 0 as
follows:

For RL circuits: iL(t) = If + (Io ¡ If )e¡t=¿
For RC circuits: vC(t) = Vf + (Vo ¡ Vf)e¡t=¿

That is, regardless of what currents and voltages in the original circuit
are to be calculated, you will always ¯rst calculate the current in the
inductor for RL circuits and the voltage drop across the capacitor in
RC circuits.

5. If a quantity other than the current in the inductor or the voltage
drop across the capacitor is requested in the original circuit, use the
inductor current or the capacitor voltage, together with other circuit
analysis techniques like Ohm's law and Kirchho®'s laws, to calculate
the requested quantities.

The following two examples illustrate the process of analyzing ¯rst-order
circuits.
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Figure 1: The circuit for First-Order Example 1

Figure 2: The circuit for First-Order Example 1, for t < 0, used to establish
the initial condition.

First-Order Example 1

Find iL(t) for the circuit in Fig. 1 for t ¸ 0.

Solution

1. Redraw the circuit in Fig. 1 with the switch in its closed position. This
is the circuit for t < 0 and is used to establish the initial condition. It
is assumed that the switch has been in this position for a long time,
so the inductor has been in the presence of a constant source for a
long time and therefore behaves like a short circuit. We thus replace
the inductor with a short circuit. Since this is an RL circuit, all of
the quantities that we will calculate will be currents. We identify the
current in the short circuit as the initial value of the current in the
inductor, Io. The resulting circuit is shown in Fig. 2. We must analyze
this circuit to ¯nd Io. We use the mesh analysis technique, since it will
yield Io directly. The mesh currents are also shown in Fig. 2. The mesh
current equations are

Left mesh: ¡30 + 2I1 + 2(I1 ¡ Io) = 0
Right mesh: 2Io + 2(Io ¡ I1) = 0

Rewriting the mesh current equations in standard form we get

Left mesh: (4)I1 + (¡2)Io = 30
Right mesh: (¡2)I1 + (4)Io = 0
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Figure 3: The circuit for First-Order Example 1, for t ¸ 0, used to establish
the ¯nal value.

Figure 4: The circuit for First-Order Example 1, for t ¸ 0, used to establish
the time constant, ¿ .

The calculator solution is

I1 = 10 A; Io = 5 A.

Thus the initial current Io = 5A.

2. Redraw the circuit in Fig. 1 with the switch in its open position. This
is the circuit for t ¸ 0 and is used to establish the ¯nal condition, since
the circuit will be in this con¯guration as t ! 1. It is assumed that
the switch has been in this position for a long time, so the inductor has
been in the presence of a constant source for a long time and therefore
behaves like a short circuit. We thus replace the inductor with a short
circuit. Since this is an RL circuit, all of the quantities that we will
calculate will be currents. We identify the current in the short circuit as
the ¯nal value of the current in the inductor, If . The resulting circuit
is shown in Fig. 3. As you can see, there are no independent sources
in this circuit, so the stored energy in the inductor will dissipate in
the resistors leaving no energy in the inductor. Thus, the ¯nal current
If = 0A.

3. To ¯nd the time constant for the circuit, we need to ¯nd the equivalent
resistance seen by the inductor. To do this, redraw the circuit in Fig. 3
in Step 2 and replace the short circuit where the inductor was with
an open circuit. The resulting circuit is shown in Fig. 4. Since there
are no dependent sources in the circuit, we can make series and parallel
combinations of the remaining resistors to ¯nd the Th¶evenin equivalent
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Figure 5: The circuit for First-Order Example 2

resistance we need for calculating the time constant. As seen in Fig. 4,
the 2− resistors are in series, so

RTh = 2 + 2 = 4−:

Using this resistance, we can calculate the time constant as follows:

¿ = L=RTh = (0:008)=(4) = 2 ms.

4. Now that we have calculated the initial value of the inductor current,
the ¯nal value of the inductor current, and the time constant, we can
use these values to determine the current in the inductor for t ¸ 0:
iL(t) = If + (Io ¡ If)e¡t¿ = 0 + (5¡ 0)e¡t=(0:002) = 3e¡500t A, t ¸ 0

5. Since the current in the inductor was the only quantity requested in
the original circuit shown in Fig. 1, no further analysis is required.

First-Order Example 2

Find iR(t) for the circuit in Fig. 5 for t ¸ 0+.

Solution

1. Redraw the circuit in Fig. 5 with the switch in its left-hand position.
This is the circuit for t < 0 and is used to establish the initial condition.
It is assumed that the switch has been in this position for a long time,
so the capacitor has been in the presence of a constant source for a
long time and therefore behaves like an open circuit. We thus replace
the capacitor with an open circuit. Since this is an RC circuit, all of
the quantities that we will calculate will be voltages. We identify the
voltage drop across the open circuit as the initial value of the voltage
drop across the capacitor, Vo. The resulting circuit is shown in Fig. 6.
We must analyze this circuit to ¯nd Vo. The open circuit that replaced
the capacitor will not allow current to °ow in the circuit, and thus
the voltage drop across the open circuit is ¯xed by the voltage source.
Therefore the initial voltage Vo = 100V.
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Figure 6: The circuit for First-Order Example 2, for t < 0, used to establish
the initial condition.

Figure 7: The circuit for First-Order Example 1, for t ¸ 0, used to establish
the ¯nal value.

2. Redraw the circuit in Fig. 5 with the switch in its right-hand position.
This is the circuit for t ¸ 0 and is used to establish the ¯nal condition,
since the circuit will be in this con¯guration as t ! 1. It is assumed
that the switch has been in this position for a long time, so the capacitor
has been in the presence of a constant source for a long time and
therefore behaves like an open circuit. We thus replace the capacitor
with an open circuit. Since this is an RC circuit, all of the quantities
that we will calculate will be voltages. We identify the voltage in the
open circuit as the ¯nal value of the voltage drop across the capacitor,
Vf . The resulting circuit is shown in Fig. 7. As you can see, there is an
independent source in this circuit, so this is the step response problem.
The value of the voltage drop across the capacitor is determined by the
independent source and the resistors. Since the capacitor behaves like
an open circuit, all of the current from the current source must °ow
through the 2k− resistor, creating a voltage drop of (2000)(0:025) =
50V, positive at the top of the open circuit. Thus, the ¯nal voltage
Vf = 50V.

3. To ¯nd the time constant for the circuit, we need to ¯nd the equivalent
resistance seen by the capacitor. To do this, redraw the circuit in
Fig. 7 in Step 2. Since there are no dependent sources in this circuit we
replace the current source with an open circuit. The resulting circuit is
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Figure 8: The circuit for First-Order Example 2, for t ¸ 0, used to establish
the time constant, ¿ .

Figure 9: The circuit for First-Order Example 2, for t ¸ 0.

shown in Fig. 8. We can make series and parallel combinations of the
remaining resistors to ¯nd the Th¶evenin equivalent resistance we need
for calculating the time constant. As seen in Fig. 8, the resistors are in
series, so

RTh = 2000 + 8000 = 10k−:

Using this resistance, we can calculate the time constant as follows:

¿ = RThC = (10;000)(50£ 10¡9 = 0:5 ms.

4. Now that we have calculated the initial value of the capacitor voltage,
the ¯nal value of the capacitor voltage, and the time constant, we can
use these values to determine the voltage drop across the capacitor for
t ¸ 0:

vC(t) = Vf+(Vo¡Vf )e¡t=¿ = 50+(100¡50)e¡t=(0:0005) = 50+50e¡2000t V, t ¸ 0

5. The quantity requested in the original circuit shown in Fig. 1 is the
current in the 2k− resistor, iR(t). To do this, we draw the circuit one
¯nal time for t ¸ 0 with all components intact, as shown in Fig. 9. We
can ¯nd this current by writing a KCL equation at the top essential
node:

iR(t) = 25 mA¡ iC(t):
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We need the current in the capacitor, iC(t), which we can get from the
relationship between voltage and current in a capacitor:

iC(t) = C
dvC(t)

dt
= (50£ 10¡9)(¡2000)(50e¡2000t) = ¡5e¡2000t mA

Thus,

iR(t) = 25¡ (¡5e¡2000t) = 25 + 5e¡2000tmA; t ¸ 0+

Now try using the ¯rst-order circuit analysis method for each of the prac-
tice problems below.
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Figure 10: The circuit for First-Order Practice Problem 1.

First-Order Practice Problem 1

Find vC(t) for the circuit in Fig. 10.

1. Draw the circuit in Fig. 10 for t < 0, replacing the capacitor with an
open circuit whose voltage is labeled Vo. Find the value of Vo, which is
the initial capacitor voltage.

2. Draw the circuit in Fig. 10 for t ¸ 0, replacing the capacitor with an
open circuit whose voltage is labeled Vf . Find the value of Vf , which
is the ¯nal capacitor voltage.
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3. Draw the circuit in Fig. 10 for t ¸ 0, replacing the capacitor with an
open circuit. Find the value of the equivalent resistance seen from the
open circuit where the capacitor was, which is the Th¶evenin equivalent
resistance, RTh. Then use this equivalent resistance to ¯nd the time
constant ¿ = RThC.

4. Find the expression for the voltage drop across the capacitor, vC(t)
from the initial voltage, the ¯nal voltage and the time constant.

5. Since there are no other voltages or currents requested in the circuit in
Fig. 10, the analysis is complete.
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Figure 11: The circuit for First-Order Practice Problem 2.

First-Order Practice Problem 2

Find vR(t) for the circuit in Fig. 11.

1. Draw the circuit in Fig. 11 for t < 0, replacing the inductor with a
short circuit whose current is labeled Io. Find the value of Io, which is
the initial inductor current.

2. Draw the circuit in Fig. 11 for t ¸ 0, replacing the inductor with a
short circuit whose current is labeled If . Find the value of If , which is
the ¯nal inductor current.
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3. Draw the circuit in Fig. 11 for t ¸ 0, replacing the inductor with an
open circuit. Find the value of the equivalent resistance seen from the
open circuit where the inductor was, which is the Th¶evenin equivalent
resistance, RTh. Then use this equivalent resistance to ¯nd the time
constant ¿ = L=RTh.

4. Find the expression for the current in the inductor, iL(t) from the initial
current, the ¯nal current and the time constant.

5. Draw the circuit in Fig. 11 for t ¸ 0 with all components intact. Using
this circuit, the expression for the inductor current iL(t), and circuit
analysis, ¯nd the requested quantity vR(t).
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Figure 12: The circuit for First-Order Practice Problem 3.

First-Order Practice Problem 3

Find vC(t) for the circuit in Fig. 12.

1. Draw the circuit in Fig. 12 for t < 0, replacing the capacitor with an
open circuit whose voltage is labeled Vo. Find the value of Vo, which is
the initial capacitor voltage.

2. Draw the circuit in Fig. 12 for t ¸ 0, replacing the capacitor with an
open circuit whose voltage is labeled Vf . Find the value of Vf , which
is the ¯nal capacitor voltage.
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3. Draw the circuit in Fig. 12 for t ¸ 0, replacing the capacitor with an
open circuit. Find the value of the equivalent resistance seen from the
open circuit where the capacitor was, which is the Th¶evenin equivalent
resistance, RTh. Then use this equivalent resistance to ¯nd the time
constant ¿ = RThC.

4. Find the expression for the voltage drop across the capacitor, vC(t)
from the initial voltage, the ¯nal voltage and the time constant.

5. Since there are no other voltages or currents requested in the circuit in
Fig. 12, the analysis is complete.
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Figure 13: The circuit for First-Order Practice Problem 4.

First-Order Practice Problem 4

Find iR(t) for the circuit in Fig. 13.

1. Draw the circuit in Fig. 13 for t < 0, replacing the inductor with a
short circuit whose current is labeled Io. Find the value of Io, which is
the initial inductor current.

2. Draw the circuit in Fig. 13 for t ¸ 0, replacing the inductor with a
short circuit whose current is labeled If . Find the value of If , which is
the ¯nal inductor current.
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3. Draw the circuit in Fig. 13 for t ¸ 0, replacing the inductor with an
open circuit. Find the value of the equivalent resistance seen from the
open circuit where the inductor was, which is the Th¶evenin equivalent
resistance, RTh. Then use this equivalent resistance to ¯nd the time
constant ¿ = L=RTh.

4. Find the expression for the current in the inductor, iL(t) from the initial
current, the ¯nal current and the time constant.

5. Draw the circuit in Fig. 13 for t ¸ 0 with all components intact. Using
this circuit, the expression for the inductor current iL(t), and circuit
analysis, ¯nd the requested quantity iR(t).
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Figure 14: The circuit for First-Order Practice Problem 5.

First-Order Practice Problem 5

Find iR(t) for the circuit in Fig. 14.

1. Draw the circuit in Fig. 14 for t < 0, replacing the capacitor with an
open circuit whose voltage is labeled Vo. Find the value of Vo, which is
the initial capacitor voltage.

2. Draw the circuit in Fig. 14 for t ¸ 0, replacing the capacitor with an
open circuit whose voltage is labeled Vf . Find the value of Vf , which
is the ¯nal capacitor voltage.
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3. Draw the circuit in Fig. 14 for t ¸ 0, replacing the capacitor with an
open circuit. Find the value of the equivalent resistance seen from the
open circuit where the capacitor was, which is the Th¶evenin equivalent
resistance, RTh. Then use this equivalent resistance to ¯nd the time
constant ¿ = RThC.

4. Find the expression for the voltage drop across the capacitor, vC(t)
from the initial voltage, the ¯nal voltage and the time constant.

5. Draw the circuit in Fig. 14 for t ¸ 0 with all components intact. Using
this circuit, the expression for the capacitor voltage vC(t), and circuit
analysis, ¯nd the requested quantity iR(t).
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Figure 15: The circuit for First-Order Practice Problem 6.

First-Order Practice Problem 6

Find vR(t) for the circuit in Fig. 15.

1. Draw the circuit in Fig. 15 for t < 0, replacing the inductor with a
short circuit whose current is labeled Io. Find the value of Io, which is
the initial inductor current.

2. Draw the circuit in Fig. 15 for t ¸ 0, replacing the inductor with a
short circuit whose current is labeled If . Find the value of If , which is
the ¯nal inductor current.
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3. Draw the circuit in Fig. 15 for t ¸ 0, replacing the inductor with an
open circuit. Find the value of the equivalent resistance seen from the
open circuit where the inductor was, which is the Th¶evenin equivalent
resistance, RTh. Then use this equivalent resistance to ¯nd the time
constant ¿ = L=RTh.

4. Find the expression for the current in the inductor, iL(t) from the initial
current, the ¯nal current and the time constant.

5. Draw the circuit in Fig. 15 for t ¸ 0 with all components intact. Using
this circuit, the expression for the inductor current iL(t), and circuit
analysis, ¯nd the requested quantity vR(t).

21



Figure 16: The circuit for First-Order Practice Problem 7.

First-Order Practice Problem 7

Find vR(t) for the circuit in Fig. 16.

1. Draw the circuit in Fig. 16 for t < 0, replacing the capacitor with an
open circuit whose voltage is labeled Vo. Find the value of Vo, which is
the initial capacitor voltage.

2. Draw the circuit in Fig. 16 for t ¸ 0, replacing the capacitor with an
open circuit whose voltage is labeled Vf . Find the value of Vf , which
is the ¯nal capacitor voltage.
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3. Draw the circuit in Fig. 16 for t ¸ 0, replacing the capacitor with an
open circuit. Find the value of the equivalent resistance seen from the
open circuit where the capacitor was, which is the Th¶evenin equivalent
resistance, RTh. Then use this equivalent resistance to ¯nd the time
constant ¿ = RThC.

4. Find the expression for the voltage drop across the capacitor, vC(t)
from the initial voltage, the ¯nal voltage and the time constant.

5. Draw the circuit in Fig. 16 for t ¸ 0 with all components intact. Using
this circuit, the expression for the capacitor voltage vC(t), and circuit
analysis, ¯nd the requested quantity vR(t).
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Figure 17: The circuit for First-Order Practice Problem 8.

First-Order Practice Problem 8

Find iL(t) for the circuit in Fig. 17.

1. Draw the circuit in Fig. 17 for t < 0, replacing the inductor with a
short circuit whose current is labeled Io. Find the value of Io, which is
the initial inductor current.

2. Draw the circuit in Fig. 17 for t ¸ 0, replacing the inductor with a
short circuit whose current is labeled If . Find the value of If , which is
the ¯nal inductor current.
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3. Draw the circuit in Fig. 17 for t ¸ 0, replacing the inductor with an
open circuit. Find the value of the equivalent resistance seen from the
open circuit where the inductor was, which is the Th¶evenin equivalent
resistance, RTh. Then use this equivalent resistance to ¯nd the time
constant ¿ = L=RTh.

4. Find the expression for the current in the inductor, iL(t) from the initial
current, the ¯nal current and the time constant.

5. Since there are no other voltages or currents requested in the circuit in
Fig. 17, the analysis is complete.
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Reading

² in Introductory Circuits for Electrical and Computer Engineering:
{ Section 5.1 | the inductor

{ Section 5.2 | the capacitor

{ Section 5.4 | natural response of RL and RC circuits

{ Section 5.5 | step response of RL and RC circuits

² in Electric Circuits, sixth edition:
{ Section 6.1 | the inductor

{ Section 6.2 | the capacitor

{ Section 7.1 | natural response of RL circuits

{ Section 7.2 | natural response of RC circuits

{ Section 7.3 | step response of RL and RC circuits

{ Section 7.4 | general solution for natural and step response

² Workbook section | Combining Resistors in Series and in Parallel

² Workbook section | Th¶evenin and Norton Equivalents

Additional Problems

² in Introductory Circuits for Electrical and Computer Engineering:
{ 5.34 | 5.36

{ 5.38 | 5.41

{ 5.43 | 5.45

{ 5.52 | 5.55

{ 5.59 | 5.64

{ 5.66

{ 5.68 | 5.70

² in Electric Circuits, sixth edition:
{ 7.4 | 7.6

{ 7.8 | 7.10

{ 7.13 | 7.15

{ 7.17

{ 7.19
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{ 7.22 | 7.23

{ 7.25

{ 7.29 | 7.34

{ 7.36

{ 7.38

{ 7.40

{ 7.42 | 7.47

{ 7.50 | 7.53

{ 7.55 | 7.58

Solutions

² First-Order Practice Problem 1:

Vo = 80 V Vf = 0 V ¿ = 0:25 ms vC(t) = 80e
¡4t V, t ¸ 0

² First-Order Practice Problem 2:

Io = 5 mA If = 0 A ¿ = 20¹s iR(t) = ¡5e¡50;000t A, t ¸ 0+

² First-Order Practice Problem 3:

Vo = ¡60 V Vf = 60 V ¿ = 320¹s vC(t) = 60¡120e¡3125t V, t ¸ 0

² First-Order Practice Problem 4:

Io = 5 mA If = 1:5 mA ¿ = 40¹s iR(t) = ¡0:5¡0:33e¡25;000t mA, t ¸ 0+

² First-Order Practice Problem 5:

Vo = 75 V Vf = 0 V ¿ = 800¹s iR(t) = 0:9375e
¡1250t mA, t ¸ 0+

² First-Order Practice Problem 6:

Io = 20 mA If = 0 A ¿ = 5¹s vR(t) = ¡300e¡200;000t V, t ¸ 0+

² First-Order Practice Problem 7:

Vo = 80 V Vf = ¡200 V ¿ = 4 ms vR(t) = ¡200+280e¡250t V, t ¸ 0+

² First-Order Practice Problem 8:

Io = ¡10 mA If = 20 mA ¿ = 5 ms iR(t) = ¡10+30e¡200t mA, t ¸ 0
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Natural and Step Response of
Second-Order (RLC) Circuits

Here we review and then practice the techniques that enable us to analyze
a limited group of circuits. These are circuits containing one equivalent re-
sistor, one equivalent inductor, and one equivalent capacitor. The resistor,
inductor, and capacitor can be connect in series or in parallel. Both the
inductor and the capacitor may have initial stored energy. The use of the
phrase \one equivalent" means that if the circuit contains two or more re-
sistors, for example, they must be arranged in such a way that they can be
combined in series and in parallel to form one single equivalent resistor. The
same holds for circuits that contain two or more inductors, or two or more
capacitors. These circuits are referred to as RLC circuits, and are also called
second-order circuits, because their describing equation is a second-order
di®erential equation.
These circuits usually contain a switch that is in one position for t < 0,

switches positions at t = 0, and remains at that second position inde¯nitely.
When the switch is in its ¯rst position, there may be an independent current
or voltage source in the circuit as well, used to generate the energy that the
inductor or capacitor will have stored at t = 0. When the switch moves
to its second position, there may or may not be an independent current or
voltage source in the circuit. If there is, it continues to supply energy to the
circuit inde¯nitely, and we call the analysis a step response problem. If
there is not an independent source in the circuit for t ¸ 0, then the energy
initially stored is dissipated to the resistor and we call the analysis a natural
response problem. Fortunately the natural response problem and the step
response problem are closely related, so we can use the same circuit analysis
technique for both problems.
Analyzing RLC circuits connected in series is very similar to analyzing

RLC circuits connected in parallel so we can also use the same circuit analysis
technique for both circuits. There are basically ¯ve steps in the analysis: ¯nd
the initial conditions, which consist of the initial current in the inductor and
the initial voltage drop across the capacitor; ¯nd the ¯nal values, which
are the ¯nal current in the inductor and the ¯nal voltage drop across the
capacitor; ¯nd the neper frequency, ®, which equals 1=2RC for the parallel
circuit and equals R=2L for the series circuit and the resonant radian
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frequency, !o, which is
q
1=LC, compare ®2 and !2o to determine whether

the response type is overdamped, underdamped, or critically damped
and write down the form of the response; use the response form to determine
the value of the response at t = 0 and the value of the ¯rst derivative of
the response at t = 0, then use the circuit to determine these same two
quantities, providing enough information to solve for the unknown coe±cients
in the response form; and ¯nally, use the calculated response to determine
the values of any other requested voltages and currents in the circuit. For
the natural response of the parallel RLC circuit the response we calculate
is the voltage drop across the parallel elements. For the natural response of
the series RLC circuit the response we calculate is the current through the
series elements. For the step response problems, we will calculate the only
quantity that has a non-zero ¯nal value | that is the voltage drop across
the capacitor in the series RLC circuit and the current through the inductor
in the parallel RLC circuit.
The analysis method for RLC circuits can be broken into the following

steps:

1. Redraw the circuit as it appears for t < 0, replacing the switch with an
open circuit if it is open, and with a short circuit if it is closed. Since
it is assumed that the switch has been in this position for a long time,
this places any inductors and capacitors in the presence of a constant
source. Therefore, an inductor should be replaced by a short circuit and
a capacitor should be replaced by an open circuit. Using this circuit
for t < 0, calculate the current through the short circuit, which is the
initial current Io and the voltage drop across the open circuit, which is
the initial voltage drop Vo.

2. Redraw the circuit as it appears for t ¸ 0, replacing the switch with an
open circuit if it is open and with a short circuit if it is closed. If there
are no independent sources in the circuit, this is the natural response
problem. The ¯nal value of the voltage drop across the capacitor Vf = 0
and the ¯nal value of the current through the inductor If = 0, since
all of the initially stored energy in the inductor and capacitor will be
dissipated by the resistor as t!1.
If there is an independent source in the circuit for t ¸ 0 this is the
step response problem. The inductor and capacitor will have been in
the presence of this independent source for a long time as t ! 1 so
replace the inductor with a short circuit and the capacitor with an
open circuit. Calculate the current in the short circuit, which is the
¯nal current, If , and the voltage drop across the open circuit, which is
the ¯nal voltage Vf . Make sure the direction of the current arrow is the
same when computing Io in Step 1 and when computing If in this step.
Make sure that the polarity of the voltage when you are calculating the
initial voltage Vo is the same as the polarity of the voltage when you
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are calculating the ¯nal value Vf .

3. Determine the response type by calculating !o and ®. For both series
and parallel RLC circuits,

!o =

s
1

LC

The computation of ® depends on the con¯guration of the circuit:

For series-connected RLC circuits ® =
R

2L
;

For parallel-connected RLC circuits ® =
1

2RC

Then compare ®2 and !2o to determine the form of the response:

² If ®2 > !2o , the response type is overdamped and of the form
Xf +A1e

¡s1t +A2e¡s2t.

² If ®2 < !2o , the response type is underdamped and of the form
Xf + (B1 cos!dt+B2 sin!dt)e

¡®t.

² If ®2 = !2o , the response type is critically damped and of the form
Xf +D1te

¡®t +D2e
¡®t.

In the above equations, Xf is the ¯nal value of the voltage or the
current, depending on whether you are determining the response form
for a voltage or a current. For the natural response problemXf = 0 and
you will determine the voltage drop for the parallel RLC circuit and the
current for the series RLC circuit. For the step response problem, the
non-zero ¯nal value will be the inductor current for the parallel RLC
circuit and the capacitor voltage drop form the series RLC circuit.

4. Write the equation describing the response you are calculating. If the
response form is overdamped, you will need to calculate s1 and s2 from
the equation

s1;2 = ¡®§
q
®2 ¡ !2o

If the response form is underdamped, you will need to calculate !d from
the equation

!d =
q
!2o ¡ ®2

If the response form is critically damped, you need make no additional
calculations. Regardless of the response form you will have two un-
speci¯ed coe±cients whose values will be used to satisfy the initial
conditions. Evaluate the initial value of the response (at t = 0) and
the initial value of the ¯rst derivative of the response. These equations
will involve the unknown coe±cients. Then use the circuit to determine
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the initial value of the response, which will be Io or Vo determined in
Step 1, and the initial value of the ¯rst derivative of the response,
whose value will also involve Io or Vo. Then equate the initial values
from the equation and its ¯rst derivative with the initial values from
the circuit quantities. This provides two equations which, when solved
simultaneously, will yield the values of the unknown coe±cients. Com-
plete this step by writing the response using the values of the unknown
coe±cients.

5. If a voltage or current other than the one you calculated in Step 4 was
requested for this circuit, use the calculated value to determine the
requested value. If the current or voltage you calculated was the one
sought for the circuit, you are ¯nished.

The following three examples illustrate the process of analyzing second-
order circuits. There is one example for each of the three di®erent response
types. The examples illustrate both the series RLC circuit and the parallel
RLC circuit and also illustrate both a natural response problem and a step
response problem.
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Figure 1: The circuit for Second-Order Example 1

Figure 2: The circuit for Second-Order Example 1, for t < 0, used to establish
the initial conditions.

Second-Order Example 1

Find vR(t) for the circuit in Fig. 1 for t ¸ 0.

Solution

1. Redraw the circuit in Fig. 1 with the switch in its left hand position.
This is the circuit for t < 0 and is used to establish the initial conditions.
It is assumed that the switch has been in this position for a long time,
so the inductor is replaced with a short circuit with current Io and
the capacitor is replaced by an open circuit with voltage drop Vo. The
resulting circuit is shown in Fig. 2. We must analyze this circuit to ¯nd
Io and Vo. Io is easy because there is no current °owing in the right
hand side of the circuit, due to the position of the switch. Therefore,

Io = 0 A.

To ¯nd Vo we use voltage division as follows:

Vo =
1000

1000 + 2000
(6) = 2 V.

2. Redraw the circuit in Fig. 1 with the switch in its right hand position.
This is the circuit for t ¸ 0 and is used to establish the ¯nal values,
since the circuit will be in this con¯guration as t ! 1. It is assumed
that the switch has been in this position for a long time, so the inductor
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Figure 3: The circuit for Second-Order Example 1, for t ¸ 0, used to establish
the ¯nal values.

Figure 4: The circuit for Second-Order Example 1, for t ¸ 0, used to calculate
® and !o.

is replaced with a short circuit with current If and the capacitor is re-
placed with an open circuit with voltage drop Vf . The resulting circuit
is shown in Fig. 3. As you can see, there are no independent sources in
this circuit, so the stored energy in the capacitor will dissipate in the
resistor leaving no energy in the capacitor. There was never any stored
energy in the inductor. Thus, the ¯nal voltage Vf = 0V and the ¯nal
current If = 0A.

3. To ¯nd ® and !o we consider the values of the resistor, the inductor,
and the capacitor in the circuit for t ¸ 0, as shown in Fig. 4. We
substitute these values into the equations appropriate for the parallel
RLC circuit:

® =
1

2RC
=

1

2(400)(125£ 10¡9) = 10;000 rad/sec;

!o =

s
1

LC
=

s
1

(0:125)(125£ 10¡9) = 8000 rad/sec.

Now we compare the values of ®2 and !2O to determine the response
type. Since ®2 > !2o , the response is overdamped, and since this is the
parallel RLC natural response problem, the response we determine is
the voltage across the parallel components, vR(t).

4. In order to specify an overdamped response, we need to calculate the
values of the complex frequencies s1 and s2:

s1;2 = ¡®§
q
®2 ¡ !2o = ¡10;000§

q
10;0002 ¡ 80002 = ¡10;000§6000
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Thus,

s1 = ¡4000 rad/sec and s2 = ¡16;000 rad/sec.
Therefore, the response is

vR(t) = A1e
¡4000t +A2e¡16;000t V.

To calculate the coe±cients A1 and A2, we need two equations. The
¯rst equation is the result of evaluating the response vR(t) at t = 0
and settling the result equal to the initial value of the voltage from the
circuit, Vo:

vR(0) = A1 +A2 = Vo = 6 V.

The second equation is the result of evaluating the ¯rst derivative of
the response vR(t) at t = 0 and setting the result equal to the initial
value of the ¯rst derivative of the voltage from the circuit. The ¯rst
derivative of the response vR(t) at t = 0 is

dvR(0)

dt
= ¡4000A1 ¡ 16;000A2

The ¯rst derivative of the vR(t) from the circuit is the same as the
¯rst derivative of the voltage across the capacitor, since the circuit
components are in parallel. For the capacitor we know that

iC(t) = C
dvC(t)

dt

so

iC(0) = C
dvC(0)

dt

and
dvC(0)

dt
=
1

C
iC(0):

We don't know the value of the initial current in the capacitor, iC(0),
but we do know that the sum of the capacitor current, the inductor
current, and the resistor current must be zero, from KCL. Therefore,

dvC(0)

dt
=

1

C
iC(0) =

1

C
[¡iL(0)¡ iR(0)]

=
1

C

·
¡Io ¡ Vo

R

¸
=

1

125£ 10¡9
·
0¡ 2

400

¸
= ¡40; 000 V/s.

To summarize, the two equations used to solve for A1 and A2 are

A1 +A2 = 2
¡4000A1 ¡ 16;000A2 = ¡40;000
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Since these equations are already in standard form, we can use the
calculator to solve them:

A1 = ¡0:667; A2 = 2:667:

Thus,
vR(t) = ¡0:667e¡4000t + 2:667e¡16;000t V, t ¸ 0:

5. Since the voltage drop across the parallel components was the only
quantity requested in the original circuit shown in Fig. 1, no further
analysis is required.
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Figure 5: The circuit for Second-Order Example 2

Figure 6: The circuit for Second-Order Example 2, for t < 0, used to establish
the initial conditions.

Second-Order Example 2

Find vC(t) for the circuit in Fig. 5 for t ¸ 0.

Solution

1. Redraw the circuit in Fig. 5 with the switch in its down position. This
is the circuit for t < 0 and is used to establish the initial conditions.
It is assumed that the switch has been in this position for a long time,
so the inductor is replaced with a short circuit with current Io and
the capacitor is replaced by an open circuit with voltage drop Vo. The
resulting circuit is shown in Fig. 6. We must analyze this circuit to ¯nd
Io and Vo. Io can be found by applying Ohm's law. Therefore,

Io =
25¡ 15

2000 + 3000
= 5 mA.

To ¯nd Vo we write a node voltage equation as follows:

Vo ¡ 25
2000

+
Vo ¡ 15
3000

= 0:

Solving for Vo we get
Vo = 21 V.
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Figure 7: The circuit for Second-Order Example 2, for t ¸ 0, used to establish
the ¯nal values.
a

Figure 8: The circuit for Second-Order Example 2, for t ¸ 0, used to calculate
® and !o.

2. Redraw the circuit in Fig. 5 with the switch in its up position. This
is the circuit for t ¸ 0 and is used to establish the ¯nal values, since
the circuit will be in this con¯guration as t ! 1. It is assumed that
the switch has been in this position for a long time, so the inductor
is replaced with a short circuit with current If and the capacitor is
replaced with an open circuit with voltage drop Vf . Notice that we
have also combined the parallel resistors into a single resistor with the
value 3000k6000 = 2 k−. The resulting circuit is shown in Fig. 7. As
you can see, there is an independent source in this circuit, so this is
a step response problem. Because of the open circuit created by the
capacitor, there is no current, so

If = 0 A and Vf = 15 V.

3. To ¯nd ® and !o we consider the values of the resistor, the inductor,
and the capacitor in the circuit for t ¸ 0, as shown in Fig. 8. We
substitute these values into the equations appropriate for the series
RLC circuit:

® =
R

2L
=
3000

2(2:5)
= 400 rad/sec;

!o =

s
1

LC
=

s
1

(2:5)(1:6£ 10¡6) = 500 rad/sec.

Now we compare the values of ®2 and !2O to determine the response
type. Since ®2 < !2o , the response is underdamped, and since this is
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the series RLC step response problem and the only non-zero ¯nal value
is the voltage drop across the capacitor, the response we determine is
the voltage across the capacitor, vC(t).

4. In order to specify an underdamped response, we need to calculate the
values of the damped radian frequency !d:

!d =
q
!2o ¡ ®2 =

p
5002 ¡ 4002 = 300 rad/sec.

Therefore, the response is

vC(t) = Vf + (B1 cos 300t+B2 sin 300t)e
¡400t V.

To calculate the coe±cients B1 and B2, we need two equations. The
¯rst equation is the result of evaluating the response vC(t) at t = 0
and settling the result equal to the initial value of the voltage from the
circuit, Vo:

vC(0) = Vf +B1 = Vo = 21 V.

The second equation is the result of evaluating the ¯rst derivative of
the response vC(t) at t = 0 and setting the result equal to the initial
value of the ¯rst derivative of the voltage from the circuit. The ¯rst
derivative of vC(t) at t = 0 is

dvC(0)

dt
= ¡400B1 + 500B2

The ¯rst derivative of the vC(t) from the circuit can be found from the
describing equation for the voltage and current in a capacitor:

iC(t) = C
dvC(t)

dt

so

iC(0) = C
dvC(0)

dt

and
dvC(0)

dt
=
1

C
iC(0):

The initial current in the capacitor, iC(0), has the same value as the
initial value of the current in the inductor, since they are in series, but
the opposite sign. Therefore,

dvC(0)

dt
=
1

C
iC(0) =

1

C
Io =

1

1:6£ 10¡6 (¡0:005) = ¡3125:

To summarize, the two equations used to solve for A1 and A2 are

B1 = 21¡ 15 = 6
¡400B1 + 300B2 = ¡3125
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Since these equations are already in standard form, we can use the
calculator to solve them:

B1 = 6; B2 = ¡2:417:

Thus,

vC(t) = 15 + (6 cos 300t¡ 2:417 sin 300t)e¡400t V, t ¸ 0:

5. Since the voltage drop across the capacitor was the only quantity re-
quested in the original circuit shown in Fig. 5, no further analysis is
required.
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Figure 9: The circuit for Second-Order Example 3

Figure 10: The circuit for Second-Order Example 3, for t ¸ 0, used to
establish the ¯nal values.

Second-Order Example 3

There is no initial energy stored in the circuit in Fig. 9. Find iL(t) for this
circuit for t ¸ 0.

Solution

1. Since we have already been told that there is no initial stored energy
in the circuit, we don't need to analyze the circuit for t < 0 to ¯nd the
initial conditions, since they are both zero. Therefore,

Io = 0 A and Vo = 0 V.

2. Redraw the circuit in Fig. 9 with the switch closed. This is the circuit
for t ¸ 0 and is used to establish the ¯nal values, since the circuit will
be in this con¯guration as t ! 1. It is assumed that the switch has
been in this position for a long time, so the inductor is replaced with
a short circuit with current If and the capacitor is replaced with an
open circuit with voltage drop Vf . We have also performed a source
transformation to turn the parallel combination of the current source
and resistor into a series combination of a voltage source and the same
resistor. The resulting circuit is shown in Fig. 10. As you can see,
there is an independent source in this circuit, so this is a step response
problem. Because of the open circuit created by the capacitor, there is
no current, so

If = 0 A and Vf = 10 V.

13



Figure 11: The circuit for Second-Order Example 3, for t ¸ 0, used to
calculate ® and !o.

3. To ¯nd ® and !o we consider the values of the resistor, the inductor,
and the capacitor in the circuit for t ¸ 0, as shown in Fig. 11. We
substitute these values into the equations appropriate for the series
RLC circuit:

® =
R

2L
=
1000

2(0:2)
= 2500 rad/sec;

!o =

s
1

LC
=

s
1

(0:2)(0:8£ 10¡6) = 2500 rad/sec.

Now we compare the values of ®2 and !2O to determine the response
type. Since ®2 = !2o , the response is critically damped, and since this is
the series RLC step response problem and the only non-zero ¯nal value
is the voltage drop across the capacitor, the response we determine is
the voltage across the capacitor, vC(t).

4. We don't need to make any additional calculations for the critically
damped response type. Therefore, the response is

vC(t) = Vf +D1te
¡2500t +D2e

¡2500t V.

To calculate the coe±cients D1 and D2, we need two equations. The
¯rst equation is the result of evaluating the response vC(t) at t = 0
and settling the result equal to the initial value of the voltage from the
circuit, Vo:

vC(0) = Vf +D2 = Vo = 0 V.

The second equation is the result of evaluating the ¯rst derivative of
the response vC(t) at t = 0 and setting the result equal to the initial
value of the ¯rst derivative of the voltage from the circuit. The ¯rst
derivative of the vC(t) at t = 0 is

dvC(0)

dt
= D1 ¡ 2500D2

The ¯rst derivative of vC(t) from the circuit can be found from the
describing equation for the voltage and current in a capacitor:

iC(t) = C
dvC(t)

dt

14



so

iC(0) = C
dvC(0)

dt

and
dvC(0)

dt
=
1

C
iC(0):

The initial current in the capacitor, iC(0), has the same value as the
initial value of the current in the inductor, since they are in series.
Therefore,

dvC(0)

dt
=
1

C
iC(0) =

1

C
Io =

1

1:6£ 10¡6 (0) = 0:

To summarize, the two equations used to solve for D1 and D2 are

D2 = 0¡ 10 = ¡10
D1 ¡ 2500D2 = 0

Since these equations are already in standard form, we can use the
calculator to solve them:

D1 = ¡25;000; D2 = ¡10:

Thus,
vC(t) = 10¡ 25;000te¡2500t ¡ 10e¡2500t V, t ¸ 0:

5. Now we must calculate the quantity requested in the original circuit
shown in Fig. 5, which is the current in the inductor, iL(t). Since
this is a series RLC circuit, the current in the inductor is the same
as the current in the capacitor, whose value we can calculate from the
derivative of the voltage drop across the capacitor:

iL(t) = iC(t) = C
dv(t)

dt
= (0:8£ 10¡6)[¡25;000e¡ 2500t+ (¡2500)(¡25;000)te¡2500t

+(¡2500)(¡10)e¡2500t]
= 50te¡2500t A, t ¸ 0:

Now try using the second-order circuit analysis method for each of the
practice problems below.
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Figure 12: The circuit for Second-Order Practice Problem 1.

Second-Order Practice Problem 1

There is no initial stored energy in the circuit shown in Fig. 12. Find vC(t)
for this circuit.

1. Find the initial current through the inductor, Io and the initial voltage
drop across the capacitor, Vo. To do this you may need to redraw the
circuit in Fig. 12 for t < 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.
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2. Find the ¯nal current through the inductor, If and the ¯nal voltage
drop across the capacitor, Vf . To do this you may need to redraw the
circuit in Fig. 12 for t ¸ 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

3. To ¯nd ® and !o, draw the circuit in Fig. 12 for t ¸ 0. Use the values
of the resistor, inductor, and capacitor and the appropriate equations
for ® and !o. Then compare the values of ®

2 and !2o to determine
the form of the response. Remember that the response variable will
be the current in the inductor for the natural response of the series
RLC circuit and for the step response of the parallel RLC circuit; the
response variable will be the voltage drop across the capacitor for the
natural response of the parallel RLC circuit and for the step response
of the series RLC circuit.

17



4. Write the two equations needed to solve for the coe±cients in the re-
sponse from Step 3. The ¯rst equation is constructed by equating the
value of the response equation at t = 0 with the initial condition for the
voltage or current from the circuit, in Step 1. The second equation is
constructed by equation the value of the ¯rst derivative of the response
equation at t = 0 with the initial condition for the ¯rst derivative of
the voltage or current in the circuit, which will be determined using
additional circuit analysis. Solve the two equations and write the ¯nal
form of the response.

5. If the quantity requested for the circuit in Fig. 12 is the same as the
one you calculated in Step 4, you are done. Otherwise, use additional
circuit analysis to calculate the quantity requested in Fig. 12.
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Figure 13: The circuit for Second-Order Practice Problem 2.

Second-Order Practice Problem 2

Find iR(t) for the circuit shown in Fig. 13.

1. Find the initial current through the inductor, Io and the initial voltage
drop across the capacitor, Vo. To do this you may need to redraw the
circuit in Fig. 13 for t < 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.
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2. Find the ¯nal current through the inductor, If and the ¯nal voltage
drop across the capacitor, Vf . To do this you may need to redraw the
circuit in Fig. 13 for t ¸ 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

3. To ¯nd ® and !o, draw the circuit in Fig. 13 for t ¸ 0. Use the values
of the resistor, inductor, and capacitor and the appropriate equations
for ® and !o. Then compare the values of ®

2 and !2o to determine
the form of the response. Remember that the response variable will
be the current in the inductor for the natural response of the series
RLC circuit and for the step response of the parallel RLC circuit; the
response variable will be the voltage drop across the capacitor for the
natural response of the parallel RLC circuit and for the step response
of the series RLC circuit.
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4. Write the two equations needed to solve for the coe±cients in the re-
sponse from Step 3. The ¯rst equation is constructed by equating the
value of the response equation at t = 0 with the initial condition for the
voltage or current from the circuit, in Step 1. The second equation is
constructed by equation the value of the ¯rst derivative of the response
equation at t = 0 with the initial condition for the ¯rst derivative of
the voltage or current in the circuit, which will be determined using
additional circuit analysis. Solve the two equations and write the ¯nal
form of the response.

5. If the quantity requested for the circuit in Fig. 13 is the same as the
one you calculated in Step 4, you are done. Otherwise, use additional
circuit analysis to calculate the quantity requested in Fig. 13.
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Figure 14: The circuit for Second-Order Practice Problem 3.

Second-Order Practice Problem 3

Find iL(t) for the circuit shown in Fig. 14.

1. Find the initial current through the inductor, Io and the initial voltage
drop across the capacitor, Vo. To do this you may need to redraw the
circuit in Fig. 14 for t < 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.
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2. Find the ¯nal current through the inductor, If and the ¯nal voltage
drop across the capacitor, Vf . To do this you may need to redraw the
circuit in Fig. 14 for t ¸ 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

3. To ¯nd ® and !o, draw the circuit in Fig. 14 for t ¸ 0. Use the values
of the resistor, inductor, and capacitor and the appropriate equations
for ® and !o. Then compare the values of ®

2 and !2o to determine
the form of the response. Remember that the response variable will
be the current in the inductor for the natural response of the series
RLC circuit and for the step response of the parallel RLC circuit; the
response variable will be the voltage drop across the capacitor for the
natural response of the parallel RLC circuit and for the step response
of the series RLC circuit.
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4. Write the two equations needed to solve for the coe±cients in the re-
sponse from Step 3. The ¯rst equation is constructed by equating the
value of the response equation at t = 0 with the initial condition for the
voltage or current from the circuit, in Step 1. The second equation is
constructed by equation the value of the ¯rst derivative of the response
equation at t = 0 with the initial condition for the ¯rst derivative of
the voltage or current in the circuit, which will be determined using
additional circuit analysis. Solve the two equations and write the ¯nal
form of the response.

5. If the quantity requested for the circuit in Fig. 14 is the same as the
one you calculated in Step 4, you are done. Otherwise, use additional
circuit analysis to calculate the quantity requested in Fig. 14.
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Figure 15: The circuit for Second-Order Practice Problem 4.

Second-Order Practice Problem 4

There is no initial energy stored in the circuit shown in Fig. 15. Find vR(t)
for this circuit.

1. Find the initial current through the inductor, Io and the initial voltage
drop across the capacitor, Vo. To do this you may need to redraw the
circuit in Fig. 15 for t < 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.
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2. Find the ¯nal current through the inductor, If and the ¯nal voltage
drop across the capacitor, Vf . To do this you may need to redraw the
circuit in Fig. 15 for t ¸ 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

3. To ¯nd ® and !o, draw the circuit in Fig. 15 for t ¸ 0. Use the values
of the resistor, inductor, and capacitor and the appropriate equations
for ® and !o. Then compare the values of ®

2 and !2o to determine
the form of the response. Remember that the response variable will
be the current in the inductor for the natural response of the series
RLC circuit and for the step response of the parallel RLC circuit; the
response variable will be the voltage drop across the capacitor for the
natural response of the parallel RLC circuit and for the step response
of the series RLC circuit.
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4. Write the two equations needed to solve for the coe±cients in the re-
sponse from Step 3. The ¯rst equation is constructed by equating the
value of the response equation at t = 0 with the initial condition for the
voltage or current from the circuit, in Step 1. The second equation is
constructed by equation the value of the ¯rst derivative of the response
equation at t = 0 with the initial condition for the ¯rst derivative of
the voltage or current in the circuit, which will be determined using
additional circuit analysis. Solve the two equations and write the ¯nal
form of the response.

5. If the quantity requested for the circuit in Fig. 15 is the same as the
one you calculated in Step 4, you are done. Otherwise, use additional
circuit analysis to calculate the quantity requested in Fig. 15.
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Figure 16: The circuit for Second-Order Practice Problem 5.

Second-Order Practice Problem 5

Find iL(t) for the circuit shown in Fig. 16.

1. Find the initial current through the inductor, Io and the initial voltage
drop across the capacitor, Vo. To do this you may need to redraw the
circuit in Fig. 16 for t < 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.
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2. Find the ¯nal current through the inductor, If and the ¯nal voltage
drop across the capacitor, Vf . To do this you may need to redraw the
circuit in Fig. 16 for t ¸ 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

3. To ¯nd ® and !o, draw the circuit in Fig. 16 for t ¸ 0. Use the values
of the resistor, inductor, and capacitor and the appropriate equations
for ® and !o. Then compare the values of ®

2 and !2o to determine
the form of the response. Remember that the response variable will
be the current in the inductor for the natural response of the series
RLC circuit and for the step response of the parallel RLC circuit; the
response variable will be the voltage drop across the capacitor for the
natural response of the parallel RLC circuit and for the step response
of the series RLC circuit.
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4. Write the two equations needed to solve for the coe±cients in the re-
sponse from Step 3. The ¯rst equation is constructed by equating the
value of the response equation at t = 0 with the initial condition for the
voltage or current from the circuit, in Step 1. The second equation is
constructed by equation the value of the ¯rst derivative of the response
equation at t = 0 with the initial condition for the ¯rst derivative of
the voltage or current in the circuit, which will be determined using
additional circuit analysis. Solve the two equations and write the ¯nal
form of the response.

5. If the quantity requested for the circuit in Fig. 16 is the same as the
one you calculated in Step 4, you are done. Otherwise, use additional
circuit analysis to calculate the quantity requested in Fig. 16.
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Figure 17: The circuit for Second-Order Practice Problem 6.

Second-Order Practice Problem 6

There is no initial energy stored in the circuit shown in Fig. 17. Find iL(t)
for this circuit.

1. Find the initial current through the inductor, Io and the initial voltage
drop across the capacitor, Vo. To do this you may need to redraw the
circuit in Fig. 17 for t < 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.
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2. Find the ¯nal current through the inductor, If and the ¯nal voltage
drop across the capacitor, Vf . To do this you may need to redraw the
circuit in Fig. 17 for t ¸ 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

3. To ¯nd ® and !o, draw the circuit in Fig. 17 for t ¸ 0. Use the values
of the resistor, inductor, and capacitor and the appropriate equations
for ® and !o. Then compare the values of ®

2 and !2o to determine
the form of the response. Remember that the response variable will
be the current in the inductor for the natural response of the series
RLC circuit and for the step response of the parallel RLC circuit; the
response variable will be the voltage drop across the capacitor for the
natural response of the parallel RLC circuit and for the step response
of the series RLC circuit.
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4. Write the two equations needed to solve for the coe±cients in the re-
sponse from Step 3. The ¯rst equation is constructed by equating the
value of the response equation at t = 0 with the initial condition for the
voltage or current from the circuit, in Step 1. The second equation is
constructed by equation the value of the ¯rst derivative of the response
equation at t = 0 with the initial condition for the ¯rst derivative of
the voltage or current in the circuit, which will be determined using
additional circuit analysis. Solve the two equations and write the ¯nal
form of the response.

5. If the quantity requested for the circuit in Fig. 17 is the same as the
one you calculated in Step 4, you are done. Otherwise, use additional
circuit analysis to calculate the quantity requested in Fig. 17.
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Figure 18: The circuit for Second-Order Practice Problem 7.

Second-Order Practice Problem 7

Find vR(t) for the circuit shown in Fig. 18.

1. Find the initial current through the inductor, Io and the initial voltage
drop across the capacitor, Vo. To do this you may need to redraw the
circuit in Fig. 18 for t < 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

34



2. Find the ¯nal current through the inductor, If and the ¯nal voltage
drop across the capacitor, Vf . To do this you may need to redraw the
circuit in Fig. 18 for t ¸ 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

3. To ¯nd ® and !o, draw the circuit in Fig. 18 for t ¸ 0. Use the values
of the resistor, inductor, and capacitor and the appropriate equations
for ® and !o. Then compare the values of ®

2 and !2o to determine
the form of the response. Remember that the response variable will
be the current in the inductor for the natural response of the series
RLC circuit and for the step response of the parallel RLC circuit; the
response variable will be the voltage drop across the capacitor for the
natural response of the parallel RLC circuit and for the step response
of the series RLC circuit.

35



4. Write the two equations needed to solve for the coe±cients in the re-
sponse from Step 3. The ¯rst equation is constructed by equating the
value of the response equation at t = 0 with the initial condition for the
voltage or current from the circuit, in Step 1. The second equation is
constructed by equation the value of the ¯rst derivative of the response
equation at t = 0 with the initial condition for the ¯rst derivative of
the voltage or current in the circuit, which will be determined using
additional circuit analysis. Solve the two equations and write the ¯nal
form of the response.

5. If the quantity requested for the circuit in Fig. 18 is the same as the
one you calculated in Step 4, you are done. Otherwise, use additional
circuit analysis to calculate the quantity requested in Fig. 18.
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Figure 19: The circuit for Second-Order Practice Problem 8.

Second-Order Practice Problem 8

Find vL(t) for the circuit shown in Fig. 19.

1. Find the initial current through the inductor, Io and the initial voltage
drop across the capacitor, Vo. To do this you may need to redraw the
circuit in Fig. 19 for t < 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.
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2. Find the ¯nal current through the inductor, If and the ¯nal voltage
drop across the capacitor, Vf . To do this you may need to redraw the
circuit in Fig. 19 for t ¸ 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

3. To ¯nd ® and !o, draw the circuit in Fig. 19 for t ¸ 0. Use the values
of the resistor, inductor, and capacitor and the appropriate equations
for ® and !o. Then compare the values of ®

2 and !2o to determine
the form of the response. Remember that the response variable will
be the current in the inductor for the natural response of the series
RLC circuit and for the step response of the parallel RLC circuit; the
response variable will be the voltage drop across the capacitor for the
natural response of the parallel RLC circuit and for the step response
of the series RLC circuit.
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4. Write the two equations needed to solve for the coe±cients in the re-
sponse from Step 3. The ¯rst equation is constructed by equating the
value of the response equation at t = 0 with the initial condition for the
voltage or current from the circuit, in Step 1. The second equation is
constructed by equation the value of the ¯rst derivative of the response
equation at t = 0 with the initial condition for the ¯rst derivative of
the voltage or current in the circuit, which will be determined using
additional circuit analysis. Solve the two equations and write the ¯nal
form of the response.

5. If the quantity requested for the circuit in Fig. 19 is the same as the
one you calculated in Step 4, you are done. Otherwise, use additional
circuit analysis to calculate the quantity requested in Fig. 19.
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Figure 20: The circuit for Second-Order Practice Problem 9.

Second-Order Practice Problem 9

Find vR(t) for the circuit shown in Fig. 20.

1. Find the initial current through the inductor, Io and the initial voltage
drop across the capacitor, Vo. To do this you may need to redraw the
circuit in Fig. 20 for t < 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.
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2. Find the ¯nal current through the inductor, If and the ¯nal voltage
drop across the capacitor, Vf . To do this you may need to redraw the
circuit in Fig. 20 for t ¸ 0, replacing the inductor with a short circuit
and the capacitor with an open circuit.

3. To ¯nd ® and !o, draw the circuit in Fig. 20 for t ¸ 0. Use the values
of the resistor, inductor, and capacitor and the appropriate equations
for ® and !o. Then compare the values of ®

2 and !2o to determine
the form of the response. Remember that the response variable will
be the current in the inductor for the natural response of the series
RLC circuit and for the step response of the parallel RLC circuit; the
response variable will be the voltage drop across the capacitor for the
natural response of the parallel RLC circuit and for the step response
of the series RLC circuit.
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4. Write the two equations needed to solve for the coe±cients in the re-
sponse from Step 3. The ¯rst equation is constructed by equating the
value of the response equation at t = 0 with the initial condition for the
voltage or current from the circuit, in Step 1. The second equation is
constructed by equation the value of the ¯rst derivative of the response
equation at t = 0 with the initial condition for the ¯rst derivative of
the voltage or current in the circuit, which will be determined using
additional circuit analysis. Solve the two equations and write the ¯nal
form of the response.

5. If the quantity requested for the circuit in Fig. 20 is the same as the
one you calculated in Step 4, you are done. Otherwise, use additional
circuit analysis to calculate the quantity requested in Fig. 20.
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Reading

² in Introductory Circuits for Electrical and Computer Engineering:
{ Section 6.1 | natural response of parallel RLC circuits

{ Section 6.2 | forms of the natural response

{ Section 6.3 | step response of parallel RLC circuits

{ Section 6.4 | natural and step response of series RLC circuits

² in Electric Circuits, sixth edition:
{ Section 8.1 | natural response of parallel RLC circuits

{ Section 8.2 | forms of the natural response

{ Section 8.3 | step response of parallel RLC circuits

{ Section 8.4 | natural and step response of series RLC circuits

Additional Problems

² in Introductory Circuits for Electrical and Computer Engineering:
{ 6.7 | 6.10

{ 6.15 | 6.22

{ 6.24 | 6.25

{ 6.28 | 6.41

{ 6.44

{ 6.47 | 6.48

² in Electric Circuits, sixth edition:
{ 8.7 | 8.10

{ 8.15 | 8.22

{ 8.24 | 8.25

{ 8.28 | 8.41

{ 8.44

{ 8.47 | 8.48
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Solutions

² Second-Order Practice Problem 1:

® = 800 rad/sec; !o = 1000 rad/sec;

vC(t) = 30¡ (30 cos 600t+ 40 sin 600t)e¡800t V, t ¸ 0
² Second-Order Practice Problem 2:

® = 50 rad/sec; !o = 40 rad/sec;

iR(t) = 40e
¡80t ¡ 40e¡20t mA, t ¸ 0

² Second-Order Practice Problem 3:

® = 5000 rad/sec; !o = 5000 rad/sec;

iL(t) = ¡5e¡5000t + 50;000te¡5000t mA, t ¸ 0
² Second-Order Practice Problem 4:

® = 25 rad/sec; !o = 15 rad/sec;

vR(t) = 5625e
¡5t ¡ 5625e¡45t V, t ¸ 0

² Second-Order Practice Problem 5:

® = 2400 rad/sec; !o = 2500 rad/sec;

iL(t) = ¡100 sin 700te¡2400t A, t ¸ 0
² Second-Order Practice Problem 6:

® = 1000 rad/sec; !o = 1000 rad/sec;

iL(t) = 50¡ 50;000te¡1000t ¡ 50e¡1000t mA, t ¸ 0
² Second-Order Practice Problem 7:

® = 2500 rad/sec; !o = 2000 rad/sec;

vR(t) = 500e
¡1000t ¡ 20;000e¡4000t V, t ¸ 0

² Second-Order Practice Problem 8:

® = 25;000 rad/sec; !o = 25;000 rad/sec;

vL(t) = 12e
¡25;000t ¡ 300;000te¡25;000t V, t ¸ 0

² Second-Order Practice Problem 9:

® = 400 rad/sec; !o = 500 rad/sec;

vR(t) = 13:33 sin 300te
¡400t V, t ¸ 0
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Sinusoidal Steady-State
Circuits and AC Power

Here we analyze circuits with one or more independent sources which are
sinusoidal. This means, for example, that if there is a voltage source in the
circuit, it can be described by the equation

vs(t) = Vm cos(!t+ Á) V

where Vm is the amplitude of the source in volts, ! is the frequency of the
source in rad/sec, and Á is the phase angle of the source in degrees. When
a source can be described with a sinusoid, we call it an AC source. The
analysis technique illustrated here will produce the steady-state response
of the circuit, not the complete response. The steady-state response is the
value of the desired voltage or current that remains after the natural response
has decayed to zero, as it always will. The steady-state response always has
the same form as the voltage or current source. Since all of the circuits
we consider have sinusoidal sources, the steady-state response will also be
sinusoidal, or AC. Therefore, the circuit analysis will produce the AC steady-
state response of the circuit. Remember that the AC steady-state response
will be a sinusoid with the same frequency as the frequency of the voltage or
current source. Therefore, in analyzing the circuits we need only calculate
the magnitude and phase angle of the response, since the frequency of the
response is already known.
We use the concept of a phasor, which is a complex number that repre-

sents the magnitude and phase angle of a sinusoid, to transform our circuit
from the time domain into the frequency domain. In the frequency domain,
the circuit components and their connections remain the same. Voltages and
currents are replaced by phasors, and circuit component values are replaced
by impedances. In the time domain, the equations describing the rela-
tionship between voltage and current are di®erential equations, but in the
frequency domain the equations describing the relationship between phasor
voltage and phasor current are algebraic equations. Thus, we can treat our
phasor domain circuits like resistive circuits in terms of the analysis tech-
niques. We can use the node voltage method, the mesh current method, or
any other technique we choose, and the result will always be one or more
algebraic equations, which we can place in standard form and solve using a
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calculator. The currents and voltages we solve for will be phasors.
We can check our frequency domain analysis using the concept of com-

plex power, which is a complex number whose real part is average power
and whose imaginary part is reactive power. We can calculate the complex
power using phasor voltage and current for every component in our frequency
domain circuit. If the net complex power is zero, the power in the circuit
balances and the phasor voltage and current values are consistent. Then
we can transform our phasor currents and voltages back into the frequency
domain, where they describe the AC steady-state response of the circuit.
The analysis method for AC steady-state circuits can be broken into the

following steps:

1. Redraw the circuit as it appears in the time domain, copying all of the
components and their interconnections. This is the frequency domain
circuit. For every voltage or current in the time domain that is speci¯ed
as a sinusoid, label the corresponding element in the frequency domain
with the phasor transform of the sinusoid. For every voltage or current
in the time domain that is speci¯ed with a symbol, like vo or iL, label the
corresponding element in the frequency domain with a phasor symbol,
like Vo or IL. This includes the voltages and currents associated with
dependent sources. Finally, replace the component values associated
with all resistors, inductors, and capacitors in the time domain circuit
with impedances in the frequency domain circuit. Remember that the
impedance of a component is dependent on its time-domain value and,
except for resistors, on the frequency of the source in the time domain.
Use the following equations:

ZR = R ZL = j!L ZC =
1

j!C
=
¡j
!C

2. Choose a circuit analysis technique that suits the frequency-domain
circuit. All of the analysis techniques that work for resistive circuits
with DC sources can be used for the frequency domain circuit. These
techniques include the node voltage method, the mesh current method,
voltage and current division, source transformation, and the circuit
simpli¯cation techniques like combining impedances in series and in
parallel and calculating Th¶evenin or Norton equivalents. Using what-
ever circuit analysis techniques you choose, write the equations for the
circuit, put them in standard form, and solve them using a calculator,
a computer, or on paper. Your solution will be in the form of a voltage
or current phasor.

3. Check your answer by performing an AC power balance. This means
that the sum of the complex power for every component must be zero.
Stated another way, this means that the sum of the average power for all
components is zero and the sum of the reactive power for all components
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Figure 1: The circuit for AC Steady-State Example 1

is zero. Remember that the average power for inductors and capacitors
is zero, while the reactive power for resistors is zero. Independent and
dependent sources can have non-zero average and reactive power. It is
important to use the passive sign convention correctly when performing
the power computation.

4. Inverse phasor transform your result in Step 2 to get the steady-state
result in the time domain. Remember that the response will always be
in the form of a sinusoid whose frequency is the same as the frequency
of the voltage or current sources. The phasor result in the frequency
domain speci¯es the amplitude and phase angle of the time domain
response.

The two examples that follow illustrate the process of analyzing circuits
with sinusoidal sources and calculating the steady-state response.

AC Steady-State Example 1

Find the steady-state value of vo(t) for the circuit in Fig. 1.

Solution

1. Redraw the circuit in Fig. 1. Label the voltage source in the frequency
domain with the phasor transform of the sinusoid from the voltage
source in the time domain:

Pf10 cos(1000t+ 90±)g = 10/90± V.
Then label the current source in the frequency domain with the phasor
transform of the sinusoid from the current source in the time domain:

Pf2:5 cos 1000tg = 2:5/0± A.
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Figure 2: The circuit for AC Steady-State Example 1, transformed into the
frequency domain.

Figure 3: The circuit in Fig. 2 with mesh current phasors identi¯ed.

Label the output voltage vo from the time domain circuit with a voltage
phasor symbol, Vo. Label the resistors, inductors, and capacitors with
their impedances:

Z5− = 5− ZL = j(1000)(0:005) = j5−

Z10− = 10− ZC =
¡j

(1000)(100£ 10¡6) = ¡j10−

The ¯nal frequency domain circuit is shown in Fig. 2.

2. Analyze the frequency domain circuit in Fig. 2 to determine the value
of the phasor Vo. We'll illustrate by using the mesh current method
for this circuit. There are three meshes, but one of the mesh currents
is already speci¯ed by the current source on the perimeter of the upper
mesh. Therefore, we need to label only the lower left and right meshes
with phasor mesh currents, as shown in Fig. 3. The mesh current
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equations are as follows:

Lower left mesh: ¡10/90± + j5(I1 + 2:5/0±) + 5(I1 ¡ I2) = 0

Lower right mesh: 10(I2 + 2:5/0
±) + (¡j10)I2 + 5( I2 ¡ I1) = 0

In standard form, the equations are

Lower left mesh: (5 + j5)I1 + (¡5)I2 = 10/90± ¡ 2:5/0±(j5)
Lower right mesh: (¡5)I1 + (10 + 5¡ j10)I2 = ¡10(2:5/0±)
A calculator gives the following solutions:

I1 = (¡1:5 + j0) A; I2 = (¡1:5¡ j1) A.
We can then use Ohm's law for impedances to calculate the desired
voltage phasor:

Vo = 5(I1 ¡ I2) = 5(j1) = j5 = 5/90± V
3. Check the frequency domain results by performing a complex power
balance. We can use the currents in the impedances, but will need
both the voltage and current phasors for the sources. To get the volt-
age phasor for the current source, we need the voltage at the right-most
node. Assuming the bottom node as the reference, this right node volt-
age phasor is (¡j10)I2 = (¡10 + j15)V. The calculations for complex
power are given below:

Sv:s: =
VI¤

2
=
(10/90±)(1:5 + j0)

2
= 0 + j7:5 VA

Sc:s: =
VI¤

2
=
(¡10 + j15¡ 10/90±)(2:5/0±)

2
= ¡12:5 + j6:25 VA

S5− =
j(I1 ¡ I2)j2(5)

2
+ j0 =

j ¡ 1:5 + 1:5 + j1j2(5)
2

+ j0 = 2:5 + j0 VA

S10− =
j(I2 + 2:5/0±)j2(10)

2
+ j0 =

j ¡ 1:5¡ j1 + 2:5j2(10)
2

+ j0 = 10 + j0 VA

Sj5 = 0 + j
j(I1 + 2:5/0±)j2(5)

2
= 0 + j

j ¡ 1:5 + 2:5j2(5)
2

= 0 + j2:5 VA

S¡j10 = 0 + j
jI2j2(¡10)

2
= 0 + j

j ¡ 1:5¡ j1j2(¡10)
2

= 0¡ j16:25 VA
We sum the complex power:

(0+j7:5)+(¡12:5+j6:25)+(2:5+j0)+(10+j0)+(0+j2:5)+(0¡j16:25) = 0 (checks)

Thus, the phasor values we calculated are consistent with the power
balance requirement.

4. Inverse phasor transform the voltage phasor Vo to get the time domain
voltage requested originally:

vo(t) = P¡1f5/90±g = 5 cos(1000t+ 90±) V.
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Figure 4: The circuit for AC Steady-State Example 2

AC Steady-State Example 2

Find the steady-state value of io(t) for the circuit in Fig. 4.

Solution

1. Redraw the circuit in Fig. 4. Label the voltage source in the frequency
domain with the phasor transform of the sinusoid from the voltage
source in the time domain:

Pf5 cos 2500tg = 5/0± V.

Label the output current and the controlling current for the dependent
source with current phasor symbols. Label the resistors, inductors, and
capacitors with their impedances:

Z5− = 5−

ZL = j(2500)(0:002) = j5−

ZC(mid) =
¡j

(2500)(40£ 10¡6) = ¡j10−

ZC(right) =
¡j

(2500)(80£ 10¡6) = ¡j5−

The ¯nal frequency domain circuit is shown in Fig. 5.

2. Analyze the frequency domain circuit in Fig. 5 to determine the value
of the phasor Io. We'll illustrate by using the node voltage method for
this circuit. There are three non-reference essential nodes, but one of
the node voltages is already speci¯ed by the voltage source on the left.
Therefore, we need to label only the middle and right nodes with phasor
node voltages, as shown in Fig. 6. Only one node voltage equation is
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Figure 5: The circuit for AC Steady-State Example 2, transformed into the
frequency domain.

Figure 6: The circuit in Fig. 5 with node voltage phasors identi¯ed.
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needed because of the supernode formed between the middle and right
nodes. We need a supernode constraint equation and a dependent
source constraint equation. The equations are:

Supernode:
V1 ¡ 5
j5

+
I1

5¡ j10 +
V2 ¡ 5
j5

+
V2

¡j5 = 0

Constraint: V1 ¡ V2 = 10 Ix

Constraint:
5¡ V2
j5

= Ix

In standard form, the equations are

Supernode:

Ã
1

j5
+

1

5¡ j10
!
V1 +

Ã
1

j5
+

1

¡j5
!
V2 + (0)Ix =

5

j5
+
5

j5
Constraint: (1)V1 + (¡1)V2 + (¡10)Ix = 0

Constraint: (0)V1 +

Ã
1

j5

!
V2 + (1)Ix =

5

j5

A calculator gives the following solutions:

V1 = (15¡ j5) V; V2 = (5¡ j5) V; Ix = 1 A.

We can then use Ohm's law for impedances to calculate the desired
current phasor:

Io =
V2

¡j5 =
5¡ j5
¡j5 = 1 + j1 = 1:414/45± A

3. Check the frequency domain results by performing a complex power
balance. We can use the currents in the impedances, but will need
both the voltage and current phasors for the sources. We have used
the node voltage values to calculate the current through every element
and have labeled the circuit in Fig. 7 with the results. The calculations
for complex power are given below:

Sv:s: =
¡VI¤
2

=
¡(5)(2¡ j2)

2
= ¡5 + j5 VA

Sd:s: =
VI¤

2
=
(10)(¡j1)

2
= 0¡ j5 VA

S5− =
jI5−j2(5)

2
+ j0 =

j1 + j1j2(5)
2

+ j0 = 5 + j0 VA

SL(top) = 0 + j
jIL(top)j2(5)

2
= 0 + j

j1j2(5)
2

= 0 + j2:5 VA

SL(mid) = 0 + j
jIL(mid)j2(5)

2
= 0 + j

j1 + j2j2(5)
2

= 0 + j12:5 VA

SC(mid) = 0 + j
jIC(mid)j2(¡10)

2
= 0 + j

j1 + j1j2(¡10)
2

= 0¡ j10 VA

SC(right) = 0 + j
jIC(right)j2(¡5)

2
= 0 + j

j1 + j1j2(¡5)
2

= 0¡ j5 VA
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Figure 7: The circuit in Fig. 5, solved for all voltage and current phasors.

We sum the complex power:

(¡5+j5)+(0¡j5)+(5+j0)+(0+j2:5)+(0+j12:5)+(0¡j10)+(0¡j5) = 0 (checks)

Thus, the phasor values we calculated are consistent with the power
balance requirement.

4. Inverse phasor transform the voltage phasor Io to get the time domain
voltage requested originally:

io(t) = P¡1f1:414/45±g = 1:414 cos(2500t+ 45±) A

Now try using the AC steady-state circuit analysis method for each of
the practice problems below.
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Figure 8: The circuit for AC Steady-State Practice Problem 1.

AC Steady-State Practice Problem 1

Find the steady-state value of vo for the circuit shown in Fig. 8.

1. Transform the circuit in Fig. 8 into the frequency domain by redrawing
the circuit and replacing the voltages and currents with phasors and
the resistor, inductor, and capacitor values with impedances.
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2. Analyze the circuit in the frequency domain to determine the value of
the phasor current Vo.

3. Check your answer in Step 2 by performing a complex power balance.

4. Inverse phasor transform the phasor current found in Step 2 to get the
steady-state value of vo.
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Figure 9: The circuit for AC Steady-State Practice Problem 2.

AC Steady-State Practice Problem 2

Find the steady-state value of vo for the circuit shown in Fig. 9.

1. Transform the circuit in Fig. 9 into the frequency domain by redrawing
the circuit and replacing the voltages and currents with phasors and
the resistor, inductor, and capacitor values with impedances.

12



2. Analyze the circuit in the frequency domain to determine the value of
the phasor current Vo.

3. Check your answer in Step 2 by performing a complex power balance.

4. Inverse phasor transform the phasor current found in Step 2 to get the
steady-state value of vo.
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Figure 10: The circuit for AC Steady-State Practice Problem 3.

AC Steady-State Practice Problem 3

Find the steady-state value of io for the circuit shown in Fig. 10.

1. Transform the circuit in Fig. 10 into the frequency domain by redrawing
the circuit and replacing the voltages and currents with phasors and
the resistor, inductor, and capacitor values with impedances.
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2. Analyze the circuit in the frequency domain to determine the value of
the phasor current Io.

3. Check your answer in Step 2 by performing a complex power balance.

4. Inverse phasor transform the phasor current found in Step 2 to get the
steady-state value of io.
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Figure 11: The circuit for AC Steady-State Practice Problem 4.

AC Steady-State Practice Problem 4

Find the steady-state value of io for the circuit shown in Fig. 11.

1. Transform the circuit in Fig. 11 into the frequency domain by redrawing
the circuit and replacing the voltages and currents with phasors and
the resistor, inductor, and capacitor values with impedances.
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2. Analyze the circuit in the frequency domain to determine the value of
the phasor current Io.

3. Check your answer in Step 2 by performing a complex power balance.

4. Inverse phasor transform the phasor current found in Step 2 to get the
steady-state value of io.
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Figure 12: The circuit for AC Steady-State Practice Problem 5.

AC Steady-State Practice Problem 5

Find the steady-state value of vo for the circuit shown in Fig. 12.

1. Transform the circuit in Fig. 12 into the frequency domain by redrawing
the circuit and replacing the voltages and currents with phasors and
the resistor, inductor, and capacitor values with impedances.
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2. Analyze the circuit in the frequency domain to determine the value of
the phasor current Vo.

3. Check your answer in Step 2 by performing a complex power balance.

4. Inverse phasor transform the phasor current found in Step 2 to get the
steady-state value of vo.
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Figure 13: The circuit for AC Steady-State Practice Problem 6.

AC Steady-State Practice Problem 6

Find the steady-state value of io for the circuit shown in Fig. 13.

1. Transform the circuit in Fig. 13 into the frequency domain by redrawing
the circuit and replacing the voltages and currents with phasors and
the resistor, inductor, and capacitor values with impedances.
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2. Analyze the circuit in the frequency domain to determine the value of
the phasor current Io.

3. Check your answer in Step 2 by performing a complex power balance.

4. Inverse phasor transform the phasor current found in Step 2 to get the
steady-state value of io.

21



Figure 14: The circuit for AC Steady-State Practice Problem 7.

AC Steady-State Practice Problem 7

Find the steady-state value of io for the circuit shown in Fig. 14.

1. Transform the circuit in Fig. 14 into the frequency domain by redrawing
the circuit and replacing the voltages and currents with phasors and
the resistor, inductor, and capacitor values with impedances.
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2. Analyze the circuit in the frequency domain to determine the value of
the phasor current Io.

3. Check your answer in Step 2 by performing a complex power balance.

4. Inverse phasor transform the phasor current found in Step 2 to get the
steady-state value of io.

23



Figure 15: The circuit for AC Steady-State Practice Problem 8.

AC Steady-State Practice Problem 8

Find the steady-state value of io for the circuit shown in Fig. 15.

1. Transform the circuit in Fig. 15 into the frequency domain by redrawing
the circuit and replacing the voltages and currents with phasors and
the resistor, inductor, and capacitor values with impedances.

24



2. Analyze the circuit in the frequency domain to determine the value of
the phasor current Io.

3. Check your answer in Step 2 by performing a complex power balance.

4. Inverse phasor transform the phasor current found in Step 2 to get the
steady-state value of io.
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Reading

² in Introductory Circuits for Electrical and Computer Engineering:
{ Section 7.1-7.2 | sinusoids

{ Section 7.3 | phasors

{ Section 7.4 | frequency domain circuits

{ Section 7.5-7.8 | frequency domain circuit analysis

{ Section 7.9-7.11 | power in AC steady-state circuits

² in Electric Circuits, sixth edition:
{ Section 9.1-9.2 | sinusoids

{ Section 9.3 | phasors

{ Section 9.4 | frequency domain circuits

{ Section 9.5-9.9 | frequency domain circuit analysis

{ Section 10.1-10.6 | power in AC steady-state circuits

² Workbook section | Node Voltage Method

² Workbook section | Mesh Current Method

Additional Problems

² in Introductory Circuits for Electrical and Computer Engineering:
{ 7.9 | 7.10

{ 7.13 | 7.14

{ 7.30 | 7.39

{ 7.41 | 7.43

{ 7.45 | 7.58

² in Electric Circuits, sixth edition:
{ 9.9 | 9.10

{ 9.13 | 9.14

{ 9.30 | 9.39

{ 9.41 | 9.43

{ 9.45 | 9.58

{ 10.8 | 10.9

{ 10.11 | 10.15
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Solutions

² Second-Order Practice Problem 1: vo(t) = 7:906 cos(400t+18:44
±)V.

² Second-Order Practice Problem 2: vo(t) = 10 cos(5000t+ 90
±)V.

² Second-Order Practice Problem 3: io(t) = 60 cos(4000t+53:13
±)A.

² Second-Order Practice Problem 4: io(t) = 7:071 cos(1600t¡45±)A.
² Second-Order Practice Problem 5: vo(t) = 50 cos(25;000t)V.

² Second-Order Practice Problem 6: io(t) = 2 cos(1000t¡ 90±)A.
² Second-Order Practice Problem 7: io(t) = 1 cos(2000t)A.

² Second-Order Practice Problem 8: io(t) = 5:831 cos(250t+49:04
±)A.

27



Laplace Transformed Circuits

In general, the describing equations for linear circuits are simultaneous dif-
ferential equations. One of the most powerful mathematical techniques for
solving simultaneous di®erential equations is the Laplace method. Here we
show how to use the Laplace method to transform a circuit from the time
domain to the s-domain, thereby transforming the circuit's describing dif-
ferential equations into simultaneous algebraic equations which are much
more manageable. The Laplace technique is also very general, in that it can
be applied to circuits with any number of resistors, inductors, capacitors,
and dependent sources, where the inductors and capacitors may have energy
stored before the independent sources are applied. The independent sources
must be able to be described by functions which have Laplace transforms.
The Laplace method yields the complete response of the circuit. That is,
this technique gives both the natural response of the circuit, which decays
to zero in time, and the forced response, which has the same form as the
independent source.
The Laplace technique begins by determining the initial conditions for

the circuit. Sometimes these initial conditions are speci¯ed in the statement
of the problem. Other times, the circuit contains a switch which is in one po-
sition for t < 0 to establish the initial conditions and in a second position for
t ¸ 0, creating the circuit meant to be analyzed. The initial conditions are
represented as a voltage drop across each capacitor and the current °owing
through each inductor. Then the circuit for t ¸ 0 is Laplace transformed.
This involves replacing time domain functions describing voltages and cur-
rents with their Laplace transforms and replacing each resistor, inductor,
and capacitor with its Laplace transform, which in the case of inductors and
capacitors involves the initial conditions. The circuit is now in the s-domain
where all of the equations relating Laplace transformed voltages to Laplace
transformed currents are algebraic functions of s. We can then use all of the
circuit analysis techniques developed for resistive circuits with dc sources, in-
cluding the node voltage method and the mesh current method. The result
is an s-domain voltage or current expressed as a ratio of two polynomials
in s. Once we expand this result into a sum of partial fractions, it is then
easily transformed back into the time domain, where we now have a complete
description of the desired voltage or current.
The Laplace transform method for circuit analysis can be broken into the
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following steps:

1. Determine the initial conditions for the circuit. The initial conditions
represent initial energy stored in capacitors and inductors. The initial
energy stored in an inductor is represented as an initial current, while
the initial energy stored in a capacitor is represented as an initial volt-
age drop. Sometimes you will be told the values of the initial conditions
in the statement of the problem, so you do not need to do any circuit
analysis. In other problems you may be told that there is no initial
energy stored in the circuit, so the initial value of the current in the
inductors is zero as is the value of the initial voltage drop across the
capacitors. Some circuits will contain a switch that is in one position
for t < 0 while initial conditions are being established and in a second
position for t ¸ 0. When your circuit contains a switch and a dc source
used to establish initial conditions you will need to do some circuit
analysis to determine the value of the initial conditions. Redraw the
circuit as it appears for t < 0. Since it is assumed that the circuit for
t < 0 has been stable for a long time, an inductor will have been in the
presence of a dc source for a long time and can be replaced with a short
circuit with current Io, while a capacitor can be replaced by an open
circuit with voltage drop Vo. Use resistive circuit analysis techniques
to determine the values of Io and Vo.

2. Now consider the circuit for t ¸ 0. We Laplace transform this circuit to
get it into the s-domain. Begin by determining the Laplace transform
of any voltage or current sources speci¯ed by time domain functions.
To do this, use functional and operational Laplace transform tables like
the ones in the text. Then Laplace transform the resistors, inductors,
and capacitors in the circuit. The Laplace transform of a resistor is a
resistor whose complex impedance, ZR(s) = R, the resistance of the
resistor. The Laplace transform of an inductor is one of two equiv-
alent circuits | an inductor whose complex impedance ZL(s) = sL
either in series with a voltage source whose value is LIo or in parallel
with a current source whose value is Io=s. You decide which version
of the Laplace transform to use based on which version will make your
s-domain circuit analysis easier. The Laplace transform of a capaci-
tor is also one of two equivalent circuits | a capacitor whose complex
impedance ZC(s) = 1=sC either in series with a voltage source whose
value is CVo or in parallel with a current source whose value is Vo=s. As
with the inductor, you decide which version of the capacitor's Laplace
transform to use based on which version will make your s-domain cir-
cuit analysis easier. It is important to specify the correct polarity for
the sources used to represent the initial conditions for inductors and
capacitors. A table is provided in the text for easy reference. Remem-
ber that if the initial conditions for the inductors and capacitors are
zero, the Laplace transforms of the inductors and capacitors do not
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contain the voltage or current sources. Finally, replace any symbols for
voltage and current in the time domain circuit, like i(t) and v(t) with
symbols for voltages and currents in the s-domain, like I(s) and V (s).
The resulting s-domain circuit is the Laplace transform of the original
time domain circuit.

3. Since Ohm's law holds in the s-domain, that is V (s) = Z(s)I(s), as
do Kirchho®'s laws, all of the circuit analysis techniques developed for
resistive circuits with DC sources can be used in the s-domain circuit.
These techniques include the node voltage method, the mesh current
method, voltage and current division, source transformation, and the
circuit simpli¯cation techniques like combining complex impedances in
series and in parallel and calculating Th¶evenin or Norton equivalents.
Using whatever circuit analysis techniques you choose, write the equa-
tions for the circuit and put them in standard form. These equations
will be functions of the variable s. You can use your calculator to solve
these equations if it can handle the solution of equations with sym-
bols. Otherwise you can use a computer program or Cramer's method
to solve the equations. Your solution will be an s-domain voltage or
current expressed as a ratio of two polynomials in s.

4. Expand the result from Step 3, the ratio of two polynomials in s, as a
sum of partial fractions. Some calculators are able to do this directly.
If you do the partial fraction expansion by hand, begin by factoring the
denominator polynomial in s. There are two types of factors | real
factors and complex conjugate pairs of factors. Either type of factor
can be distinct or repeated. Thus there are four possible categories of
factors | real and distinct, real and repeated, complex and distinct,
and complex and repeated. Each individual factor makes up the de-
nominator for a single partial fraction. We illustrate how to calculate
the numerator constant for each partial fraction in the text and also in
the examples that follow. Once the result is expressed as a sum of par-
tial fractions, we are ready to perform the inverse Laplace transform.

5. Inverse Laplace transform each of the partial fractions by using a com-
bination of the functional and operational Laplace transform tables in
the text. The result completely describes the calculated voltage and
current and will be a sum of the natural response of the circuit and its
forced response. This result takes the initial conditions into account
automatically.

The three examples that follow illustrate the Laplace transform method of
circuit analysis. One example has distinct real roots in the Laplace transform
of its result; another has repeated real roots in the Laplace transform of its
result; the third has complex conjugate roots in the Laplace transform of its
result.
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Figure 1: The circuit for Laplace Method Example 1

Figure 2: The circuit for Laplace Method Example 1, for t < 0.

Laplace Method Example 1

Find vo(t) when t ¸ 0 for the circuit in Fig. 1.

Solution

1. To determine the initial conditions, redraw the circuit in Fig. 1 for
t < 0, with the switch in its left hand position. Replace the capacitor
with an open circuit whose voltage drop is Vo and replace the inductor
with a short circuit whose current is Io. The resulting circuit is shown
in Fig. 2. It is easy to determine the value of Io, since the right hand
side of the circuit is open and no current can °ow into it. Thus, Io = 0
A. Use voltage division to determine the value of Vo, since Vo is the
same as the voltage drop across the 2k− resistor. Thus,

Vo =
2000

2000 + 6000
8 = 2 V.

2. Laplace transform the circuit in Fig. 1 for t ¸ 0 into the s-domain.
There are no independent sources in the circuit for t ¸ 0, so we only
need to transform the resistor, inductor, and capacitor. The complex
impedance of the resistor is its resistance. The complex impedance of
the inductor is sL = 0:125s. Since the inductor's initial current is zero,
there is no independent source needed to represent the initial condition.
The complex impedance of the capacitor is 1=sC = 8£106=s. We need
to incorporate the initial voltage drop across the capacitor calculated
in Step 1. Here we choose the series voltage source, which has a value
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Figure 3: The Laplace transform of the circuit for Laplace Method Example
1.

of Vo=s = 2=s in anticipation of writing a single node voltage equation
at the top node in the resulting circuit. We also replace the symbol for
the output voltage in the time domain circuit, vo(t) with a symbol for
the output voltage's Laplace transform, Vo(s). The resulting s-domain
circuit is shown in Fig. 3.

3. Find Vo(s) by writing a single node voltage equation at the top node,
having made the bottom node the reference node. The reference node
and the top node have been labeled in Fig. 3. The node voltage equation
is

Vo(s)¡ 2
s

8£ 106
s

+
Vo(s)

0:125s
+
Vo(s)

400
= 0

Solving for Vo(s) we get

Vo(s) =
2s

s2 + 20;000s+ 64£ 106

This is the Laplace transform of the result we want to obtain, vo(t).
Notice that we have adjusted the coe±cients so that the coe±cient
of the highest power of s in the denominator is 1. This will allow
us to factor the denominator polynomial to obtain the roots of the
polynomial.

4. Factor the denominator polynomial to prepare for performing the par-
tial fraction expansion. The result is

Vo(s) =
2s

(s+ 4000)(s+ 16;000)

Note that in this example, the denominator factors are real and distinct.
The partial fractions are in the form

Vo(s) =
K1

s+ 4000
+

K2

s+ 16;000
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All that remains is to calculate the values of K1 and K2, as shown
below:

K1 = (s+ 4000)Vo(s)js=¡4000 =
2s

s+ 16;000

¯̄̄̄
¯
s=¡4000

= ¡0:667

K2 = (s+ 16;000)Vo(s)js=¡16;000 =
2s

s+ 4000

¯̄̄̄
s=¡16;000

= 2:667

Therefore,

Vo(s) =
¡0:667
s+ 4000

+
2:667

s+ 16;000

5. To ¯nd vo(t), inverse Laplace transform the partial fraction expansion
of Vo(s):

vo(t) = L¡1fVo(s)g = L¡1
½ ¡0:667
s+ 4000

¾
+ L¡1

(
2:667

s+ 16;000

)

Using the Laplace transform tables we get

vo(t) = ¡0:667e¡4000t + 2:667e¡16;000t V, t ¸ 0:
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Figure 4: The circuit for Laplace Method Example 2

Laplace Method Example 2

There is no initial energy stored in the circuit shown in Fig. 4. Find vo for
t ¸ 0.

Solution

1. Since there is no initial energy stored in this circuit the initial conditions
are both zero. Thus,

Io = 0 A and Vo = 0 V.

2. Laplace transform the circuit in Fig. 4 for t ¸ 0 into the s-domain.
Replace the independent source in the circuit in Fig. 5 with its Laplace
transform:

Lf0:01e¡1000tg = 0:01

s+ 1000
Transform the resistor, inductor, and capacitor. The complex impedance
of the resistor is its resistance. The complex impedance of the induc-
tor is sL = 0:2s. Since the inductor's initial current is zero, there is
no independent source needed to represent the initial condition. The
complex impedance of the capacitor is 1=sC = 125 £ 104=s. Since
the capacitor's initial voltage is zero, there is no independent source
needed to represent the initial condition. We also replace the symbol
for the output voltage in the time domain circuit, vo(t) with a sym-
bol for the output voltage's Laplace transform, Vo(s). The resulting
s-domain circuit is shown in Fig. 5.

3. Find Vo(s) by writing a single node voltage equation at the top node,
having made the bottom node the reference node. The reference node
and the top node have been labeled in Fig. 5. The node voltage equation
is ¡0:01

s+ 1000
+
Vo(s)

1000
+

Vo(s)

0:2s+
125£ 104

s

= 0

Solving for Vo(s) we get

Vo(s) =
10(s2 + 625£ 104)

(s+ 1000)(s2 + 5000s+ 625£ 104)
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Figure 5: The Laplace transform of the circuit for Laplace Method Example
2.

This is the Laplace transform of the result we want to obtain, vo(t).
Notice that we have adjusted the coe±cients so that the coe±cient
of the highest power of s in the denominator is 1. This will allow
us to factor the denominator polynomial to obtain the roots of the
polynomial.

4. Factor the denominator polynomial to prepare for performing the par-
tial fraction expansion. The result is

Vo(s) =
10(s2 + 625£ 104)
(s+ 1000)(s+ 2500)2

Note that in this example, the roots are real and repeated. The partial
fractions are in the form

Vo(s) =
K1

s+ 1000
+

K2

(s+ 2500)2
+

K2

s+ 2500

All that remains is to calculate the values of K1 and K2, as shown
below:

K1 = (s+ 1000)Vo(s)js=¡1000 =
10(s2 + 625£ 104)

s+ 2500)2

¯̄̄̄
¯
s=¡1000

= 32:22

K2 = (s+ 2500)2Vo(s)js=¡2500 =
10(s2 + 625£ 104)

(s+ 1000)

¯̄̄̄
¯
s=¡2500

= ¡83; 333:33

K3 =
d

ds
[(s+ 2500)2Vo(s)]js=¡2500 =

"
20s

s+ 1000
¡ 10(s

2 + 625£ 104)
(s+ 1000)2

#¯̄̄̄
¯
s=¡2500

= ¡22:22
Therefore,

Vo(s) =
32:22

s+ 1000
+
¡83;333:33
(s+ 2500)2

+
¡22:22
s+ 2500
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5. To ¯nd vo(t), inverse Laplace transform the partial fraction expansion
of Vo(s):

vo(t) = L¡1fVo(s)g = L¡1
½
32:22

s+ 1000

¾
+L¡1

(¡83;333:33
(s+ 2500)2

)
+L¡1

½ ¡22:22
s+ 2500

¾

Thus,

vo(t) = 32:22e
¡1000t ¡ 83; 333:33te¡2500t ¡ 22:22e¡2500t V, t ¸ 0

9



Figure 6: The circuit for Laplace Method Example 3

Figure 7: The circuit for Laplace Method Example 3, for t < 0.

Laplace Method Example 3

Find io(t) when t ¸ 0 for the circuit in Fig. 6.

Solution

1. To determine the initial conditions, redraw the circuit in Fig. 6 for
t < 0, with the switch in its left hand position. Replace the capacitor
with an open circuit whose voltage drop is Vo and replace the inductor
with a short circuit whose current is Io. The resulting circuit is shown in
Fig. 7. It is easy to determine the value of Io, since the right hand side of
the circuit is open and no current can °ow into it. Thus, Io = 0 A. The
capacitor is an open circuit so all of the current from the current source
°ows through the 2k− resistor, producing a voltage which parallel to
Vo. Thus,

Vo = (35£ 10¡3)(2000) = 70 V.
2. Laplace transform the circuit in Fig. 6 for t ¸ 0 into the s-domain.
There are no independent sources in the circuit for t ¸ 0, so we only
need to transform the resistor, inductor, and capacitor. The complex
impedance of the resistor is its resistance. The complex impedance of
the inductor is sL = 0:5s. Since the inductor's initial current is zero,
there is no independent source needed to represent the initial condition.
The complex impedance of the capacitor is 1=sC = 31:25 £ 105=s.
We need to incorporate the initial voltage drop across the capacitor
calculated in Step 1. Here we choose the series voltage source, which has

10



Figure 8: The Laplace transform of the circuit for Laplace Method Example
3.

a value of Vo=s = 70=s in anticipation of writing a single mesh current
equation that incorporates all of the series connected components. We
also replace the symbol for the output current in the time domain
circuit, io(t) with a symbol for the output current's Laplace transform,
Io(s). The resulting s-domain circuit is shown in Fig. 8.

3. Find Io(s) by writing a single KVL equation around the loop of series
connected components. The mesh current Io has been labeled in Fig. 3.
The mesh current equation is

¡70
s
+
31:25£ 105

s
Io + 2400Io + 0:5sIo = 0

Solving for Io(s) we get

Io(s) =
140

s2 + 4800s+ 62:5£ 105

This is the Laplace transform of the result we want to obtain, io(t).
Notice that we have adjusted the coe±cients so that the coe±cient
of the highest power of s in the denominator is 1. This will allow
us to factor the denominator polynomial to obtain the roots of the
polynomial.

4. Factor the denominator polynomial to prepare for performing the par-
tial fraction expansion. The result is

Io(s) =
140

(s+ 2400 + j700)(s+ 2400¡ j700)
Note that in this example, the denominator factors are a complex con-
jugate pair. The partial fractions are in the form

Io(s) =
K1

s+ 2400¡ j700 +
K¤
1

s+ 2400 + j700

11



All that remains is to calculate the value of K1 as shown below:

K1 = (s+ 2400¡ j700)Vo(s)js=¡2400+j700 =
140

s+ 2400 + j700

¯̄̄̄
¯
s=¡2400+j700

= ¡0:1j = 0:1/¡ 90±

Therefore,

Io(s) =
0:1/¡ 90±

s+ 2400¡ j700 +
0:1/90±

s+ 2400 + j700

5. To ¯nd io(t), inverse Laplace transform the partial fraction expansion
of Io(s). When the factors of the denominator are complex conjugate
pairs, the partial fractions are in the form

F (s) =
jKj/µ

s+ ®¡ j¯ +
jKj/¡ µ
s+ ®+ j¯

and the resulting inverse Laplace transform is given by

f(t) = 2jKje¡®t cos(¯t+ µ)

Therefore,

io(t) = L¡1fIo(s)g = L¡1
(

0:1/¡ 90±
s+ 2400¡ j700 +

0:1/90±

s+ 2400 + j700

)

Thus,

vo(t) = 2(0:1)e
¡2400t cos(700t¡ 90±) = ¡0:2e¡2400t sin 700t A, t ¸ 0

Now try using the Laplace transform method for each of the practice
problems below.

12



Figure 9: The circuit for Laplace Transform Practice Problem 1.

Laplace Transform Practice Problem 1

Find the value of io for t ¸ 0 in the circuit shown in Fig. 9.
1. Find the initial conditions for the circuit in Fig. 9. The value of the
initial conditions may be given in the statement of the problem. If
not, draw the circuit for t < 0, replace the capacitor with an open
circuit whose voltage drop is Vo and replace the inductor with a short
circuit whose current is Io. Use resistive circuit analysis techniques to
determine the values of Vo and Io.
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2. Laplace transform the circuit in Fig. 9 to get an s-domain circuit. Re-
place time domain voltages and currents with their Laplace transforms.
Replace resistors, inductors, and capacitors with their Laplace trans-
forms, which include independent sources to represent the initial con-
ditions for inductors and capacitors.

3. Analyze the s-domain circuit from Step 2 to calculate Io(s). The result
will be a ratio of two polynomials in s. Adjust the coe±cients in the
result so that the coe±cient of the highest power of s in the denominator
is 1.

14



4. Find the partial fraction expansion for the ratio of polynomials in s
that is the value of Io(s) calculated in Step 3.

5. Inverse Laplace transform each of the terms in the partial fraction
expansion from Step 4 to get the complete response io(t) for t > 0.
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Figure 10: The circuit for Laplace Transform Practice Problem 2.

Laplace Transform Practice Problem 2

There is no initial energy stored in the circuit shown in Fig. 10. Find the
value of vo for t ¸ 0 in this circuit.
1. Find the initial conditions for the circuit in Fig. 10. The value of the
initial conditions may be given in the statement of the problem. If
not, draw the circuit for t < 0, replace the capacitor with an open
circuit whose voltage drop is Vo and replace the inductor with a short
circuit whose current is Io. Use resistive circuit analysis techniques to
determine the values of Vo and Io.
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2. Laplace transform the circuit in Fig. 10 to get an s-domain circuit.
Replace time domain voltages and currents with their Laplace trans-
forms. Replace resistors, inductors, and capacitors with their Laplace
transforms, which include independent sources to represent the initial
conditions for inductors and capacitors.

3. Analyze the s-domain circuit from Step 2 to calculate Vo(s). The result
will be a ratio of two polynomials in s. Adjust the coe±cients in the
result so that the coe±cient of the highest power of s in the denominator
is 1.
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4. Find the partial fraction expansion for the ratio of polynomials in s
that is the value of Vo(s) calculated in Step 3.

5. Inverse Laplace transform each of the terms in the partial fraction
expansion from Step 4 to get the complete response vo(t) for t > 0.
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Figure 11: The circuit for Laplace Transform Practice Problem 3.

Laplace Transform Practice Problem 3

Find the value of vo for t ¸ 0 in the circuit shown in Fig. 11.
1. Find the initial conditions for the circuit in Fig. 11. The value of the
initial conditions may be given in the statement of the problem. If
not, draw the circuit for t < 0, replace the capacitor with an open
circuit whose voltage drop is Vo and replace the inductor with a short
circuit whose current is Io. Use resistive circuit analysis techniques to
determine the values of Vo and Io.
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2. Laplace transform the circuit in Fig. 11 to get an s-domain circuit.
Replace time domain voltages and currents with their Laplace trans-
forms. Replace resistors, inductors, and capacitors with their Laplace
transforms, which include independent sources to represent the initial
conditions for inductors and capacitors.

3. Analyze the s-domain circuit from Step 2 to calculate Vo(s). The result
will be a ratio of two polynomials in s. Adjust the coe±cients in the
result so that the coe±cient of the highest power of s in the denominator
is 1.
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4. Find the partial fraction expansion for the ratio of polynomials in s
that is the value of Vo(s) calculated in Step 3.

5. Inverse Laplace transform each of the terms in the partial fraction
expansion from Step 4 to get the complete response vo(t) for t > 0.
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Figure 12: The circuit for Laplace Transform Practice Problem 4.

Laplace Transform Practice Problem 4

Find the value of vo for t ¸ 0 in the circuit shown in Fig. 12.
1. Find the initial conditions for the circuit in Fig. 12. The value of the
initial conditions may be given in the statement of the problem. If
not, draw the circuit for t < 0, replace the capacitor with an open
circuit whose voltage drop is Vo and replace the inductor with a short
circuit whose current is Io. Use resistive circuit analysis techniques to
determine the values of Vo and Io.
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2. Laplace transform the circuit in Fig. 12 to get an s-domain circuit.
Replace time domain voltages and currents with their Laplace trans-
forms. Replace resistors, inductors, and capacitors with their Laplace
transforms, which include independent sources to represent the initial
conditions for inductors and capacitors.

3. Analyze the s-domain circuit from Step 2 to calculate Vo(s). The result
will be a ratio of two polynomials in s. Adjust the coe±cients in the
result so that the coe±cient of the highest power of s in the denominator
is 1.
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4. Find the partial fraction expansion for the ratio of polynomials in s
that is the value of Vo(s) calculated in Step 3.

5. Inverse Laplace transform each of the terms in the partial fraction
expansion from Step 4 to get the complete response vo(t) for t > 0.
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Figure 13: The circuit for Laplace Transform Practice Problem 5.

Laplace Transform Practice Problem 5

Find the value of vo for t ¸ 0 in the circuit shown in Fig. 13.
1. Find the initial conditions for the circuit in Fig. 13. The value of the
initial conditions may be given in the statement of the problem. If
not, draw the circuit for t < 0, replace the capacitor with an open
circuit whose voltage drop is Vo and replace the inductor with a short
circuit whose current is Io. Use resistive circuit analysis techniques to
determine the values of Vo and Io.
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2. Laplace transform the circuit in Fig. 13 to get an s-domain circuit.
Replace time domain voltages and currents with their Laplace trans-
forms. Replace resistors, inductors, and capacitors with their Laplace
transforms, which include independent sources to represent the initial
conditions for inductors and capacitors.

3. Analyze the s-domain circuit from Step 2 to calculate Vo(s). The result
will be a ratio of two polynomials in s. Adjust the coe±cients in the
result so that the coe±cient of the highest power of s in the denominator
is 1.

26



4. Find the partial fraction expansion for the ratio of polynomials in s
that is the value of Vo(s) calculated in Step 3.

5. Inverse Laplace transform each of the terms in the partial fraction
expansion from Step 4 to get the complete response vo(t) for t > 0.
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Figure 14: The circuit for Laplace Transform Practice Problem 6.

Laplace Transform Practice Problem 6

There is no initial energy stored in the circuit shown in Fig. 14. Find the
value of vo for t ¸ 0 in this circuit.
1. Find the initial conditions for the circuit in Fig. 14. The value of the
initial conditions may be given in the statement of the problem. If
not, draw the circuit for t < 0, replace the capacitor with an open
circuit whose voltage drop is Vo and replace the inductor with a short
circuit whose current is Io. Use resistive circuit analysis techniques to
determine the values of Vo and Io.
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2. Laplace transform the circuit in Fig. 14 to get an s-domain circuit.
Replace time domain voltages and currents with their Laplace trans-
forms. Replace resistors, inductors, and capacitors with their Laplace
transforms, which include independent sources to represent the initial
conditions for inductors and capacitors.

3. Analyze the s-domain circuit from Step 2 to calculate Vo(s). The result
will be a ratio of two polynomials in s. Adjust the coe±cients in the
result so that the coe±cient of the highest power of s in the denominator
is 1.
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4. Find the partial fraction expansion for the ratio of polynomials in s
that is the value of Vo(s) calculated in Step 3.

5. Inverse Laplace transform each of the terms in the partial fraction
expansion from Step 4 to get the complete response vo(t) for t > 0.
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Figure 15: The circuit for Laplace Transform Practice Problem 7.

Laplace Transform Practice Problem 7

Find the value of vo for t ¸ 0 in the circuit shown in Fig. 15.
1. Find the initial conditions for the circuit in Fig. 15. The value of the
initial conditions may be given in the statement of the problem. If
not, draw the circuit for t < 0, replace the capacitor with an open
circuit whose voltage drop is Vo and replace the inductor with a short
circuit whose current is Io. Use resistive circuit analysis techniques to
determine the values of Vo and Io.
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2. Laplace transform the circuit in Fig. 15 to get an s-domain circuit.
Replace time domain voltages and currents with their Laplace trans-
forms. Replace resistors, inductors, and capacitors with their Laplace
transforms, which include independent sources to represent the initial
conditions for inductors and capacitors.

3. Analyze the s-domain circuit from Step 2 to calculate Vo(s). The result
will be a ratio of two polynomials in s. Adjust the coe±cients in the
result so that the coe±cient of the highest power of s in the denominator
is 1.
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4. Find the partial fraction expansion for the ratio of polynomials in s
that is the value of Vo(s) calculated in Step 3.

5. Inverse Laplace transform each of the terms in the partial fraction
expansion from Step 4 to get the complete response vo(t) for t > 0.
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Figure 16: The circuit for Laplace Transform Practice Problem 8.

Laplace Transform Practice Problem 8

There is no initial energy stored in the circuit shown in Fig. 16. Find the
value of vo for t ¸ 0 in this circuit.
1. Find the initial conditions for the circuit in Fig. 16. The value of the
initial conditions may be given in the statement of the problem. If
not, draw the circuit for t < 0, replace the capacitor with an open
circuit whose voltage drop is Vo and replace the inductor with a short
circuit whose current is Io. Use resistive circuit analysis techniques to
determine the values of Vo and Io.
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2. Laplace transform the circuit in Fig. 16 to get an s-domain circuit.
Replace time domain voltages and currents with their Laplace trans-
forms. Replace resistors, inductors, and capacitors with their Laplace
transforms, which include independent sources to represent the initial
conditions for inductors and capacitors.

3. Analyze the s-domain circuit from Step 2 to calculate Vo(s). The result
will be a ratio of two polynomials in s. Adjust the coe±cients in the
result so that the coe±cient of the highest power of s in the denominator
is 1.
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4. Find the partial fraction expansion for the ratio of polynomials in s
that is the value of Vo(s) calculated in Step 3.

5. Inverse Laplace transform each of the terms in the partial fraction
expansion from Step 4 to get the complete response vo(t) for t > 0.
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Figure 17: The circuit for Laplace Transform Practice Problem 9.

Laplace Transform Practice Problem 9

There is no initial energy stored in the inductor shown in Fig. 17. The initial
voltage drop across the capacitor is 60V, positive at the top. Find the value
of vo for t ¸ 0 in this circuit.
1. Find the initial conditions for the circuit in Fig. 17. The value of the
initial conditions may be given in the statement of the problem. If
not, draw the circuit for t < 0, replace the capacitor with an open
circuit whose voltage drop is Vo and replace the inductor with a short
circuit whose current is Io. Use resistive circuit analysis techniques to
determine the values of Vo and Io.
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2. Laplace transform the circuit in Fig. 17 to get an s-domain circuit.
Replace time domain voltages and currents with their Laplace trans-
forms. Replace resistors, inductors, and capacitors with their Laplace
transforms, which include independent sources to represent the initial
conditions for inductors and capacitors.

3. Analyze the s-domain circuit from Step 2 to calculate Vo(s). The result
will be a ratio of two polynomials in s. Adjust the coe±cients in the
result so that the coe±cient of the highest power of s in the denominator
is 1.
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4. Find the partial fraction expansion for the ratio of polynomials in s
that is the value of Vo(s) calculated in Step 3.

5. Inverse Laplace transform each of the terms in the partial fraction
expansion from Step 4 to get the complete response vo(t) for t > 0.
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Reading

² in Introductory Circuits for Electrical and Computer Engineering:
{ Section 8.1 | de¯nition of Laplace transform

{ Section 8.4-8.5 | functional and operational Laplace transforms

{ Section 8.6 | applying Laplace transforms to circuit equations

{ Section 8.7 | inverse Laplace transforms

{ Section 9.1-9.2 | Laplace transforming circuits

{ Section 9.3 | examples of Laplace transform method

² in Electric Circuits, sixth edition:
{ Section 12.1 | de¯nition of Laplace transform

{ Section 12.4-12.5 | functional and operational Laplace trans-
forms

{ Section 12.6 | applying Laplace transforms to circuit equations

{ Section 12.7 | inverse Laplace transforms

{ Section 13.1-13.2 | Laplace transforming circuits

{ Section 13.3 | examples of Laplace transform method

² Workbook section | Node Voltage Method

² Workbook section | Mesh Current Method

Additional Problems

² in Introductory Circuits for Electrical and Computer Engineering:
{ 9.9 | 9.14

{ 9.16

{ 9.18 | 9.32

² in Electric Circuits, sixth edition:
{ 13.9 | 13.14

{ 13.16

{ 13.18 | 13.32
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Solutions

² Laplace Transform Practice Problem 1:

io(t) = 5:2e
¡1000t cos(7000t¡ 15:95±) A.

² Laplace Transform Practice Problem 2:

vo(t) = 10
4te¡10;000t + e¡10;000t V.

² Laplace Transform Practice Problem 3:

vo(t) = ¡26:667e¡1000t + 26:667e¡4000t V.

² Laplace Transform Practice Problem 4:

vo(t) = ¡300;000te¡25;000t + 12e¡25;000t V.

² Laplace Transform Practice Problem 5:

vo(t) = 1:333e
¡10t ¡ 1:333e¡40t V.

² Laplace Transform Practice Problem 6:

vo(t) = 10¡ 10e¡t=2 cos 0:5t V.

² Laplace Transform Practice Problem 7:

vo(t) = ¡6£ 105te¡10;000t ¡ 60e¡10;000t V.

² Laplace Transform Practice Problem 8:

vo(t) = 5¡ 6e¡5t + 4e¡20t V.

² Laplace Transform Practice Problem 9:

vo(t) = ¡30 + 50e¡800t cos(600t¡ 53:13±) V.
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