ECE U468 Noise & Stochastic Processes—Lecture 9 Discrete Probability Distributions or Probability Mass Functions (pmf) January 27, 2005

Uniform Distribution

Experiment obeys: all outcomes equally probable

Random variable: X = outcome

Probability distribution: if k is the number of possible outcomes,

$$p_X(x) = \begin{cases} \frac{1}{k} & \text{if } x \text{ is a possible outcome} \\ 0 & \text{otherwise} \end{cases}$$

Example: tossing a fair die (k = 6).

Bernoulli Distribution

Experiment obeys: • a single trial with two possible outcomes (success and failure)

• $P[\{trial \text{ is successful}\}] = p$

Random variable: X = number of successful trials (zero or one)

Probability distribution: $p_X(x) = p^x (1 - p)^{1-x}$ **Mean and variance:** $\mu = p$, $\sigma^2 = p(1 - p)$ **Example:** tossing a fair coin once

Binomial Distribution

Experiment obevs: • *n* repeated independent Bernoulli trials, i.e.:

• each trial has two possible outcomes (success and failure)

• $P[\{i^{th} \text{ trial is successful}\}] = p \text{ for all } i$

• trials are independent

Random variable: $X = \text{number of successful trials. } X \sim \mathcal{B}(n, p)$

Probability distribution: $p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$

Mean and variance: $\mu = np$, $\sigma^2 = np(1-p)$ **Example:** tossing a fair coin *n* times

Approximations: Poisson approximation: $\mathcal{B}(n, p) \approx \mathcal{P}(\lambda = np)$ if p << 1, x << n

Normal approximation: $\mathcal{B}(n,p) \approx \mathcal{N}(\mu = np,\sigma^2 = npq)$ if np >> 1, nq >> 1

Geometric Distribution

Experiment obeys: • indeterminate number of independent repeated Bernoulli trials, i.e.:

• each trial has two possible outcomes (success and failure)

• P[$\{i^{th} \text{ trial is successful}\}\] = p \text{ for all } i$

• trials are independent

• keep going until 1st success

Random variable: $X = \text{trial number of } 1^{\text{st}} \text{ successful trial.}$ **Probability distribution:** $p_X(x) = p(1-p)^{x-1}, x = 1, 2, 3, ...$

Mean and variance: $\mu = \frac{1}{p}, \ \sigma^2 = \frac{1-p}{p^2}$

Example: repeated attempts to start an engine, playing lottery until you win

Variation on Geometric Distribution

Experiment obeys: • indeterminate number of independent repeated Bernoulli trials, i.e.:

• each trial has two possible outcomes (success and failure)

• $P[\{i^{th} \text{ trial is successful}\}] = p \text{ for all } i$

trials are independent
keep going until 1st success

Random variable: X = number of failures until 1st success

Probability distribution: $p_X(x) = p(1-p)^x$, x = 0, 1, 2, ...

Mean and variance: $\mu = \frac{1-p}{p}, \ \sigma^2 = \frac{1-p}{p^2}$

Example: queueing models

Negative Binomial Distribution

Experiment obeys: • indeterminate number of independent repeated Bernoulli trials, i.e.:

• each trial has two possible outcomes (success and failure)

• P[$\{i^{th} \text{ trial is successful}\}\] = p \text{ for all } i$

• trials are independent

• keep going until rth success

Random variable: $X = \text{trial number on which } r^{\text{th}} \text{ success occurs}$

Probability distribution: $p_X(x) = \begin{pmatrix} x-1 \\ r-1 \end{pmatrix} p^r (1-p)^{x-r}$

Mean and variance: $\mu = \frac{r}{p}$, $\sigma^2 = \frac{r(1-p)}{p^2}$

Example: fabricating r nondefective computer chips

Poisson Distribution

Experiment obeys: • events occur "completely at random"

• events occur at a point in time or space

• # of events in 1 region is independent of the # occurring in any disjoint region

• probability of more than 1 event occurring at the same point is negligible

• probability of n events in region 1 = probability of n events in region 2, when

regions have the same size

Random variable: X = number of events occurring in a given time interval or region of space

 $X \sim \mathcal{P}(\lambda)$

Probability distribution: $p_X(x) = \frac{\lambda^x}{x!} e^{-\lambda}$, where λ is the average number of events in the given region

Mean and variance: $\mu = \lambda$, $\sigma^2 = \lambda$

Example: telephone calls arriving at a switchboard in a specified one-hour period